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 Some of my former students have been kind enough to dedicate to me for my 
eightieth anniversary a volume of their original contributions and they asked me to write 
a few lines as a preface.  It was impossible to turn down this proposal.  So I decided to 
try and tell how I discovered this discipline to which I have devoted my professional 
life, and how I became fascinated by some of its various aspects.  The main reason is 
that these discoveries have been made mostly with them and for them.  Therefore, it is 
quite natural to present this introduction to this volume as a testimony of my gratitude.   
 Ever since I was a teenager I have always intended to become a professor.   I have 
been happy enough to realise my dream.  I am ready to agree with the statement of a 
very interesting young boy who filled the tank of my car at the nearest gas station of 
Brown University and who told me one day, “Let me be straightforward, a professor is 
somebody who was put to school when he was five years old and who had not enough 
imagination to get out”.  It is true that there exists a great continuity between learning 
and teaching.  I was lucky enough to have enjoyed sometimes the feeling of having 
discovered a new result or to be the first to solve a new problem.  But I must confess 
that probably my greatest satisfaction came from teaching.  I spent many hours trying to 
get a new and deeper understanding of a concept or of a method and to find the best 
way to make them easily understandable by the students.  What can be actually a greater 
gratification than the one you feel when you realise that your teaching has been 
meaningful, that your students experience themselves the deep beauty of the discipline 
and, above all, when you see their joy when they obtain themselves new results, partly 
thanks to some ideas you have tried to give them. 
 
 
 1. STARTING SITUATION 
 
 1.1  Researcher in mathematics? 
I was very happy to be admitted to the “Ecole Normale Supérieure” in 1939.  This 
school has been created by the French revolution and its main purpose is to train young 
people who aspire to become professors, teaching normally in the upper grades of our 
“lycées”, and in particular in those that prepare students for admission - always a matter 
of stiff competition - into one of the French “Grandes écoles”: Ecole Polytechnique, 
Ecole Nationale des Ponts et Chaussées, Ecole Nationale d'Administration,.., and in 
particular, the Ecole Normale Supérieure (ENS).  This last is a very famous school 



  

because the selection is very hard.  At that time, for the whole country and for all 
scientific disciplines, only twenty students were admitted each year.  I was delighted by 
the perspective of teaching mathematics to the candidates to these difficult 
competitions.  The studies at ENS lasted three years.  And then, war came.  The times 
were distressing and, needless to say, not very favourable for absorbing the new 
mathematical and physical concepts, methods and knowledge.  During the first year, we 
were very few; only those who were not drafted; and later on we suffered the hardships 
of the German occupation. 
 Consequently, in my class at ENS we missed many chapters of a good, modern 
mathematical training in comparison with our older or younger fellows.  Roughly 
speaking, we covered the first two volumes of Goursat’s “Cours d’analyse” published 
during WWI and also a few topics of differential geometry.  In mechanics our 
knowledge was pretty poor: kinematics and dynamics of rigid bodies, and Lagrange’s 
equations.   
 In November 1940, the Germans closed for a few weeks the Sorbonne, the sciences 
faculty where most of our courses were taught.  The direction of the ENS advised us to 
get in touch with a professor to work on some research mini-project.  I saw Georges 
Bouligand, a very enthousiastic professor, who suggested reading some chapters of the 
famous four-volume treatise of Gaston Darboux, “Théorie des surfaces”.  The 
presentation was old fashioned; but the contents fascinated me, since geometry was my 
pet topic.    I succeeded to write a paper which improved and completed what was 
written in Darboux, on a family of surfaces presenting some curious properties.  
Georges Bouligand advised me not to accept, in October 1942, the position in a lycée 
which was offered me, and to try rather to do some research in view of becoming, later 
on, a university professor.   
 There were no regular seminars at the time.  So, I spent many hours in one of the 
best libraries in mathematics and I studied some papers, looking for a domain of 
research opening more prospects than the classical theory of surfaces in three-
dimensional space.  In February, I was strongly recommended to replace immediately a 
professor, arrested by the Germans, who was teaching a class of students preparing the 
competition for admission to one of the most renowned engineering schools.  Nine 
hours of mathematics and a lot of work!  Nevertheless, I found the experience very 
interesting and stimulating.  At the end of the academic year, I had to work in a factory 
in the eastern part of France, to fulfil my “Service du Travail Obligatoire”*. In 
September 1944, this area was liberated and I went back to Paris. 

 
 1.2 The choice of mechanics 
During the last eighteen months, I was thinking hard on what I wanted to do.  I became 
very dubious about my capacity to get the knowledge and the deep understanding of 
modern mathematics – in fact, the Bourbaki literature – which would be necessary in 
order to do fruitful research in this field.  I was still tempted by teaching in a lycée, but 
also to follow the suggestion of my friend Raymond Siestrunck, a physicist of my class 
                                                
* “Compulsory Work Duty”, imposed by Vichy authorities in agreement with the Germans 



  

at ENS, who was beginning to work in aerodynamics.  He thought that theoretical fluid 
dynamics would be an attractive field for a student who was keen on geometry.  He 
gave me the book of Joseph Pérès, a mathematician who wrote a few books with 
Voltera on functional analysis and who began to learn fluid mechanics when, at the age 
of forty, in 1930, he was appointed director of the newly founded “Fluid Mechanics 
Institute” at Marseille.  The book deals with the theory of irrotational flows of an 
inviscid and incompressible fluid – two-dimensional and axisymmetric mostly – and 
also with Prandtl’s lifting-line theory.  Finally, I decided to try this last proposition.  I 
met Joseph Pérès, Lucien Malavard and Raymond Siestrunck in their small laboratory 
in the basement of ENS, where they were doing interesting work using electrical 
analogy.  Malavard proposed for me to study a numerical method described in a NACA 
Technical Note, in order to compute the pressure distribution along a given airfoil.  It 
was based on a conformal mapping of the exterior domain of the airfoil onto the exterior 
domain of a circle.  Everything was straightforward and easy, except for the 
computation of the imaginary part, on a circle, of an analytic function of a complex 
variable, defined outside this circle, when its real part on the circle was known.  
Analytically, the result is obtained through the Cauchy principal value of an integral.  
Numerically, it is not easy, and in applications, all the accuracy of the method is greatly 
affected by this operation.  My contribution was to do this computation without using 
the representation through a Cauchy integral, but by appealing to the special and very 
simple behaviour of the operator acting on trigonometric functions.  The gain of time 
and accuracy was very significant. 
 I was just obtaining this result, when Pérès received a letter from Jacques Valensi, 
who was a member of the French Scientific Mission, located at Carlton Gardens, in 
London.  Valensi was writing to him that he was working at NPL, the National Physical 
Laboratory, and that he thought he might succeed to obtain for one of his research 
assistants or collaborators the possibility to work at NPL during a few months, as a 
temporary member of the French Scientific Mission.  Malavard and Siestrunck declined 
the offer.  “Do you speak English?” asked Pérès.  “Not a single word”, was my answer.  
“Are you ready to go?” said Pérès with a smile.  “Yes”, was my reply, quite surprisingly 
for Pérès, my friends and also for myself.  Deciding to go to NPL during the war, 
knowing neither English nor fluid mechanics, was quite an adventure.  In January 1945, 
after two weeks in London, Valensi succeeded to have an appointment with  the director 
in charge of fluid mechanics, who sent me to the department dealing with theoretical 
aerodynamics, headed then by Sydney Goldstein.  With the help of Valensi, I tried to 
describe the only thing I knew and I had done.  “We also have a method to do this kind 
of numerical computations.  Come Monday morning, we will give you an example to 
compute, and we will compare your result with ours”.  The test was satisfactory.  
Goldstein was not able to keep me in his laboratory that dealt with confidential 
problems.  But he recommended to the direction of NPL that I be admitted as a  visitor.  
This way, I was able to participate every day, for three months, at the NPL, in the team 
headed by Dr. Falkner and then, for two months, in the team of Dr. W.P. Jones.  
Fortunately, I had access to the library, where I spent much of my time.  When 
discussing with people, my complete ignorance of the basic concepts and methods of 



  

fluid mechanics was hidden by my extreme difficulty to understand and to speak 
English.  Back in Paris, in July, I finally wrote some reports on the questions I had 
studied and explained to Pérès and to my friends what I had learned, without being able 
to make the difference between what was new and what was known already for some 
years.  Then, after a really incredible combination of happy circumstances, I knew that I 
could try to work in Mechanics. 
 
 
 2. MECHANICS, A GOOD FIELD FOR A YOUNG MATHEMATICIAN 
 
During my first British experience, I had the happy occasion to read, on a 
mimeographed pre-print, what is now well known as “Supersonic flow and shock 
waves”.  This celebrated book by Courant and Friedrich was a wonderful way to 
convince me that a good classical mathematical training may lead to interesting 
contributions in theoretical fluid dynamics.  When I began to work, I was inclined to 
attach more interest to the mathematical problems and their solution, than to their 
mechanical origins and significance.  My thinking and my research were therefore 
rather mathematically oriented, but in a few years, progressively, my job and my 
relations with other scientists brought about a reversal in my attitude.  First, as early as 
October 1946, I was appointed head of a small research team at the Office National 
d’Etudes et de Recherches Aéronautiques (ONERA.) Second, I attended in 1948 the 
International Congress of Mechanics in London, where, thanks to Goldstein I had the 
good fortune to meet a large number of talented colleagues.  With some of them, 
particularly the British, it was the beginning of a long-lasting friendship.   I must 
namely mention the two invitations to spend one or two weeks in the famous 
department of Applied Mathematics of the University of Manchester, headed in 1949 by 
Sydney Goldstein and in 1951 by my old, much admired, and now regretfully departed, 
friend, James Lighthill.  With James I remained closely related until his dramatic death, 
sharing in common the status of professor, the professional experience of being 
directors of aeronautical research establishments in our respective country, and 
becoming both  members of the IUTAM bureau. Let me finally mention my 
appointment as a senior lecturer at the University of Poitiers, to teach the subject of 
compressible and incompressible fluid flows in a school of mechanics and aeronautical 
engineering, a program which fitted very well with my work at the ONERA.   
 A paper devoted to my discovery of mechanics is not the place to spend too much 
time on my research activity during this period.  The two main themes of my research 
were the mathematical linearised theory of supersonic aerodynamics and the theory of 
transsonic flows.  But, in fact, for my teaching and for answering some questions at the 
ONERA. I was also led to work on other topics concerning subsonic aerodynamics and 
gas dynamics. 
 
 
 
 



  

 
 2.1 Linearised supersonic aerodynamics 
In France, we had the quite old tradition of the “Doctorat ès Sciences”, closer to the 
German Habilitationsschrift than to the American Ph.D.  I worked hard to get my first 
professorship at Poitiers, writing a thesis of some 200 pages, published by the ONERA. 
and translated as a NACA Technical Memorandum, on the subject of conical supersonic 
flows.  The field was opened by a pioneering work by Buseman who proved that 
mathematical solutions of the problem might be built through analytic functions of one 
complex variable.  Of course I was lucky, because I had do work on a part of 
mathematics that I mastered.  But I must recognise how much my training in fluid 
mechanics was poor, when I started to work in the fall of 1946.  I spent a lot of time 
before understanding that, dealing with a linear problem, I had not to worry about the 
non-linearity of the boundary conditions on the wing, a delta one, for a typical 
application of special interest to engineers at O.N.E.R.A.  I spent again a lot of time 
hesitating about the choice of the proper solution, because I was actually not aware of 
the role of the Kutta condition in supersonic flows and of the properties of the wake. 
 Anyway, when appointed in Poitiers, I was mature in fluid mechanics, but this is 
not the place for reporting on some other of my works on linearised supersonic 
aerodynamics.  I will just mention the invitation to deliver a general lecture on that 
subject at the Brussels’ 1956 International Congress.  I chose to give a review of known 
results, mainly by others than myself, trying to improve and unify them, using 
Schwartz’s theory of distributions, which was not familiar to most scientists of the 
mechanics’ community.  Needless to say, my purpose was to stress that distribution 
theory sheds light on many facets of supersonic wing theory, rather than to illustrate 
distribution theory with some problems, like the one of minimum drag. I take this 
opportunity to mention that most of my contributions were improvements of some 
results found in literature or new results soon to be improved by another scientist.  
Reading was very stimulating; it helped me to get a better understanding of the subject 
matter, which proved very useful in teaching and building closer links with foreign 
colleagues who became good friends. 
 
 
 2.2 Transsonic flow and equations of mixed type 
During the early fifties I was involved in research about transsonic flows, a subject of 
interest for aeronautical engineers and one which fascinated me as a mathematician.  I 
remember being enthusiastic while reading papers by the Soviet scientist Frankl, whom 
I never had a chance to meet.  I worked mainly on mathematical aspects of linear 
equations of mixed type, which apply to steady, two-dimensional potential flow of an 
inviscid fluid, in the hodograph plane.  I paid also attention to some special equations 
for which approximated solutions may be found, providing either special or 
approximated solutions to, or shedding light on, problems of technical interest: nozzle 
or jet flow, upstream flow around an airfoil; flow at Mach number one around a wedge; 
behaviour near special points, like the one at infinity, or special lines like the sonic one 
or the transsonic boundary.  But my main interest was in mathematical problems proper, 



  

investigated with Roger Bader.  They dealt with the Tricomi equation and its Euler-
Poisson-Darboux solutions, their evolution when the singular point crosses the 
parabolic, i.e., the sonic, line, the singularity changing from logarithmic to Riemann’s 
type; the theorem of maximum; a new proof of the existence theorem of the Tricomi 
problem and its Green’s function. 
 All these topics gave me the great satisfaction of bringing me back to mathematics 
and the occasion to have close and friendly relations with mathematicians, especially at 
the Courant Institute.  Mathematics, the beloved discipline of my youth has never 
ceased to fascinate me and excite my admiration.  But I felt the necessity to be 
consistent with my choice and my decision and not to continue to use mechanics as an 
excuse to do mathematics.  It was time to get a good knowledge of what really was this 
discipline. 
 
 
 3.  GETTING A DEEPER INSIGHT INTO THE REALM OF MECHANICS 
 
During the period 1952-1955, while pursuing my routine work, I was much concerned 
with thinking about the concepts, the trends, the understanding, and the reasons that 
sustained my vocation for mechanics.  It was not only important for me, but also for the  
students and scientists working with me, now, and even more, in the future.  One might 
feel that the example of my British colleagues could deliver an answer; but they would 
not be able to understand my uneasiness. They grew up in the best tradition since 
Newton’s times.  They were doing mechanics as a natural thing, just like breathing. I 
had to cope with the special situation of mechanics in France, at that time.  During 
many decades, and especially after WWII, most talented young scientists were attracted 
either by pure mathematics or by hard physics, while mechanics was considered as 
some reminiscence of the 19th century.  As a consequence, I felt myself rather isolated 
and I had to get, all by myself, an overview of what should be the discipline to which I 
wanted to devote my efforts in research and teaching.  Of course, I was not fully 
conscious of this evolution in my mind, but at least three major events helped me in 
elaborating meaningful answers and I want to report on them.  
 
 3.1 First contact with Paco Lagerstrom. 
The first of these was my meeting with Paco Lagerstrom during the Istanbul 1952 
International Congress. He was, like myself, the author of an important report on 
conical supersonic flows.  He started by studying Roman languages – I believe – in 
Sweden, and then attended courses in pure mathematics at Princeton.  At the time I met 
him, he was professor at Caltech, in the department of aeronautical engineering, so that 
both our cultural backgrounds were similar.  He spoke to me about some questions 
which he thought to be of the utmost importance for the understanding of fluid 
mechanics and which might be ripe for solution at that time.  One of them was the 
mathematical basis of the boundary layer concept, discovered by Prandtl, nearly fifty 
years before.  Another one concerned the steady flow of an inviscid fluid as the limit of 
a class of corresponding flows of the same fluid, involving a vanishingly small 



  

viscosity, so that, in some sense, solutions of the Euler equations might be related to a 
class of solutions of the Navier-Stokes equations, through some limiting process.  He 
brought my attention to another of Prandtl’s discoveries, namely the constancy of 
vorticity in a closed, streamlined, two-dimensional steady inviscid flow, as a result of 
vanishing viscosity, acting during an infinitely long time.  I began to foresee a new link 
between mathematics and fluid mechanics, provided by asymptotic techniques; as a 
matter of fact, not simply a link, but a way of thinking at an enormous variety of 
problems.  Needless to say that all this was opening avenues without a clear vision of 
getting the right way in. 
 
 3.2 Visiting professor at Brown University 
During the spring 1952, being invited to present a paper on transsonic flows at a small 
colloquium held in Belgium, I had the chance to meet William Prager.  A few days later 
he mailed me an invitation to deliver a course in gas dynamics at Brown University.  I 
was grateful to him for this attractive and unforeseen proposal, but I asked to have it 
postponed for a year, to give myself, in the meantime, the opportunity to improve my 
English.  I was very fortunate to spend the full academic year 1953-54 as a member of 
the graduate division of Applied mathematics, which was very close to the division of 
Engineering.  For a mechanician, this was one of the best places  in the world, providing 
many good courses, covering most of the main fields of mechanics and running a 
famous seminar attended by outstanding mechanicians from the United States and 
abroad.  I took the measure of some fantastic gaps in my knowledge while attending 
these courses, mainly in solid mechanics, discovering plasticity, linear and non linear 
elasticity and studying Truesdell’s papers, in which he gave the first systematic 
treatment of continuous mechanics, starting from fundamental concepts.  I also learned 
a lot in fluid mechanics, boundary layer and viscous fluids, and even in hydrodynamics 
and incompressible inviscid fluid flows.  I also had the opportunity to discuss many 
things with some of the best mechanicians in the world.  Coming back to France, with 
so much new material, I felt worthy to be named professor of mechanics. 
 
 3.3 Professor of rational mechanics 
This is what actually happened in October 1954.  I was appointed professor in the chair 
of “rational mechanics” in the University of Lille – this is the third event that I have 
announced.  At that time, in France at least, rational mechanics was considered as a 
branch of mathematics, dealing mostly with the application of the Newtonian theory to 
rigid body motions and Lagrange’s analytical mechanics.  Usually, a chair of rational 
mechanics was a position for a mathematician who worked there in anticipation of 
being appointed, as soon as possible, to a chair of calculus or of advanced geometry, or 
still, advanced analysis.  With the choice I had done, this could not be my prospect.  
Actually, I had to understand more deeply the foundations of Newtonian mechanics as a 
mathematical model to the physics of the equilibrium and motions of bodies in the 
neighbourhood of the Earth, of the solar system, and of the Universe.  The system of 
reference was a fundamental notion which was to be adapted to each situation.  For the 
first time I realised how wonderful was the mathematical schematisation of the 



  

reciprocal action of one body on another.  That the fact had required nearly twenty 
centuries to be recognised was not anymore a surprise to me!  Lagrange equations for 
systems of rigid bodies with perfect constraints were also very attractive for a man who 
was very keen on geometry.  I was able to cover nearly the whole classical programme 
in less than the full academic year and then, to have about six to eight weeks to present 
a topic, among the following ones: advanced analytical mechanics (Hamilton-Jacobi-
Maupertuis); basic notions of relativity theory; basic concepts of continuous media with 
simple examples on incompressible inviscid fluid and classical linear elasticity; 
vibration theory.  I mentioned these three experiences because they set up the starting 
point and the corner stone of what I have tried to build afterwards.  I have discovered, 
above all, new facets of mathematics. It is not enough to solve problems and to study 
their solutions.  One must also build the concepts and the models, which will be able to 
offer a deeper view of the phenomena than the one given by mere observation, and even 
by experiments.  Mathematics has to build what I have called, in a talk at the Académie 
des Sciences, “la mathématique du monde”.  Moreover, these experiences have 
contributed to enrich my own cultural personality.  Mechanics was not anymore a thing 
external to myself.  It was becoming not only a part of my intellectual life but also a 
constituent of my spirit which, since that time, shaped my deepest convictions. 
 
 
 4. MODELLING AND ASYMPTOTICS IN FLUID MECHANICS 
 
Let me repeat what I intend to describe in this introduction.  It is not the discoveries I 
was able to make in the field of Mechanics – they are very limited.  It is the progress of 
my understanding during all my life of what is this discipline, more precisely by 
discovering new problems, new ideas, new methods, new fields of applications.  In fluid 
mechanics this progress of understanding was due mostly to the close relations with 
some colleagues and to the good knowledge of their works.  Let me first mention some 
favourable occasions that offered these possibilities.  These were, my stay at Caltech 
during four months near Paco Lagerstrom, Saul Kaplun, Julian Cole; later on, the 
academic year spent by Paco in my laboratory; the two visits in Paris, for one full year 
each, of Milton Van Dyke.  I also benefited a lot from the long stay of W. Eckhaus in 
my laboratory.  All of them theorised on asymptotic singular expansions which I came 
to use frequently.  But, my best contributions to fluids were due to discovering, at the 
end of 1955, Jean-Pierre Guiraud.  I succeeded to convince him that fluid mechanics 
was a very interesting topic and I asked the direction of ONERA. to recruit him to work 
in my small research team.  During six years we met at least once a week, often for a 
full day.  Jean-Pierre began to work for his doctoral thesis, on the small perturbation 
theory applied to hypersonic flows.  But we did not limit our discussions to this topic.  
We exchanged our ideas about our recent readings, our small discoveries; we have 
learnt together, we have built our views together; our vision on mechanics was very 
similar.  That was extremely stimulating and fruitful.  In the beginning, I was the leader 
of the discussions; but very soon the positions were reversed. 
 



  

 
 4.1  Shock waves in gas dynamics and in MFD 
Many of my personal studies dealt with flows of an inviscid fluid in which the variables 
defining its kinematics and its physics, suffer discontinuities on some manifolds in 
space-time.  These are the shock waves.  In order to explain my contributions, I must 
give some reminders.  Burgers' equation, as it is well known, is the very simple 
mathematical model that gives the best physical meaning of this phenomenon.  It 
involves one unknown u – which may be interpreted as a velocity – one space variable 
x, and one “viscosity” coefficient ν.  As shown by Hopf, one may write explicitly the 
solution of this second order non-linear, partial differential equation which, for the 
initial time t=0, takes a given value u0(x).  It is a continuous and differentiable function 
u(x, t).  Now, let ν tend toward zero; the limit is a “weak” solution of the inviscid 
Burgers’ equation (ν=0) which, in general, presents discontinuities – that are shock 
waves (in a point of discontinuity the x-derivative of u has to be computed by an 
appropriate device, for instance, distribution theory).  Locally, at a point of the shock, 
the jump of u must check not only an equation  J, as any weak solution, but also an 
inequality which characterises a “shock solution” among all the “weak solutions”.  Let 
us recall also that, clearly, in this simple model, a shock wave appears as the result of 
two conflicting influences, first the non-linearities of the propagation for ν=0, the 
inviscid Burgers’ equation, which tends to steepen the profile of the variations u along 
converging characteristics and, second, the weakening effect on this profile, due to 
viscosity. 
 One may now formulate the general situation, which is to be faced.  It concerns the 
motions of a fluid in which are present some physical mechanisms of dissipation – let 
these motions be called P.  These mechanisms may be mathematically schematised by 
some terms and then the motions we are looking for may be described as solutions of a 
general system of differential equations – let us call N this schematisation.  But N also is 
too complicated.  If the dissipations are very small, a further modelling may be 
considered by neglecting all the dissipations – call E the system of equations so 
obtained.  Some solutions of E may involve surfaces of discontinuity.  One wants to 
study the solutions of E which may be considered as limits of solutions of N for any 
vanishing dissipations.  The shock S appears, then, as the limit of a small layer – called 
shock layer – of a solution of N which is the result of two mechanisms with opposite 
effects, the steepening due to the converging progressive waves of the limiting inviscid 
fluid and the weakening due to the dissipations.  In order for it to be a shock solution of 
E, on each point of the shock, the jumps have to check some equations J and some 
inequality j. 
 In classical gas dynamics, the situation is clear and simple.  The equations J are the 
Rankine-Hugoniot relations and the inequality says that the specific entropy cannot 
decrease when a particle crosses the shock.  That is a necessary condition; it is also a 
sufficient one, as it may be seen when one studies “the shock structure”.  This can be 
done by the same method that was applied to study the ordinary boundary layer.  At a 
fixed point of S and at a fixed time, a stretching variable ξ is introduced along the 



  

normal to S, becoming infinite when the dissipation coefficient tends towards zero, in 
order to obtain a “significant degeneracy” – see below.  The values of the variables on 
the sides of the shock become the values for ξ=+ ∞ and ξ=-∞ according to the matching 
conditions between the distal (outer) expansion (the original solution) and the proximal 
(inner) expansion (for the stretched geometry).  It is easy to show the existence of the 
structure which is the solution of the N equations in the stretched geometry, when ν  
tends towards zero.         
 Everything we recalled above is very classical.  But I felt necessary to do it in order 
to understand the situation that is met when one wants to study shock waves within the 
frame of the classical magneto-fluid-dynamics theory (MFD). 
 In the classical MFD, when all the dissipative effects are neglected, the jump 
relations convey the conservation laws (mass, momentum, energy) and the Maxwell 
equations.  They can be written with four variables 

41
.....qq  - say q – which are 

respectively the specific volume, the temperature, and the tangential components of the 
relative velocity and of the magnetic induction.  The four constants 
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represent the quantities conserved across the shock.  The jump relations J may be 
written [ ] 0, =

ik
cL q (k=1, 2, 3, etc.) on both sides of the shock.  One may check that for 

given values of the shock constants C, it is possible to define a function P which takes 
in the q space stationary values at the two points, images of the values of the q on both 
sides of the shock.  One may show also that for given values of the constants C, there 
exist at most four points in the q space, 

4321
,,, SSSS  in which P is stationary, the index 

of these points being chosen by non-decreasing values of the specific entropy. 
 One may be tempted to write the inequality condition j by imposing that the 
specific entropy cannot decrease when crossing the shock.  That was the proposal of the 
first authors working on this question.  In order to see if the statement is correct, one 
must investigate the structure of the shock, by taking account of the dissipation in the 
proximal representation of the shock layer with the ξ stretched distance to the inviscid 
shock.  In the most simple representation, one has to take into account the four 
coefficients of dissipation – two for viscosity, one for Joule’s dissipation, one for heat 
conduction – and assume the existence of a dissipative function as a linear combination 
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constants of the shock, only two are physically admissible: the fast shock 
21
SS !  and 

the slow shock 
43
SS ! .  Of course, if some of the dissipation coefficients vanish, the 

structure of the shock may present a discontinuity which is called a subshock. 
 I have presented this question in some detail, because its result led me to some 
conclusions of a more general nature which may be useful not only in fluid mechanics 
but also in other modellings of macroscopic theories of physics.  The first concerns the 
significance of entropy.  Roughly speaking, I would say: The non-decreasing property 
of entropy is a necessary condition for a process to be physically admissible, but it is 
not always sufficient.  
 Another comment concerns the validity of a simplified theory which gives rise to a 
mathematical system S of equations.  Such a system admits classical solutions which 
must check the well-known Hadamard conditions: existence, uniqueness, continuous 
dependence on the data.  Inviscid fluid dynamics shows that the set of classical 
solutions is too restrictive for the description of physical situations.  One has also to 
consider weak solutions; but now, the set of weak solutions  may be too large in order to 
have admissible solutions. Many papers have given conditions which may be imposed 
to weak solutions in order to achieve a satisfactory requirement.  What was proposed 
above is to prescribe a “continuity” between the set of more or less refined theories 
which may describe the behaviour of a physical situation. 
 A solution of a mathematical schematisation S of a physical situation is not 
acceptable if it cannot be obtained by the limit of a solution of a more refined 
schematisation S′ when S′ tends to S. 
 One may try to apply this statement in order to see how the previous results are the 
limit of a more refined description.  One possibility that has been investigated is to 
introduce a model with two fluids – ions and electrons – and, for simplicity, to neglect 
viscosity and heat-conduction dissipations.  The differential system which rules the 
structure involves three parameters: one that rules the Joule’s effect and the other two, β 
and χ, which are respectively proportional to the product and the differences of the 
densities of ions and electrons.  When β and χ are zero, one recovers the differential 
system which governs the structure of a fast shock in the MFD model.  Some interesting 
situations have been noted: first, of course, subshocks may be present.  Then, 
oscillations may be found either in the front side or in the back side of the shock.  
Finally, if Joule’s effect is neglected, one finds a structure which is a model of what is 
called a “collisionless shock”, in plasma theory. 
 
 4.2  General theory of jump conditions and structures in gas dynamics 
Kinetic heating during re-entry gave aeronautical engineers a strong impulse to improve 
the boundary layer theory.  But if viscosity and heat conduction have to be taken into 
account outside the boundary layer, that means that the Rankine-Hugoniot equations 
which rule the jump across the bow-shock wave have to be rewritten.  A first result 
given in the literature was roughly criticised by noting that one must take into account 
the thickness of the shock.  But the proposed evaluation was not completely 
satisfactory.  Both, Jean-Pierre Guiraud and I, we were convinced that the only way to 



  

get correct results was to apply matched asymptotic expansions.  This is a quite 
complicated problem, because the powers of the inverse Reynolds number ( )1!

e
R  which 

arises, may be fractional and even more complex than the powers of the square root.  I 
do not intend to discuss the whole matter here; I prefer to restrict myself to the special 
topic which has been worked out, namely the structure of the expansion when the sole 
presence of the bow shock wave is taken care of.  Here one has to deal with simple n

e
R

! , 
n integer, powers.  Two expansions are needed, the so-called outer one, the leading term 
of which gives the inviscid solution, and the inner one, which provides the well known 
internal shock structure, to leading order. It is possible to build the whole expansions, at 
least formally, including matching.  What is remarkable is that one may write out the 
jump conditions to be applied to the whole of the outer expansion.  This comes from the 
conservative form of the Navier-Stokes equations.  As a consequence, one may write 
out jump conditions by a very simple process, like the one that leads from inviscid 
conservation equations to jump conditions.  Then viscous and heat conducting terms 
appear to have been taken care of.  But the result is illusory because one has to add a 
contribution from the inner expansion.  At least formally, this contribution may be 
written straight to any order n

e
R

! .  Of course, this is correct only for the terms of the 
expansion which are forced out by the shock.  To order 1!

e
R , the jump conditions are 

very easily written out when one knows the internal shock structure to leading order 
only.  This is very well documented.  Of course, the boundary layer brings in half 
powers.  The result to order 1!

e
R  has found applications in kinetic re-entry heating. 

 
 4.3  Other topics involving singular asymptotics 
I did not theorise on singular asymptotics but got a deep knowledge of this methodology 
through teaching and research work.  Let me mention a few examples. 
 The first one arose with a few lectures on progressive waves I had to deliver in 
1970 at Stanford and Berkeley.  I read a number of outstanding papers.  I do not want to 
choose among them here, but rather, to simply report on what was my view after that 
reading.  A progressive wave occurs generally when a physical phenomenon is thought 
to be represented by the occurrence of steep gradients in one variable only, across three-
dimensional manifolds, in four-dimensional space-time, with much smoother gradients 
in other directions.  The mathematical structure of the representation looks like one of a 
phenomenon in five-dimensional space-time.  We need some notation in order to avoid 
confusion.  Let the phenomenon be quantified by an n-dimensional vector U and let t be 
the time, and x be the position vector in three-dimensional space.  Assume that the 
manifold across which the gradients are steep is ( ) Const., =xtF  Then, the 
mathematical progressive wave structure is ( )!! ,/,, FtU x  so that !" /F= , is 
considered as a fifth variable.  There is apparently nothing in the equations, which 
allows us to single out the dependency of U on ξ.  But all is changed when we add the 
ansatz that the proper physical solution may be obtained as an expansion with respect to 
ξ ,  t and x being fixed when proceeding to the limit of vanishing ε.  As a matter of fact, 



  

the multiple scale technique, through the requirement of vanishing of secular terms, 
provides the way, by means of which that dependency can be figured out.  A key to the 
existence of progressive waves is that U, supposed to be dependent on ξ only, at leading 
order, exists as a planar wave solution ruled by a linear system with tF !! / , x!! /F  
obeying a dispersion relation.  That relation defines a wave speed and may be 
considered as an eikonal or Hamilton-Jacobi equation, the solution of which is built by 
means of rays.  The planar wave being a solution to a linear system is determined only 
up to a scalar amplitude factor.  This amplitude obeys an equation which is got when 
going to higher order in the expansion and eliminating secular terms.  The details 
depend on the particular phenomenon considered, and there exist quite a variety of 
situations that may be described mathematically by such a procedure.  It is not my 
purpose to enter into the details, but let me frame a few remarks.  The small parameter ε 
characterises the steepness of the transversal gradient.  If the physical process is non-
linear, and non-linearity is measured by the order of magnitude of the amplitude and, if, 
furthermore, the initial equations are first-order quasi-linear, as is the case with inviscid 
gas dynamics, then the amplitude obeys a partial differential equation which is generally 
an inviscid Burgers’equation along each ray. If there are second order derivatives 
present in the equations, with a small coefficient, then the amplitude obeys a partial-
differential equation which is generally Burgers'.  The role of time is played by the 
distance along each ray, while the role of space is played by ξ.  One may deal with third 
order derivatives, and another small parameter, yielding then the Korteweg-de Vries 
equation.  Both phenomena may occur simultaneously.  The equation for the amplitude 
is called the transport equation.  One may even treat cuspidal rays, corresponding to 
caustics of the wave, and get a kind of Tricomi equation for the amplitude but I have to 
stop here. 
 I have been too long and shall go faster with the other two examples.  The second 
one was an invitation to give a course in theoretical fluid mechanics at the famous 
summer school in “Les Houches”, during the summer of 1973.  I chose the topic 
“Asymptotic methods in Fluid Mechanics”.  I lectured to brilliant young physicists who 
began to be somewhat attracted by mechanics and not simply by hard physics.  As 
physicists, they knew the usefulness of approximations and of non-dimensional scaling.  
But they did not know that a systematic technique was available for building 
approximate mathematical models and trying to measure quantitatively their validity.  I 
showed that the approximation is very often tied to the existence of a small parameter, 
coming out from the non-dimensional form of the equations, and I intended to show that 
the process is sustained by asymptotic singular expansions.  I gave an account of the 
various methods of building the approximations, as asymptotic expansions, and insisted 
on the methodology, in particular the matching conditions and the concept of significant 
degeneracy, recently created by Eckhaus.  I liked very much this last one, because it 
gives a systematic way to find out what should be the various stretchings.  I thought that 
this might be attractive to physicists, because it is a quasi-systematic way of comparing 
the respective weights of various terms in the equations, which measure the physical 
importance of phenomena they are likely to describe. 



  

 The third and last example, which is quite recent, is issued from an invitation to 
write a paper on the extraordinary heritage of Prandtl.  I was not long to focus on two 
topics, out of a large number initiated by this giant, namely, boundary layer and lifting 
line theories.  It was wonderful to read anew Prandtl’s original 1905 paper and to find in 
it, not only the essentials of the boundary-layer theory, but yet more wonderful, the 
query of Prandtl about separation, for which he run quite beautiful experiments.  Of 
course, the history of the boundary-layer theory provides a lot of crucial events, but the 
most impressive one is the construction of the “triple deck” in 1969, independently, by 
Stewartson and Neiland, through matched asymptotic expansions.  A more systematic 
alternative way to establish this beautiful “triple deck” would be to use the concept of 
significant degeneracy.  This construction which would, I think, have been impossible 
without the matched asymptotic expansions gave, fifty-five years after the query by 
Prandtl, a satisfactory explanation of separation, at least for steady laminar flows.  The 
lifting-line concept built by Prandtl in 1917-18 waited till 1964 to find, with Van Dyke 
using matched asymptotic expansions, not only a justification but also directly one 
approximate solution to the famous Prandtl's singular integral equation,  which is 
consistent with the order of approximation at which Prandtl's equation itself is 
consistent.  And it was yet more wonderful for me to discover that in 1991, eighty five 
ears after Prandtl’s construction, two young French scientists, Guermond and Sellier, 
gave a fascinating asymptotic approach to full lifting surface theory of high aspect ratio, 
allowing, at least in principle, to build the expansion up to any order. 
 
 4.4  Final remarks on Fluid Mechanics 
Looking back to the main ideas, methods and results I have related on above, I must 
recognise that I have benefited a lot from them.  My research field covered a very 
limited part of the very large domain of Fluid Mechanics.  There is nothing on very 
important topics: turbulence, rarefied gas dynamics, hydrodynamic stability, to cite a 
few.  I have read many papers, particularly when I was the principal editor of the 
“Journal de Mécanique” during seventeen years; and I have listened to many talks, in 
particular at the regular seminar of my laboratory.  But, after ten, fifteen, twenty years, 
what remains is just a feeling of how fascinating it could be to understand deeply the 
fundamental questions raised by many of these papers.  Perhaps, I might say, what 
remains is a very pleasant “cultural” feeling, something close to the statement of a 
member of the Académie Française who said that “culture is what remains when 
everything else has been forgotten”. 

 
 

 5.  FORCES AND STRESSES VIA VIRTUAL POWER 
 

 5.1  General formulation 
It is worth to relate the origin of this discovery.  In a meeting with mathematicians and 
physicists which was organised in order to discuss who will assume the task of teaching 
mechanics to the students in their first two years of university, I had to explain the 
programme proposed by the mechanicians.  For rigid body mechanics, our proposal was 



  

to introduce the torsor (“torseur” in French) concept, which gives an adequate 
mathematical representation of the action, exerted by exterior bodies on a rigid body.  
This concept is very seldom introduced in the English speaking universities, which 
prefer to start with the classical Newton laws.  It is nevertheless an interesting concept, 
because it may also be used to describe the kinematics of a rigid body.  A torsor is a 
field of moments and a resultant when it describes the forces.  It is a velocity field and a 
rotation-rate vector, if it describes the kinematics.  At that meeting somebody asked me: 
What is a “torsor” in a space of n-dimension?  I was ashamed not to be able to answer 
and, above all, not to have thought, myself, to ponder on this question.   A few weeks 
after this unhappy event, I found what I consider the best way to define the 
mathematical representation of the action.  Let us consider the “forces” exerted on a 
given mechanical system by an outside system.  It is based on the concept of virtual 
motion introduced nearly two, or more, centuries ago.  Roughly speaking, the 
“mobility” of a system B at a fixed time t, in a given reference frame R, is the vector 
space V of all the possible velocity field of the virtual motions, which one has decided 
to consider. A system of actions F exerted on B is defined by a linear form on V – to 
each motion there corresponds a scalar P – which is its virtual power.  In other words 
and briefly, F is an element of the dual of V defined by the linear form.  The “force” is 
the dual of the “mobility”! 
 This definition may, at first sight, look a little abstract.  In fact, it is not and, 
moreover, it presents many advantages.  First, it is very natural: if you want to see if a 
suitcase is heavy, you try to raise it a little bit.  Second, it gives immediately the known 
result for a system reduced to a material point [the virtual velocity is a vector; the force 
is a dual vector], or for a rigid body [the kinematics of a virtual motion which keeps the 
system rigid is a “distributor”defined by a field of the velocities vectors and its 
associated  rotation rate anti-symmetric second-order tensor and the forces are then 
described by a “torsor”, a field of antisymmetric second order tensors field of moments 
and its associated resultant force].  These two concepts, distributor and tensor, may be 
identified only in the 3-dimensional space. 
 The concept of virtual motion was used in analytical mechanics since Lagrange. So,  
it is not a new one.  What is new, is, in addition to using it in order to write equations of 
motion, its use from the very beginning, that is, in order to define the mathematical 
representation of “forces”.  One must notice also that what is proposed is similar to 
what is done in distribution theory when a function (and its generalisation to a 
distribution) is defined by a linear and continuous functional in a space on “test 
functions”.  A virtual motion is a “test function”. 
 The concept is also very flexible.  Given one system, you may choose the definition 
of the mobility – if you refine the representation of the mobility, you will automatically 
refine the representation of “forces”.  You may also choose the linear functional.  This 
remark will find its best application in continuum mechanics. 

 
 5.2  “Stresses “ in continuum mechanics 
When on deals with deformable bodies, it is convenient to introduce separately the 
(virtual) power of exterior action Pe – exerted on the given body B by the system 



  

exterior to B – and the power of interior actions Pi mutually exerted by the elements of 
B.  In classical continuum mechanics the following axiom concerning interior actions 
plays a fundamental role: For any rigid virtual motion of B, Pi is zero. 
 It is equivalent to state: The power Pi of internal forces is independent of the frame 
in which the virtual motion is defined.     
 This axiom is another formulation of what is often called the principle of material 
indifference. 
 The best way to build a continuum theory is to start by writing Pi.  The most simple 
choice is to consider Pi as the integral over B of a local pi  and to assume pi as a linear 
function of the local values of the velocity and of its space derivatives.  The coefficients 
of this function define the local representation of the interior forces, which may be 
called the “stresses” inside the body B. 
 If B is a 3-dimensional mechanical system, pi is a linear function of the symmetric 
part of the gradient of the (virtual) velocity field – The velocity field itself and the 
antisymmetric part of the gradient cannot be present, on account of the axiom of internal 
forces.  Then the “stresses” here are simply defined by the field of the stress tensors, 
i.e., symmetric second-order tensors.  It is, of course, the classical result, but here it is 
defined directly and in a rather simple way. 
 If B is a compressible fluid, a medium sensitive only to the rate of the specific 
volume, the “stresses” are simply defined by a field of scalars – the pressure p. 
 If B is incompressible, for the virtual motions which satisfy this constraint, this rate 
of the specific volume must be zero.  The “stresses” are reactions to this constraint and 
(if the constraint is ideal) are defined by a field of “Lagrange multipliers”, i.e., pressures 
– but the latter are not of the same physical nature as the pressure in a compressible 
fluid. 
 The advantages are all the more important, when the situation is complex.  For 
instance, they are very appreciable in plate and shell theories.  In the natural theory of 
plates of small thickness, the mean plane being 0

3
=x , one may consider the virtual 

velocity fields whose components are  
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The “stresses” are defined by 
 forcesshear     stresses, flexure    stresses, membrane  !!"!" QMN  
 The Love-Kirchhoff theory considers virtual motions such that the small segments 
perpendicular to the plate remain perpendicular to the mean surface in the (virtual) 
deformation in such a way that 0=!b .  Then, !"!"!"!" ,

wMdNpi #= .  This theory 
does not take shear forces into account. 



  

 In the previous examples, one starts with the definition of the mobility.  As 
“mobility” and “forces” appear as a dual concept, one may also start by the definitions 
of “forces”.  In such a case, one must first derive what must be the rate of deformation 
of the virtual motions and after that, what is the deformation of the medium. 
 Let us emphasise what is, maybe, the greatest advantage of the method of virtual 
power.  In classical presentations, one usually defines independently the “deformation” 
and the “stress” and then one is not sure that the assumptions made to define them are in 
agreement: one may be too refined compared to the other.  The definition of “stress” via 
the virtual power avoids this difficulty. 
 In the above considered examples, pi was a linear function of the first derivatives of 
the virtual velocity field – one says that these theories are of the first grade – except the 
theory of Love-Kirchhoff for plates, which is a theory of the second grade.  It shows 
that one may refine a theory usually by assuming pi to be a linear function of first and 
second derivatives of the velocity field. 
 One may also build the “stresses” of a micropolar medium, the local particle being 
not a point of matter, but an infinitely small rigid body whose kinematics are defined by 
a distributor (a velocity field and a skewsymmetric tensor, which represents the rotation 
rate of the particle).  A liquid crystal is an example of such a medium. One may also 
build, by a similar process, a theory of micromorphic media by assuming that the 
particle is no more rigid but deformable.  A polymeric solution is an example of such a 
medium. 
 Finally, let us note that Gérard Maugin and his co-workers have extended this 
theoretical scheme to study continuous media in which, physical interactions other than 
mechanical, are present, in particular electromagnetic interactions, as shown in many 
papers of  this author. 
 
 
 6.  CONTINUUM MECHANICS AND CONTINUUM THERMODYNAMICS 
 
This is a new way to look at mechanics, a way by which one discovers its deep unity: 
mechanics of rigid bodies, fluid mechanics, solid mechanics, appear then as branches of 
a large tree.  To have participated in this adventure is for me a great satisfaction.  Within 
continuum mechanics, new physical phenomena receive a scientific treatment.  
Continuum mechanics appears today as the foundation of macroscopic physics.  I owe 
Clifford Truesdell and Ronald Rivlin the first discovery of this field; in particular, I am 
grateful to them for pointing my attention to the works of Pierre Duhem who, at the 
beginning of the 20th century, had a clear and prophetic view of what it would be like, 
but unhappily, without being heard in France at that time. 
 As I try to tell how I have discovered this new important field, I must stress again 
that, above all for this point, everything that I have to report now was very closely 
connected with my teaching.  I think I may distinguish three steps, which will be called: 
Mechanical interactions – Continuum thermodynamics – Mechanics of materials. 
 
 



  

 6. 1  Mechanical interactions 
One very important decision for the development of continuum mechanics in France 
was the creation, in 1958, of a new curriculum called “licence de mathématiques 
appliquées” in which a semester optional course on mechanics of continuous media 
would be offered to the students in every university which would want to open such a 
possibility.  I had just been appointed professor in Paris, and I was asked to teach this 
course.  This was for me the occasion to develop a little what I had began to teach in 
Lille.  The course comprised three parts: (i) a general introduction to the Euler and 
Lagrange representations of motion, deformation in a small-perturbation framework, (ii) 
stress tensor and the conservation laws of mass and momentum, and then, (iii) some 
examples of steady flows of an incompressible inviscid fluid and some examples of the 
classical linearised elasticity for homogeneous and isotropic bodies.  The principal goal 
of these examples was to give the students an idea of the interest and  usefulness of fluid 
mechanics and solid mechanics.   
 Another decision, a few years later, was to give to universities the possibility to 
organise more advanced courses in the curriculum towards a DEA (Diplôme d’études 
approfondies).  In Paris, it was not difficult to create a DEA in fluid mechanics because 
competent professors were present in the department of mechanics.  But solid 
mechanics was not a very well developed discipline.  A DEA in solid mechanics was 
created as soon as the appointment of a new professor gave the department this 
possibility.  I was then in charge of the creation of a more advanced course in 
continuum mechanics.  To do that I had to learn new topics.  Roughly speaking my 
teaching dealt with the general concept of the discipline, much inspired by Truesdell, 
Toupin, Noll, Coleman. I was  using their notations, their reasoning and some of their 
examples, in particular the marvellous theory of simple fluids and materials with fading 
memory.  But I included also, in the framework of small perturbations, applications of 
theories of linear viscoelasticity with the use of the Laplace transform, and 
elastoplasticity with a fixed yield surface in particular, in order to give notions of the 
beautiful limit analysis. 
 
 6.2  Continuum thermodynamics 
It was clear that thermomechanical interactions are involved in most of the evolutions of 
the bodies that have to be considered in a general study of continuous media.  It means 
then that something like thermodynamics was needed.  But how to build such a 
satisfactory theory?   
 The principal basic question is to introduce the entropy and the absolute 
temperature.  In classical thermodynamics, dealing with systems in equilibrium, many 
answers have been proposed, some of them, like that given by Caratheodory, very 
satisfactorily.  But mechanics considers systems in motion.  There a true thermo-
dynamics is needed, and not the classical one,   which, in fact, is thermostatics. 
 Two classes of answers were produced.  In the first one, it is proposed to assume 
that entropy and absolute temperature are primitive concepts – or at least, entropy. This 
standpoint implies a drastic change in the concept of thermodynamics.  In the second 



  

one, one wants to maintain what is known in thermostatics and to adapt the necessary 
requirements needed by the new situation.   
 The starting point of both approaches is to write the three conservation laws: mass 
and momentum, as above, and the conservation of energy, which implies the 
introduction of the specific internal energy, and the heat flux vector.  Among the 
quantities involved in these five scalar density equations, some are the “principal 
unknowns”, density, velocities and an (empirical) temperature; the others are “the 
complementary unknowns” – for instance, in the classical theory, internal energy, stress 
tensor and heat flux vector q.  The main question is to write for a given medium the 
constitutive equations which, with the conservation laws, will allow one to find all the 
equations  that need to be solved. In all the theories presented, the only basic statement 
appears to be the Clausius-Duhem inequality. 
  After a long hesitation, during two or three years, I decided to adopt for my future 
research and teaching the second standpoint.  I have tried to explain this choice at an 
international seminar in Portugal in 1973 and also in a review paper I was invited to 
write with Quoc Son Nguyen and Pierre Suquet for the 50th Anniversary issue of the 
Journal of applied mechanics, in 1983. 
 It is, maybe, worth recalling how I reached that conclusion.  First, it was the 
discovery, a few years after its publication, of a paper by H Ziegler in a volume of the 
Progress in Solid Mechanics.  Writing, as Lord Rayleigh did in fluid mechanics, the 
function of dissipation, it was noted that it is a homogeneous function of order two for 
viscoelastic materials, like for a fluid, but of order one only, for a perfect elastic plastic 
material.  For the professor I was, it was very interesting: it opened the possibility to use 
the same procedure in order to derive basic constitutive laws for two different types of 
materials.  The second ingredient came from a wonderful note of Jean-Jacques Moreau 
in the Comptes rendus de l’Académie des Sciences.  Once again I must confess that it 
took me at least some months in order to see that it contained what, in fact, I was, more 
or less unconsciously, looking for: the possibility, at least for a large class of materials, 
to introduce a pseudo-potential of dissipation.  The third ingredient came from my 
colleague and friend, Joseph Kestin. In my opinion, he is one of the few scientists who 
had a deep understanding of what may be a correct extension of thermostatics to 
thermodynamics, in order to deal with complex situations in physics.  Most of what I 
will report below finds its sources in the reading of his papers and in my fruitful 
discussions with him. 
 I do not want to enter into the system of equations and into the conclusions which 
permit to write the constitutive equations.  But it may be worth answering the 
fundamental question about entropy and absolute temperature in this theory.  And for 
that, I must comment a little on the significance of internal variables, a concept that 
appears in any theory of continuum thermodynamics.  We state the possibility to 
introduce some variables describing some physical properties of the matter in the 
neighbourhood of any particle of the given system – they may be scalars, vectors or 
tensors – such that, with the variables which describe the deformation of the medium 
near this particle, it may be considered as the set of normal variables of a local 
thermostatic system associated  to the particle, the l.a.s. (local accompanying state), 



  

when density and specific internal energy are the same as those of this particle.   All the 
physical properties of this l.a.s. will be considered as physical properties of the 
neighbourhood of the particle of the given system.  In particular, the entropy and the 
absolute temperature at each point of this system depend on the modelling chosen for 
describing the l.a.s..  Let us note the great flexibility offered for adapting this theory to a 
particular situation.  One can choose 
1.  the internal variables 

n
!! ,......

1
 and their geometrical nature; 

2.  one thermodynamical potential ψ, for instance, the free energy to describe the 
thermostatic properties of the l.a.s..  The derivatives of ψ with respect to the α are the 
forces A associated to the α.  [equations of state] ; 
3.  one writes down the Clausius-Duhem inequality, which gives the dissipation - 
composed of heat-conduction dissipation and internal dissipation.  In the simplest case 
[normal dissipation, standard material] one may choose a pseudo-potential of internal 
dissipation, for instance a function χ of the !&, time rate of the α.  The derivatives give 
A as function of !& - they are the complementary constitutive equations, which, together 
with the equations of state, give the complete constitutive laws of the material. 
 The dissipation mechanisms which have to be kept in mind for a good description 
of the system are those whose time rate derivatives have an evolution with time 
comparable to the rate of deformation.  Namely, a dissipation mechanism described by 
internal variables α such that !& is very small, may be, approximately, neglected, 
because α will keep its initial value during the deformation of the particle.  Now, a 
dissipative mechanism such that !& is very large, may also be neglected, because α 
reaches very quickly its asymptotic value and consequently, it is nearly constant during 
the deformation of the particle.  The entropy and the absolute temperature of the l.a.s. 
depend on the number of mechanisms which are retained.  Then, the entropy and the 
absolute temperature are not physical properties of the particle itself; but they are those 
of the l.a.s. which depends on the choice of the mechanisms of dissipation one wants to 
take into account. 
 
 6.3  Mechanics of materials 
The continuum thermodynamics, which have been defined in the foregoing section, 
provide a frame that must be filled out by observations and experiments.  The 
thermodynamic potential – the free energy – describes principally the reversible and  
elastic part of the behaviour.  The pseudo-potential of dissipation describes principally 
the main physical properties of the material. 
 In the simplest cases of standard materials, ψ and χ are convex functions.  Many 
unusual materials may be considered as standard.  All their important physical 
properties must appear in the expression of ψ and χ.  For instance, in damage 
mechanics, in the small-perturbation framework the ψ may be a quadratic function of 
the deformation, as in elasticity, but its coefficients will be affected by a damage 
variable, which is an internal variable.  In plasticity, very often, the dual convex 
function of χ is the characteristic function of a closed convex set of the space of the A’s, 
which, in many examples, is just the stress tensor.  In such a case, one internal variable 



  

must be a tensor which represents a plastic deformation.  Most of the physical properties 
of the material can be read off the two convex functions and their dual variables which 
describe completely the constitutive equations of the material. 
 
 
 7.  TOWARD AN ANALYTICAL MECHANICS OF MATERIALS  
 
I arrive now at a new facet of mechanics as a scientific discipline that I am presently 
discovering or I have just discovered recently.  I am not able to organise them in a 
convincing way.  Nevertheless, I will mention some of them briefly, without long 
comments, because I think they may become important and also because it is now for 
me a great satisfaction to learn something of these new developments. 
 I mention first what may be called the balance of material momentum, which may 
be considered as a primary notion and is a most adequate concept to exhibit nicely the 
material properties of a system, as shown by many recent publications of Gérard 
Maugin.  For me, one of the best ways to get this new look at the mechanics of any 
system is due to Pierre Casal, in a not very well known paper of 1978, that I have, once 
more, really understood many years later: you define at a fixed time, forces and stresses, 
not by a virtual motion of the system, keeping fixed the reference configuration, but by 
the virtual motion of this reference configuration, keeping the position of the system 
itself, fixed.  So, you obtain directly the Eshelby stress tensor and the suitable forces to 
describe singularities and inhomogeneities inside the material.  Pierre Casal obtained 
directly a very elegant formulation and extension of the Rice integral to compute the 
stress intensity factor at the tip of a crack. 
 I indicate now what concerns the global formulations of statics and dynamics of 
structures, starting with the elegant presentation of energy theorems, variational 
equations, Castigliano theorems for Lagrangian and Hamiltonian integrals and 
equations in elasticity, including finite elasticity, and extended to a large class of 
materials, in particular to standard materials.  It is impossible to mention all the 
questions which are treated: stability, buckling, rupture and all the industrial operations  
on materials, stamping, forging... On account of my personal interest I will just note the 
question of phase transition and shock waves and the possibility to extend significantly 
the concept of a shock generating function.  One general result worth mentioning here is 
a kind of generalisation to systems of relations which have been introduced locally by 
the continuum thermodynamics. 
 It explains, at least partially, one of the reasons of the success of what is often 
called micro-macro description of the properties of the materials.  The flawless case is 
the homogenisation of periodic structures, introduced by Sanchez-Palancia.  The most 
evident is the study of a polycrystal as a collection of monocrystals.  More generally, by 
a self-consistent scheme of localisation-homogenisation, one may relate the variables 
which appear in the constitutive equations at each point of the macrostructure, to 
average values (or global values) of the physical properties of the local microstructure – 
a representative volume element – in which one takes into account its own mechanical 
properties described as above with the convenient material variables.  But, a last remark 



  

is in order.  The scale of the microstructure is very large in comparison with the scale 
used by the people in solid-state physics, working with grains, dislocations and 
disclinations! 
 I would be tempted to evoke many other questions. But it would not be reasonable, 
because I cannot pretend to have for them a thorough understanding. 
 
 
 8.  BEYOND THE SCIENTIFIC DISCIPLINE OF MECHANICS 
 
Beyond the discipline or rather before the discipline, one has the community of men and 
women who are doing mechanics, professors and researchers.  We had in France many 
important scientific societies: Société Mathématique de France, Société Française de 
Physique, but no similar association in Mechanics.  Joseph Pérès was the founder of the 
“Association Universitaire de Mécanique des Fluides” a few years before his death in 
1962.    An “Association Universitaire de Mécanique des Solides” was created a few 
years after.  The unity  of the disciplines of mechanics was only recognised in 1973, 
with the foundation of AUM - “Association Universitaire de Mécanique”, fifteen years 
after the introduction of continuum mechanics in the new curriculum of applied 
mathematics and the creation of a laboratory of theoretical mechanics, (now Laboratoire 
de Modélisation Mécanique) in the Sorbonne, the Paris faculty of science.  That was, of 
course, favourable to my “discovery” of mechanics, which was the main project of my 
scientific activity. 
 But it was also in 1962 that a certain event has compromised greatly this project.  
Despite my firm resolution to devote all my professional activity to my job as a 
professor, I finally had to yield to friendly pressures and accept to become general 
director of ONERA. I was not prepared to assume such a function. During five years, 
this has taken up, approximately, two thirds of my time.  I was able to continue with my 
teaching, to take care of some students and to give time to my duties as the principal 
editor of the Journal de Mécanique”, a newly created journal, in order to give a tribune 
to the researchers in mechanics, particularly to the younger ones.  Needless to say that 
during this period I have not been very active in research. 
 I tried to recover a little bit after this experience which gave me the opportunity to 
have a direct contact with the aeronautical industry and with the new activity of the 
country in space, by launching a new activity for increasing my knowledge and new 
research projects in mechanics.  One sabbatical year as Visiting Professor in Stanford, 
thanks to an invitation of Nicholas Hoff, was very helpful.  I had practically all the time 
to learn and to have fruitful discussions with my colleagues and friends, especially Lee 
and Van Dyke.  I had, at that time, a big project: to publish a four-volume treatise for 
graduate students and researchers on the “Mécanique des milieux continus”.  The first 
of them appeared in 1973. 
 Something that I had never anticipated led me to a new serious desertion of 
mechanics.  Our “Académie des Sciences” needed an important reform (statutes had 
received only slight modifications since 1816),  A new Secrétaire Perpétuel had to be 
elected, after the resignation of Louis de Broglie, in 1975.  I had accepted to be the 



  

candidate of the fellows who wished to move forward this reform.  I was elected.  I 
fulfilled the job during twenty years.  I was, and still remain, convinced that a strong 
Academy must be able to deliver independent advices with the highest vision of what 
science must represent in the life and culture of a modern society.  This decision meant 
for me the need to give up definitely some personal research activity.  I was led to leave 
my laboratory and to take a professorship at the Ecole Polytechnique, without research 
obligations.  I had an office near the Laboratoire de Mécanique des Solides de l’Ecole 
Polytechnique, one of the best research units in mechanics  in the country  and I used 
this wonderful possibility to talk with my young colleagues and to discuss with them, 
just as if I were a young student once again. This time I had to teach very well prepared 
students, who had passed the arduous entrance examinations to this school.  Just a few 
hours were sufficient to give them the basic notions of mechanics, (rigid bodies, fluids, 
solids) at the level of the first year graduate studies.  My colleagues of the Laboratory 
and the students helped me not to consume too quickly my capital of knowledge. 
 If  I  talk about this last period of my activity, it is because I had the opportunity to 
discover something I feel important about mechanics.   Two weeks after the signature of 
the new statute of our Académie , in 1979,  President Valéry Giscard d’Estaing asked 
our Fellowship to write a report about the strengths and the weaknesses of the 
mechanical sciences and industries in France, and to make the appropriate proposals.  
The last report of the Académie had been written in 1916!  By this demand, the 
Président de la République wanted in particular to test whether the capacities of the 
Académie were at the same level as its claims.  With a small team, we worked very 
hard, in order to give a satisfactory answer.  But what is worth to be mentioned here is 
that I have discovered that mechanics was at the same time a science, a technology and 
an industry. Evident, of course!  But an evidence I had never before realised.  It is not 
the place to discuss the conclusions and the consequences of this report – nearly six 
hundred pages in length.  It is certain that it had a big influence on the orientation of 
many people working in mechanics, on scientists in universities and research 
establishments, on engineers and directors of companies and on the orientation of long-
term programmes.  A committee Haut Comité de Mécanique of twenty people (one 
President, one secretary, six scientists, six engineers and six directors of companies) 
was created in order to study together the many problems of the activity of mechanics in 
France and to make suggestions in order to improve the mutual relations between these 
different groups represented.  After a lapse of some fifteen years, in 1997, twenty small 
scientific and technical associations decided to join together in a single society, the 
Association Française de Mécanique. I have been very lucky to be a participant to this 
significant evolution of mechanics in France.  Fifty years ago, you could not find 
mechanics among the basic Curricula in Universities; you found some courses, but no 
laboratories in most of the engineering schools, even in the most famous ones.  The 
mechanical and aeronautical industries were very weak.  Now mechanics is a scientific 
discipline which plays an important role in the present development of sciences and 
which is directly connected with the industries that have to build goods and equipment 
with the resources of modern technologies and new materials. 
 



  

 
 As the famous motto we have adopted in France goes:  “Mechanics? In the heart of 
a moving world!”  And a professor of mechanics?  One of the best spots to look at and 
to participate in this moving world.  That would be my answer today to the remark of 
the nice guy who filled my tank in the gas station near Brown University. 
  
(English version by Eleni MAUGIN; published in pp.1-24 of Continuum 
Thermomechanics, The Art and Science of Modelling Material Behaviour (Paul 
Germain’s Anniversary Volume), Eds: G.A.Maugin, R.Drouot and F.Sidoroff, Kluwer 
Academic Publishers, Dordrecht, The Netherlands, 2000.  
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