/* GTS - Library for the manipulation of triangulated surfaces * Copyright (C) 1999 Stéphane Popinet * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include #include #include #include "config.h" #ifdef HAVE_GETOPT_H # include #endif /* HAVE_GETOPT_H */ #ifdef HAVE_UNISTD_H # include #endif /* HAVE_UNISTD_H */ #include "gts.h" #ifndef PI #define PI 3.14159265359 #endif typedef enum { NUMBER, COST } StopOptions; typedef enum { COST_LENGTH, COST_OPTIMIZED, COST_ANGLE } CostOptions; typedef enum { MIDVERTEX, OPTIMIZED } MidvertexOptions; static gboolean stop_number_verbose (gdouble cost, guint number, guint * min) { static guint nmax = 0, nold = 0; static GTimer * timer = NULL, * total_timer = NULL; g_return_val_if_fail (min != NULL, TRUE); if (timer == NULL) { nmax = nold = number; timer = g_timer_new (); total_timer = g_timer_new (); g_timer_start (total_timer); } if (number != nold && number % 121 == 0 && number < nmax && nmax > *min) { gdouble total_elapsed = g_timer_elapsed (total_timer, NULL); gdouble remaining; gdouble hours, mins, secs; gdouble hours1, mins1, secs1; g_timer_stop (timer); hours = floor (total_elapsed/3600.); mins = floor ((total_elapsed - 3600.*hours)/60.); secs = floor (total_elapsed - 3600.*hours - 60.*mins); remaining = total_elapsed*((nmax - *min)/(gdouble) (nmax - number) - 1.); hours1 = floor (remaining/3600.); mins1 = floor ((remaining - 3600.*hours1)/60.); secs1 = floor (remaining - 3600.*hours1 - 60.*mins1); fprintf (stderr, "\rEdges: %10u %3.0f%% %6.0f edges/s " "Elapsed: %02.0f:%02.0f:%02.0f " "Remaining: %02.0f:%02.0f:%02.0f ", number, 100.*(nmax - number)/(nmax - *min), (nold - number)/g_timer_elapsed (timer, NULL), hours, mins, secs, hours1, mins1, secs1); fflush (stderr); nold = number; g_timer_start (timer); } if (number < *min) { g_timer_destroy (timer); g_timer_destroy (total_timer); return TRUE; } return FALSE; } static gboolean stop_cost_verbose (gdouble cost, guint number, gdouble * max) { g_return_val_if_fail (max != NULL, TRUE); if (number % 121 == 0) { fprintf (stderr, "\rEdges: %10u Cost: %10g ", number, cost); fflush (stderr); } if (cost > *max) return TRUE; return FALSE; } static gboolean stop_log_cost (gdouble cost, guint number) { fprintf (stderr, "%d %g\n", number, cost); return FALSE; } static gdouble cost_angle (GtsEdge * e) { if (e->triangles && e->triangles->next) return fabs (gts_triangles_angle (e->triangles->data, e->triangles->next->data)); return G_MAXDOUBLE; } /* coarsen - produce a coarsened version of the input */ int main (int argc, char * argv[]) { GtsSurface * s; GtsPSurface * ps = NULL; gboolean verbose = FALSE; gboolean progressive = FALSE; gboolean log_cost = FALSE; guint number = 0; gdouble cmax = 0.0; StopOptions stop = NUMBER; CostOptions cost = COST_OPTIMIZED; MidvertexOptions mid = OPTIMIZED; GtsKeyFunc cost_func = NULL; GtsCoarsenFunc coarsen_func = NULL; GtsStopFunc stop_func = NULL; gpointer stop_data = NULL; int c = 0; GtsFile * fp; gdouble fold = PI/180.; GtsVolumeOptimizedParams params = { 0.5, 0.5, 0. }; gpointer coarsen_data = NULL, cost_data = NULL; if (!setlocale (LC_ALL, "POSIX")) g_warning ("cannot set locale to POSIX"); /* parse options using getopt */ while (c != EOF) { #ifdef HAVE_GETOPT_LONG static struct option long_options[] = { {"angle", no_argument, NULL, 'a'}, {"progressive", no_argument, NULL, 'p'}, {"help", no_argument, NULL, 'h'}, {"verbose", no_argument, NULL, 'v'}, {"number", required_argument, NULL, 'n'}, {"length", no_argument, NULL, 'l'}, {"midvertex", no_argument, NULL, 'm'}, {"cost", required_argument, NULL, 'c'}, {"fold", required_argument, NULL, 'f'}, {"vweight", required_argument, NULL, 'w'}, {"bweight", required_argument, NULL, 'b'}, {"sweight", required_argument, NULL, 's'}, {"log", no_argument, NULL, 'L'}, { NULL } }; int option_index = 0; switch ((c = getopt_long (argc, argv, "hvmc:n:lpf:w:b:s:La", long_options, &option_index))) { #else /* not HAVE_GETOPT_LONG */ switch ((c = getopt (argc, argv, "hvmc:n:lpf:w:b:s:La"))) { #endif /* not HAVE_GETOPT_LONG */ case 'a': /* angle */ cost = COST_ANGLE; break; case 'L': /* log */ log_cost = TRUE; break; case 'p': /* write progressive surface */ progressive = TRUE; break; case 'n': /* stop by number */ stop = NUMBER; number = atoi (optarg); break; case 'c': /* stop by cost */ stop = COST; cmax = atof (optarg); break; case 'v': /* verbose */ verbose = TRUE; break; case 'm': /* midvertex */ mid = MIDVERTEX; break; case 'l': /* cost is length */ cost = COST_LENGTH; break; case 'f': /* fold angle */ fold = atof (optarg)*PI/180.; break; case 'w': /* volume optimized weight */ params.volume_weight = atof (optarg); break; case 'b': /* boundary optimized weight */ params.boundary_weight = atof (optarg); break; case 's': /* shape optimized weight */ params.shape_weight = atof (optarg); break; case 'h': /* help */ fprintf (stderr, "Usage: coarsen [OPTION] < file.gts\n" "Construct a coarsened version of the input.\n" "\n" " -n N, --number=N stop the coarsening process if the number of\n" " edges was to fall below N\n" " -c C, --cost=C stop the coarsening process if the cost of collapsing\n" " an edge is larger than C\n" " -m --midvertex use midvertex as replacement vertex\n" " default is volume optimized point\n" " -l --length use length^2 as cost function\n" " default is optimized point cost\n" " -f F, --fold=F set maximum fold angle to F degrees\n" " default is one degree\n" " -w W, --vweight=W set weight used for volume optimization\n" " default is 0.5\n" " -b W, --bweight=W set weight used for boundary optimization\n" " default is 0.5\n" " -s W, --sweight=W set weight used for shape optimization\n" " default is 0.0\n" " -p --progressive write progressive surface file\n" " -L --log logs the evolution of the cost\n" " -v --verbose print statistics about the surface\n" " -h --help display this help and exit\n" "\n" "Reports bugs to %s\n", GTS_MAINTAINER); return 0; /* success */ break; case '?': /* wrong options */ fprintf (stderr, "Try `coarsen --help' for more information.\n"); return 1; /* failure */ } } /* read surface in */ s = gts_surface_new (gts_surface_class (), gts_face_class (), gts_edge_class (), gts_vertex_class ()); fp = gts_file_new (stdin); if (gts_surface_read (s, fp)) { fputs ("coarsen: the file on standard input is not a valid GTS file\n", stderr); fprintf (stderr, "stdin:%d:%d: %s\n", fp->line, fp->pos, fp->error); return 1; /* failure */ } /* if verbose on print stats */ if (verbose) { gts_surface_print_stats (s, stderr); fprintf (stderr, "# volume: %g area: %g\n", gts_surface_volume (s), gts_surface_area (s)); } /* select the right coarsening process */ switch (cost) { case COST_OPTIMIZED: cost_func = (GtsKeyFunc) gts_volume_optimized_cost; cost_data = ¶ms; break; case COST_LENGTH: cost_func = NULL; break; case COST_ANGLE: cost_func = (GtsKeyFunc) cost_angle; break; default: g_assert_not_reached (); } switch (mid) { case MIDVERTEX: coarsen_func = NULL; break; case OPTIMIZED: coarsen_func = (GtsCoarsenFunc) gts_volume_optimized_vertex; coarsen_data = ¶ms; break; default: g_assert_not_reached (); } if (log_cost) stop_func = (GtsStopFunc) stop_log_cost; else { switch (stop) { case NUMBER: if (verbose) stop_func = (GtsStopFunc) stop_number_verbose; else stop_func = (GtsStopFunc) gts_coarsen_stop_number; stop_data = &number; break; case COST: if (verbose) stop_func = (GtsStopFunc) stop_cost_verbose; else stop_func = (GtsStopFunc) gts_coarsen_stop_cost; stop_data = &cmax; break; default: g_assert_not_reached (); } } if (progressive) ps = gts_psurface_new (gts_psurface_class (), s, gts_split_class (), cost_func, cost_data, coarsen_func, coarsen_data, stop_func, stop_data, fold); else gts_surface_coarsen (s, cost_func, cost_data, coarsen_func, coarsen_data, stop_func, stop_data, fold); /* if verbose on print stats */ if (verbose) { fputc ('\n', stderr); gts_surface_print_stats (s, stderr); fprintf (stderr, "# volume: %g area: %g\n", gts_surface_volume (s), gts_surface_area (s)); } /* write resulting surface to standard output */ if (progressive) gts_psurface_write (ps, stdout); else gts_surface_write (s, stdout); return 0; /* success */ }