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Abstract

We use three di4erent approaches to describe the static spatial con(gurations of a twisted rod
as well as its stability during rigid loading experiments. The (rst approach considers the rod as
in(nite in length and predicts an instability causing a jump to self-contact at a certain point of
the experiment. Semi-(nite corrections, taken into account as a second approach, reveal some
possible experiments in which the con(guration of a very long rod will be stable through out.
Finally, in a third approach, we consider a rod of real (nite length and we show that another
type of instability may occur, leading to possible hysteresis behavior. As we go from in(nite
to (nite length, we compare the di4erent information given by the three approaches on the
possible equilibrium con(gurations of the rod and their stability. These (nite size e4ects studied
here in a 1D elasticity problem could help us guess what are the stability features of other more
complicated (2D elastic shells for example) problems for which only the in(nite length approach
is understood. ? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

We study equilibrium solutions of long and thin elastic rods (or (laments). We
use the Cosserat rod theory [1] to describe the state of the rod by its center line
together with a (eld of directors. At each point along the center line curve, a set of
3 orthogonal vectors, the directors, provides a way to describe local bending, twisting,
stretching and shearing of the elastic material. Constitutive relations express the way
these elastic deformations are related to the stress applied to the rod.
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Fig. 1. An elastic rod clamped at both ends. We experimentally control the distance d(AB) by sliding the
point A along ‘, and the end-rotation R by turning the end of the rod at A around the axis ‘.

We (rst recall the equilibrium equations of an unshearable, inextensible rod with
symmetric cross-section and linear constitutive relations, namely an elastica. Then our
goal is to examine static con(gurations (and their stability) of a rod clamped at both
ends (see Fig. 1).
The force and moment balance equations for an in(nitesimal cross-section element

of the rod are given by Antman (1995)

F ′ = 0; (1)

M ′ + R′ × F = 0; (2)

where ( )′ def= d=dS, S denoting arclength along the rod. Let {d1; d2; d3} be a right-handed
rod-centered orthonormal co-ordinate frame with d3 the local tangent to the rod and
d1 and d2 two vectors in the normal cross-section that enable us to follow the twist as
we travel along the rod. In the case of an inextensible, unshearable rod we have

R′ = d3 (3)

while the evolution of the co-ordinate frame di along the rod is governed by the
equation

d ′i = u × di ; i = 1; 2; 3: (4)

Here u is the strain vector whose components in the moving frame are the curvatures
and the twist. For a naturally straight and prismatic rod, we introduce linear constitutive
relations between the moments and the strains as follows:

M · d1 = EI1u · d1; M · d2 = EI2u · d2; M · d3 = GJu · d3; (5)

where E is Young’s modulus of elasticity, I1 and I2 are the moments of inertia about d1
and d2, respectively, while G is the shear modulus and J the polar moment of inertia.
We will consider rods with symmetrical cross-section i.e. I1 = I2 = I . We have then 7
unknown vector functions F ; M(S); R(S); d1(S); d2(S); d3(S); u(S) and 6 vectorial
ordinary di4erential equations (1)–(4) and a set of three algebraic equations (5) relating
them. A static con(guration will be locally stable if it represents a local minimum of the
potential energy with regard to all adjacent admissible virtual con(gurations satisfying
the boundary conditions.
The clamped boundary conditions used here (see Fig. 1) can be written as

d3(A) = d3(B); (6)

R(B)− R(A) = �d3(B) with �∈R: (7)
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We will call end-rotation R the total angle by which the end A is turned around the
axis ‘. We will call end-shortening D the di4erence between the length of the rod and
the signed distance AB (see Eq. (9) for a precise de(nition). We are interested in two
types of experiments:

• Fixed-R experiment: we start with a twisted straight rod in which we have put a
certain number of turns, then we gradually move the two ends in without turning
them. During such an experiment the twist rate u ·d3 and hence the twisting moment
M · d3 will adapt passively.

• Fixed-D experiment: we start with a con(guration in which the two ends are at a
certain distance from each other and then we gradually turn the two ends without
changing that distance. During such an experiment the tension in the rod F · d3 will
adapt passively.

2. The in�nite length case

In our (rst approach, the rod is assumed to be of in(nite length. We denote the
(tensile) magnitude of the force vector by T and the projection of the moment M(S)
along the tangent of the rod R′ by M . Using (1–5), we (nd that this twisting moment
M is constant along our symmetrical rod. It is then equal to the applied twisting
moment at point B.
We want to (nd all the possible con(gurations for all values of the loads M and T .

We make use of the Kirchho4 analogy (Antman, 1995) in which a con(guration of the
rod is associated with a trajectory in the phase space of the related dynamical system
(Eqs. (1)–(4)). A rod of in(nite length has to be associated with a trajectory of in(-
nite time-length relating two points in the phase space. These two points have to ful(l
boundary conditions. For clamped boundary conditions (6) and (7), only the trivial
equilibrium point corresponding to a straight rod and the homoclinic trajectory associ-
ated with it are acceptable trajectories (Coyne, 1990; van der Heijden and Thompson,
2000). Furthermore, properties of this homoclinic solution show that the force vector
must be along the ‘-axis (van der Heijden and Thompson, 2000).
A linear analysis reveals a subcritical pitchfork bifurcation when the condition

M 2 = 4EIT (8)

is satis(ed (van der Heijden and Thompson, 2000). At this point the straight
con(guration loses stability and a branch (surface) of non-trivial solutions bifurcates
from the trivial one. These non-trivial solutions correspond to a rod deforming
in 3D.
In this section, we replace M and T by M → M=EI and T → T=EI , respectively, in

order to eliminate EI .
The end-to-end distance of an in(nite rod is of course in(nite in both the trivial and

non-trivial con(guration. However, since we are dealing with a homoclinic orbit we
can de(ne the end-shortening of the rod by taking the end-shortening, D, of a (nite



1178 S. Neukirch et al. / J. Mech. Phys. Solids 50 (2002) 1175–1191

Fig. 2. Post-buckling surface of an in(nite twisted rod (Eq. (11)). Curves of constant end-shortening D
(Eq. (10) and constant twisting moment M are shown.

rod de(ned by

D def= L− R′(B) · (R(B)− R(A)) (9)

and letting the length L tend to in(nity. The result is (Thompson and Champneys,
1996; Coyne, 1990)

D =

√
16
T

(
1− M 2

4T

)
: (10)

As the rod deforms in 3D, we can follow the angle made by the tangent R′(S) of
the rod and the axis ‘ : cos �(S) def= R′(S)·u‘ (u‘ being a unit vector in the direction ‘).
The symmetries of the problem imply that this angle �(S) is maximum at the middle
of the rod and this maximum value is given by (Thompson and Champneys (1996)
and Coyne (1990))

M 2 = 2T (1 + cos �max): (11)

Eq. (11) describes the post-buckling surface of an in(nite twisted rod, i.e. all possible
values of the loads M and T together with the de?ection �max. This surface is drawn in
Fig. 2 which supplies all the information we need for our in(nite rod. For all values of
M; T there exists a straight con(guration (�(S)≡0 hence �max=0). For M 2¡4T , due to
the subcriticality of the bifurcation at M 2 = 4T , there is also a buckled con(guration.
Under dead loading (controlled T and M) the straight con(guration is stable when
M 2¡4T ; and unstable when M 2¿4T , in which case the rod jumps to self-contact.
Meanwhile the buckled con(guration is always unstable (the perturbed rod dynamically
either returns to a straight con(guration or jumps to self-contact). To de(ne self-contact,
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Fig. 3. Path followed by the values of the tension T and twisting moment M along a typical (xed-R
experiment. We start at point O and put the rod under tension and moment. At point E we let the tension
decrease up to point F where the rod buckles. Then we follow a constant M path on the post-buckling
surface up to point G where the spatial con(guration becomes unstable. Note that since this diagram is a
projection the paths EF and FG are not the same. (MG; TG) = (4=DG; 8=D2G).

we need to introduce the radius � of the rod. Self-contact occurs on a buckled rod
when two center line points P1 (at R(S1)) and P2 (at R(S2)) approach each other at a
minimum distance of twice the radius �: d(P1P2)=2� and (R(S2)−R(S1)) ·R′(S1)=0
and (R(S2) − R(S1)) · R′(S2) = 0 (see also Gonzalez and Maddocks, 1999; van der
Heijden et al., 2001; Swigon, 1999).
We are here interested in rigid loading: slowly tuning end-shortening and end-rotation

and letting M and T adapt passively. The static con(gurations will be the same as in
dead loading, but their stability will not. Since the rod is considered in(nitely long,
we cannot really control end-rotation (which in this case would be in(nite as soon as
M 
=0). Hence constant R has to be interpreted as constant M . We have plotted in
Fig. 2 curves of constant end-shortening D and of constant twisting moment M lying
on the post-buckling surface described by Eq. (11). As we go from in(nite to (nite
length, this degeneracy between R and M will disappear.
Fixed-R experiment: Using the results derived in this section, we shall now describe

what happens in a typical (xed end-rotation experiment. We start with a straight un-
stressed (T = 0; M = 0) rod. We put it under pure tension (T ¿ 0; M = 0). Then we
start to twist it (M ¿ 0) while staying under the buckling load (M 2¡ 4T ): suppose we
have reached point E in Fig. 3. Then we try to make the rod buckle by pushing its two
ends together without rotating them (so we will stay at the same value of M =ME).
First the tension will decrease, but the rod will stay straight until we reach point F ,
where buckling is initiated. From F , the path follows the post-buckling surface. The
rod is now buckled in 3D, which means �max¿ 0. From Eq. (11) it follows that T
starts to increase again. Our constant M = MEFG path will cross curves of constant
end-shortening and eventually reach point G, where the curve D=D2 is tangent to the
line GF . At that point the end-shortening has a maximum (if we were to go further
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along the path M =MEFG, D would in fact decrease). We have reached a fold and the
remainder of the line M =MEFG is unstable. If we try to increase the end-shortening
from G, keeping M constant, the rod will jump to self-contact. At the jump point G,
where the curves are tangent, we have 9D=9T = 0, i.e. M 2 = 2T . Putting this into
Eq. (11) yields �max = �=2. So the jump occurs when the middle of the rod has its
tangent perpendicular to AB.
Finally, we note that in this in(nite length case, there will be a jump to self-contact

(happening for large enough D) for any twisting moment M .

3. ‘Semi-�nite’ correction

As pointed out in the previous section, the main problem of the in(nite length case
is that as soon as the twisting moment M is non-zero, the end-rotation is in(nite. So
we will now consider a rod of (nite length, but still long enough to associate the
con(guration with the homoclinic orbit in the phase space. Such a study has been per-
formed in Coyne (1990) but more recently an approximate formula for the end-rotation
has been derived in van der Heijden and Thompson (2000) by integrating over most
of the homoclinic trajectory:

R=
ML
GJ

+ 4arccos
M

2
√
EIT

; (12)

where GJ is the torsional sti4ness of the rod. The (rst term on the right-hand side of
Eq. (12) is just the total twist and the second term stands for the writhe, a measure of
the out-of-plane deformation of the rod (van der Heijden and Thompson, 2000). The
presence of the length L in the total twist in Eq. (12) explains why when the length
is increased to in(nity the end-rotation tends to in(nity. It also sheds light on the
degeneracy of R and M when L=∞: when L becomes very large, Eq. (12) becomes:
R ∼ ML=GJ and constant R is just like constant M . Meanwhile, the end-shortening is
still given by Eq. (10).
Since L is (nite we can introduce normalized variables: m = ML=EI , t = TL2=EI ,

d= D=L, �= GJ=EI . Eqs. (10)–(12) can then be written as

m2 = 2t(1 + cos �max); (13)

d=

√
16
t

(
1− m2

4t

)
; (14)

R=
m
�
+ 4arccos

m
2
√
t
: (15)

We see that constant end-rotation R no longer means constant twisting moment m. We
also remark that Eqs. (13)–(15) depend on the bending and torsional sti4nesses EI and
GJ only through � in the equation for R. Therefore, the post-buckling surface (again
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Fig. 4. Projection of the post-buckling surface (Fig. 2) on the m; t plane, for a very long twisted rod. Curves
of constant end-shortening d (Eq. (14)) are shown dashed. Curves of constant end-rotation R (Eq. (15) with
� = 5

7 ) are shown plain (the bold one corresponds to R = 2�). The curve of instability points is shown
bold-dashed.

given by Fig. 2), in terms of nondimensionalized coordinates, does not depend on �,
but the stability results will. We will plot results for �= 5

7 � 0:71 which is the value
of the sti4ness ratio for Nitinol rods which we have used in experiments (Goss et al.,
2001). This value of � corresponds to the value for the Poisson’s ratio (�= �−1 − 1)
of a solid circular cross-section hard rubber rod as given in Cottrell (1964): �= 0:4.
Taking into account this new equation for R, we can draw a semi-(nite correction

to Fig. 3. In fact, only curves of constant end-rotation will change and indeed we see
in Fig. 4 that these curves are no longer lines of constant m. Each of these curves
starts on the buckling line (m2 = 4t). With decreasing m, the ones with large R are all
ending at t→ +∞, whereas the curves with small R are all ending at (m; t) = (0; 0).
The (gure is thus divided into two di4erent regions by the constant end-rotation curve
R=2� that ends at the point (m; t)= (0; 4�2). At this point d=2=�. This special curve
is drawn bold in Fig. 4.
The two di4erent regions of Fig. 4 are:

(1) The (rst region, above the R = 2� curve (bold), where increasing end-shortening
while keeping end-rotation (xed will bring a loss of stability when the curves of
constant end-shortening and constant end-rotation are tangent. At this point we
have

m2 = 4t

(
1− (�+

√
�2 + 2t)2

4t

)
: (16)

This curve is drawn dashed in Fig. 4. It is easy to check that at this point of
instability we always have m2¡ 2t, which means from Eq. (13) that the maximum
angle between the tangent of the rod and the direction AB is larger than �=2.
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Fig. 5. Response diagram for a very long twisted rod with � = 5
7 under constant end-rotation. Curves of

constant R (Eq. (17)) are shown (bold for R = 2�) together with the loci of instability points drawn as a
dashed line (Eq. (18)).

(2) In the second region, under the R=2� curve, the curves of constant end-shortening
and constant end-rotation never exhibit tangency. Hence the instability to self-contact
will not occur here.

In a (xed-R experiment, the stability can be read from a particular diagram. Since R
is constant, the only work done by the experimental device is the work of the tension
acting through the end-shortening d. Hence we eliminate m from Eqs. (14) and (15)
to get:

R=
2
�

√
t

√
1− d2t

16
+ 4 arccos

√
1− d2t

16
(17)

and use this to plot the tension against d (see Fig. 5). In such a plot (called distin-
guished by certain authors (Maddocks, 1987; Weinberger, 1978)), changes in stabil-
ity will only happen at folds (and possibly bifurcation points). As stated in Thomp-
son (1979), in a rigid loading experiment following a vertical fold in Fig. 5 in an
anti-clockwise way has a destabilizing e4ect.
We then see that curves corresponding to end-rotation less that 2� present no

(vertical) fold, hence the rod remains stable all along the path. Although the locus
of the instability points (shown dashed in Fig. 5):

t =
8
d2
+
4�
d

(18)

depends on �, there is no change of qualitative behavior of the diagrams of Figs. 4
and 5 with �.
Yet another experiment can be devised, Fixed D experiment: keeping end-

shortening (xed and tuning end-rotation. It would correspond to following curves
of constant end-shortening in Fig. 4. Using Eqs. (14) and (15) and eliminating t,
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Fig. 6. Response diagram for a very long twisted rod (with � = 5
7 ) under constant end-shortening. Curves

(Eq. (19)) are shown for d = 0:051; 0:75; 1:05; 1:75; 145 (bold); 5:739. The curve of instability points (20) is
shown dashed.

we (nd

R± =
m
�
+ 4arccos

md

2
√
2
√
4±√

16− m2d2
: (19)

For this type of experiment, a distinguished diagram is obtained by plotting R against
m and the destabilizing e4ect happens when following the fold in a clockwise way
(Manning et al., 1998). This is illustrated in Fig. 6 where curves de(ned by Eq. (19)
with di4erent values of d have been drawn together with the loci of the instability
points de(ned by 9R±=9m= 0:

R=
m
�
− arctan m

2�
+ 2�: (20)

This curve (20) divides each path into a stable part (the part from (m; R) = (0; 0) up
to the R-fold) and an unstable one (the part from (m; R) = (0; 2�) up to the R-fold).
The instability here is of the same nature as the one encountered before, i.e. the rod

will jump to self-contact. However, we see that not all the curves have a fold in R.
Indeed calculating

9R+
9m

∣∣∣∣
m=0

=
1
�
− d
2

(21)

we (nd that curves with d¡ 2=� have a self-contact jump instability, whereas curves
with d¿ 2=� have not.
In conclusion we see that the semi-(nite correction introduced here makes the rod

L.∞ ‘more stable’ than the rod L=∞, though they both exhibit the same type of
instability: dynamic jump to self-contact, which in the semi-(nite case depends on �.
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Finally, we note that in principle, stability could be assessed using a dynamic ap-
proach, namely the amplitude equation introduced in Goriely and Tabor (1996) which
has been used to study the stability (and more) of straight rods, helices and rings.
But in the case of localized buckling, since the center line is more complicated, this
approach will be considerably more diOcult.

4. Real �nite computations

So far we have considered very long rods. This enabled us to associate the spatial
con(guration of the rod to the homoclinic orbit in the related phase space. This associ-
ation was exact for an in(nitely long rod and approximate for a very long rod. Now if
we want to treat in an exact way rods of (nite length, we must look for other orbits in
the phase space that ful(l the boundary conditions, since the homoclinic no longer does.
Although there exist ways to write the solutions in closed form (Nizette and Goriely,
1999; Shi and Hearst, 1994; Swigon, 1999) we will compute them numerically and
follow them as parameters are varied.
The (rst and main di4erence in this (nite-length model is that we must consider

negative tension (i.e. compression): a straight, (nite length rod can be stable under
(suOciently low) compression whereas an in(nite rod would buckle as soon as placed
under compression. In fact the buckling curve M 2 = 4T that holds when L =∞ has
to be replaced by the buckling curve for L¡∞ which, for clamped ends, is (van der
Heijden et al. (2001))(

cos 12
√
m2 − 4t − cos m

2

)√
m2 − 4t = t sin 12

√
m2 − 4t; with m2¿ 4t;

(22)

where the same dimensionless variables have been used as in the previous section.
Eq. (22) in fact de(nes a countable in(nity of curves corresponding to increasingly
higher buckling modes. In Fig. 7 we have plotted the (rst three of these curves together
with the curve m2 = 4t (bold). Notice that for a range of values of the twisting mo-
ment m, the rod buckles under compression. The condition for pure moment buckling
(t=0): tanm=2=m=2 can be found by Taylor expanding Eq. (22). The buckling curve
m2 = 4t which holds for in(nite length is valid for both clamped and pinned ends. In
contrast, for a (nite rod, di4erent boundary conditions yield di4erent buckling curves
and di4erent equilibrium con(gurations.
Since we no longer consider just the homoclinic orbits in the phase space but any

orbit that ful(ls the boundary conditions, the number of static con(gurations is larger
and the post-buckling surface becomes more complicated (Neukirch and Henderson,
2001). Also, as shown in van der Heijden et al. (2001), the force vector no longer lies
along the ‘-axis as it did in the in(nite length case.
As done for the previous model, we will plot D−T and R−M distinguished diagrams

to check the stability of the static con(gurations under (xed-R and (xed-D experiments,
respectively. Here D, for an arbitrary con(guration, is given by Eq. (9). It takes values



S. Neukirch et al. / J. Mech. Phys. Solids 50 (2002) 1175–1191 1185

Fig. 7. The bold curve is the buckling curve of an in(nite length rod (m2=4t) while the plain, dotted, dashed
curves are the buckling curves of the (rst, second and third modes for a (nite rod (Eq. (22)). Traditional
Euler compressive buckling is found at discrete points on the t-axis.

Fig. 8. Response diagram for a twisted rod of arbitrary (nite length L (with � = 5
7 ), at constant (positive)

end-rotation. Curves are shown for R = 0 (a), R = � (b), R = 2� (c), R = 3� (d), R = 4� (e) and R = 8:9
(f). Rod con(gurations along plain (resp. dashed) curves are stable (resp. unstable).

between 0 and 2L (for D¿L the rod leaves the clamps on the outside, see Fig. 10).
For details on the numerical techniques used we refer to van der Heijden et al. (2001).
Fixed R experiment: The D−T response diagram for any (nite-L rod with � = 5

7

is drawn in Fig. 8. We see that bucking (d def= D=L = 0) may happen for negative t
(compression). We also note that as in Fig. 5 not all the curves have a D-fold, which
means that there are again two regimes for the curves emerging from the (rst buckling
mode:
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Fig. 9. Shapes of a rod with �= 5
7 at constant R=11:4 (radians) with slenderness ratio L=2�=10�. (a) is for

d= 0:015, just after the buckling instability. A loop starts to develop in (b) (for d= 0:298). Con(gurations
just before and just after the dynamic jump (at d = 0:504) are shown in (c) and (d). Note that the jump
happens after the maximum de?ection angle has exceeded 90

◦
.

• For high end-rotation, R¿ 2�, there will be a jump to self-contact at a certain
limiting d (see Fig. 9).

• For low end-rotation, R¡ 2�, the buckled con(gurations are stable up to d=2 (for
the present value of �), which includes, for d¿ 1, rod con(gurations with inverted
clamps (see Fig. 10). Change in the value of � will qualitatively change the stability
features of this experiment. For instance, we note that when � is increased beyond√
3, the curve with R = 0 acquires instability. This instability takes place at d = 1

when the rod forms a closed loop with one turn of twist put in. Since �=
√
3 this

implies that the twisting moment is
√
3, which is the buckling load for a planar ring

(Zajac, 1962). The same argument can be used to show that curves with 0¡R6 2�
will acquire instability for larger values of �.

There are also some new curves in Fig. 8, emerging from the second and
third buckling modes. Hence just after buckling (i.e. for small d) they correspond to
unstable con(gurations. But we see that some of these curves (the ones with 06R6
2�(

√
3=�−1) and �6√

3) are going through one (or more) stabilizing fold(s) at higher
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Fig. 10. Shapes of a rod with �= 5
7 at constant R=4:265 (rad). (a) is for d=0:115, just after the buckling

instability. A loop starts to develop in (b) (for d=0:69), but no dynamic jump takes place. Instead, the rod
reaches con(gurations in which the clamps are inverted, as in (c) (d= 1:06) and (d) (d= 1:53). Note that
at d = 1 the rod forms a closed stable planar loop.

d. Hence for some values of R (at least the range 0¡R¡ 2�) we will have intervals
of D for which two stable con(gurations coexist.
Fixed D experiment: The R−M response diagram for any (nite-L rod with �= 5

7
is shown in Fig. 11. We see that for small D, we have the same R-fold as before,
i.e. an instability where the rod jumps to self-contact. But for larger values of D
another fold appears, hence another instability takes place, for a smaller value of R.
To understand what happens we consider the schematic representation in Fig. 12. Let
us choose a (rst point W on the stable part of the bifurcation curve and start decreasing
the end-rotation of the rod (shapes are shown in Fig. 13). After R has changed sign,
we arrive at the new fold X . Trying to decrease further the end-rotation will cause
the rod to jump, not to self-contact this time but to the other stable branch with
positive m (point Y ). Increasing R from there, we can reach another fold (point Z) to
complete a symmetric hysteresis path. When D is further increased, as in the semi-(nite
model, the R-fold corresponding to the self-contact instability disappears (see, e.g.
the dotted curve in Fig. 11). Finally, for yet higher D, the new folds (points Z and
X of Fig. 12) take place at |R|¿ 2�. This implies that we have again a jump to
self-contact.
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Fig. 11. Response diagram for a twisted rod of arbitrary (nite length L (with � = 5
7 ), at constant

end-shortening. Curves are shown for d = 0:5 (bold), d = 0:625 (plain), d = 0:8 (dotted) and d = 0:99
(dashed).

Fig. 12. Schematic description of the hysteresis behaviour happening when tuning the end-rotation and
keeping end-shortening (xed. Plain (dotted) lines indicate stable (unstable) rod con(gurations.

Qualitative changes in the diagram of Fig. 11 will happen if we vary � (van der
Heijden et al., 2001). Among others, when �¿ 1 the fold corresponding to the self-
contact instability will disappear before the hysteresis fold appears, which means that
for some values of the end-shortening, static con(gurations of such a rod will be stable
for all R∈ [0; 2�] and there will not be any jump at all.
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Fig. 13. Shapes of a (nite length rod (� = 5
7 and L=2� = 10�) along a constant d = 0:67 path. The four

shapes correspond to the labels V, X, Y, Z of Fig. 12.

5. Conclusion

In conclusion, we have seen that our three di4erent approaches (in(nite length,
very large length, (nite length) yield di4erent results for the possible equilibrium
con(gurations (and their stability) of a twisted rod subjected to clamped end
conditions.
Experiments are envisaged by varying two independent displacements: the end-

rotation R and the end-shortening D of the buckled rod.
The in(nite length approach tells us that at low R and D the rod con(guration is

stable and that there is a limit curve

R=
4
�d

(23)

in the (R;D) plane at which the con(guration loses stability and the rod jumps to
self-contact (bold curve in Fig. 14).
Introducing the semi-(nite correction by considering a very large length instead of

an in(nite length yields a quantitative as well as a qualitative change in the stability
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Fig. 14. Stability diagram for � = 5
7 (hence d

? = 2:8) for the 3 di4erent models. The rod con(guration is
stable at low (R; D) and unstable at high values. The bold curve (Eq. (23)) is for L =∞, the plain curve
(Eq. (24) is for L.∞ and the dashed curve is for arbitrary (nite L.

curve which is now given by

R=
2
�

√
8
d2
+
4�
d

√
1
2
− �d
4
+ 4 arccos

√
1
2
− �d
4

for d∈ [0;d?]; (24)

where d? def= 2=�. This curve is drawn plain in Fig. 14 and it is easy to check that it
has (23) for asymptote as d→0. Very long rods are more stable than in(nite rods and
hence jump to contact at higher displacements (R;D). Moreover at low R, very long
rods are stable for all D. For d¿d?, curve (24) can be extended by the line R= 2�.
When crossing this line, the rod, instead of jumping to self-contact, will smoothly touch
itself.
Computations for a rod of (nite length lead to the dashed curve of Fig. 14. We can

still de(ne d? as the value of d for which the curve reaches R= 2�. The dependence
of d? on � for a (nite length rod has (rst been derived in Zajac (1962). In Fig. 14
the dashed curve has been scaled horizontally in order that the two d? coincide. The
(nite length approach corrects the very long rod one by:

• pushing further the stability limit corresponding to the jump to contact (see the
dashed curve of Fig. 14),

• introducing new con(gurations, stable under compression, whose instability leads to
a new kind of dynamic jump with the destabilized rod going to another contact-free
con(guration instead of self-contact.

These (nite size e4ects which have been worked out here because the problem
considered is amenable to analysis (1D elasticity) could help us to guess what are the
stability features of other more complicated problems for which only the in(nite length
approach is available (2D elastic shells for example Hunt et al. (2000)).
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