title>Publications s.neukirch
Sébastien Neukirch
Institut Jean le Rond d'Alembert
Centre National de la Recherche Scientifique
Université Pierre et Marie Curie
Paris, France

tel: +33 1 44 27 72 61
fax : +33 1 44 27 52 59
e-mail: sebastien.neukirch (-atat-) upmc.fr


Home Research Vitae Publications Talks

Short list Full list

Writhing instabilities of twisted rods: from infinite to finite length

Sébastien Neukirch, G. van der Heijden & J.M.T. Thompson

Journal of the Mechanics and Physics of Solids 50 \#6 (2002) 1175-1191.

Abstract : We use three different approaches to describe the static spatial configurations of a twisted rod as well as its stability during rigid loading experiments. The first approach considers the rod as infinite in length and predicts an instability causing a jump to self-contact at a certain point of the experiment. Semi-finite corrections, taken into account as a second approach, reveal some possible experiments in which the configuration of a very long rod will be stable through out. Finally, in a third approach, we consider a rod of real finite length and we show that another type of instability may occur, leading to possible hysteresis behavior. As we go from infinite to finite length, we compare the different information given by the three approaches on the possible equilibrium configurations of the rod and their stability. These finite size effects studied here in a 1D elasticity problem could help us guess what are the stability features of other more complicated (2D elastic shells for example) problems for which only the infinite length approach is understood.

PACS numbers :

Key words : stability and bifurcations, buckling, finite deflections, elastic material, beams and columns.

download pre-print version : PDF (770 Ko).

download the journal version : PDF (450Ko).