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Abstract. The frictional behaviour of a series of numerical 2D granular mass flows down a model topography is

analysed. E↵ective friction coe�cients estimated from final deposits are compared with data from documented

natural geophysical flows, and show a consistent behaviour as far as run-out distances are concerned. The latter

is used to estimate e↵ective friction coe�cients which capture well the frictional behaviour derived from the

computation of micro-mechanical stress tensors near the gravity centre. Distinguishing between the di↵erent

parts of the mass while spreading, we show that the downstream part of the flow exhibits a much larger friction

than the core and the tail. A dependence between friction and flow volume is however observed in each region.

1 Introduction

The frictional properties of model granular matter have

long been perplexing experimentalists and numericians

alike, even in the simplest idealised flow configurations

involving the simplest idealised beads. While sustained

research has finally brought some helpful light on the

problem [1], the di�culties remain nearly untouched in

the case of natural, namely geophysical, granular flows.

The nature of the grains, their various size and shapes,

the various triggering contexts, underlying processes and

topography covered make the attempt at aiming at a good

guess for their apparent friction properties look like a

reverie, as nicely put by Ha↵ warning us of the limitations

of predictive modelling in Geomorphology [2].

Nevertheless, in this contribution, we question the fric-

tional properties of a granular mass flowing down an

idealised topography, and try to relate them to topography

characteristics and final deposit geometry. Therefor,

highly idealised dry grains are simulated; their behaviour

is controlled only by gravity forces and contact interac-

tions, applying a hard-sphere approximation.

We first discuss the geometrical characteristics of the

deposit left by the numerical flows in relation to those left

by geophysical events. Analysing the stress state in the

mass while flowing, we then examine the mobilisation

of macroscopic friction forces in the framework of the

µ(I) theory [1]. We compare the results obtained from the

computation of the stress and those estimated from the

deposit left by the granular mass. Finally, we discuss the

di↵erent behaviours exhibited by the various parts of the

flow: head, tail and centre.
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2 Idealised numerical flows

Figure 1. Granular mass and model topography over which the

mass is released, left to flow and come to arrest.

The simulations were performed applying a Contact

Dynamics algorithm in 2 dimensions [3]. The grains are

rigid, and interact at contacts through Coulombic friction

and elastic restitution. Details on the algorithm can be

found in [4].

The setup consists of a compact mass of Np two-

dimensional grains forming a volume V , initially located

on a slope of angle ✓topo, at an initial height H0, and al-

lowed to flow under gravity down a simplified topography

until it reaches the horizontal deposit plane and comes to

arrest, as sketched in Figure 1 and illustrated in Figure 2.

The curve joining the incline and the horizontal is a cur-

vature of radius H0/(1 � cos ✓topo). This smooth transi-

tion prevents the harsh velocity discontinuity which would

happen if the flow were hitting the horizontal plane di-

rectly after falling down the incline plane [5], while the

e↵ects of centrifugal acceleration remain negligible [6].

The whole topography is made rough by gluing grains of

the same size as the flowing grains.
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Figure 2. Successive snapshots of the flow of a granular mass

(Np = 1452). In red and pink are shown the neighbourhood of

the main, and upstream and downstream secondary centres of

gravity G, G
0
and G

00
, over which mean quantities are evaluated.

Table 1. Simulations performed

Volume (in nb. grains) H0 ✓topo Nr of runs

[655 : 7882] 0.08 m 45 deg 31

We systematically vary the initial volume V of the flowing

mass by varying the number of grains, from 655 to 7882

grains; its initial height is set to H0 = 0.08 m, initial slope

angle to ✓topo = 45 deg, and are not varied. After the mass

has flown and spread, we measure the horizontal distance

between the top of the initial position of the mass and the

final position of the front, denoted L in the following, as

an analogue of the runout distance measured in situ for

geophysical events between the top of the break-away scar

and the distal end of of the runout deposit [5].

Grains are disks with a mean diameter d = 0.005±0.001m;

they interact through simple Coulombic friction with a co-

e�cient µmicro = 0.3, and a coe�cient of restitution at

collisions e = 0.1; gravity was set to g = 9.8 m s
�2

.

The set of simulations performed and analysed in the fol-

lowing is presented in table 1.

3 “Geometrical” effective friction

To compensate for the impossibility to measure directly

the dissipative properties of any given natural flows,

geomorphologists estimate the mobility of the mass based

on the (often only) knowledge available for the event,

namely the deposit left by the flow. A “travel angle",

giving an e↵ective friction characterising the motion if

seen as a “solid” one, can be derived from the runout

distance L and the maximum initial height of the tail of

the flow: µe f f = H/L [7, 8]. The inverse defines the
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Figure 3. Data from geophysical events from Legros 2002 [9],

and data points from the simulations from table 1, showing (a)

the e↵ective mobility M = 1/µe f f = L/H and (b) the runout

distance L as a function of the volume V
1/D

, where D = 2 for

numerics and D = 3 for real events.

mobilityM = 1/µe f f .

Figure 3 shows data from real events (compiled in Legros

2002 [9]) together with the results of our simulations: the

mobility M is plotted as a function of the volume V of

the event/simulation, with V held to the power 1/D with

D = 2 for 2D-numerics and D = 3 for 3D-geophysical

cases so that data can be compared consistently. We

observe three distinct clouds of points spanning a large

interval, showing however that mobility tends to increase

(namely diminishing friction) with increasing volume,

but allowing no further insight. Yet, plotting the runout

distance L alone as a function of V
1/D

shows a well

defined trend suggesting that idealised 2D numerics and

3D real cases, in spite of the variety of underlying physics

and di↵erence of scale, show a common trend where

geometrical spreading is concerned, as suggested by

Davies (1982) [10], and later verified for numerics in [11].

We now turn towards simulations to analyse the frictional

behaviour of the granular mass in terms of stress state,

and compare it with the geometrical estimation given by

the mobility µe f f = 1/M.
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4 Friction mobilisation

4.1 Obeying the µ(I) law?

To explore the mobilisation of friction in the bulk of the

granular mass while flowing, we focus on a region around

the gravity centre G and compute the stress tensor in this

area (Figure 2). Therefor, we consider a slice normal to

the topography, of width W = 10 d and volumeV, centred

on G. We compute over all contacts c and grains n situated

inV:

� =
1

V
X

c2V

~f c ⌦ ~lc, (1)

where ~f is the contact force and ~l is the contact distance

defined as the distance between the two grains centres.

We are thus able to form the friction coe�cient µ = ⌧/P
for the volume V, where ⌧ is the shear stress and P the

pressure. The contribution of the kinetic stress tensor

is neglected here, based on earlier computation of the

contribution of dynamic stress in chute flow showing

small comparative values [12].

Knowing the mean velocity hui of the slice and its

height h at each moment of the simulations, we are able

to evaluate the inertial number I = dhui/h
p

P/⇢ (P be-

ing the pressure and ⇢ the density) for each run. We

thus plot the friction coe�cient µ against I averaged over

successive time intervals of �t = 0.125s corresponding

only to dynamical states (namely filtering out onset and

arrest). Bringing together all simulations points from all

simulations in Figure 4, we observe a cloud of points

roughly resembling the familiar trend [1]. The best fit

for µ = µ1 + (µ2 � µ1)/( I0

I
+ 1) gives a tiny static friction

µ1 = 0.05 and a dynamical friction µ2 = 0.33. However, a

fit with µ1 = 0.19 and µ2 = 0.36 is acceptable, and coin-

cides with a larger value of µ1 more commonly observed

for dry granular matter [1]. We hence conclude that, de-

spite their unstationary and non-uniform nature, the granu-

lar avalanches simulated here fall in the framework of the

µ(I) dependence. Nevertheless, addressing the contribu-

tion of the kinetic stress tensor would be of interest.

4.2 Head or tail?

The coe�cients of friction computed so far involve only

the contacts in the neighbourhood of the gravity centre G.

It thus does not seem unreasonable to compare them with

an e↵ective friction defined geometrically from the initial

and final positions of G. In the same way that we have de-

fined µe f f = H/L, we define µG

e f f
= HG/LG for each of the

n simulations performed. Since the runout L is much larger

than the position LG by definition, while initial heights H

and HG are somewhat comparable, we expect the e↵ective

friction µG

e f f
to be much larger than µe f f ; this is indeed ob-

served in Figure 5 where both are plotted as a function of

the volume of the flow.

To compare the coe�cient of friction µ computed from

the stress state in the neighbourhood of the gravity center

G with the e↵ective frictions µG

e f f
and µe f f , we select for

each simulation a time window where the flow is actually
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Figure 4. Coe�cient of friction µ computed in the neighbour-

hood of the centre of mass plotted against the inertial number I.

The best fit for µ = µ1 + (µ2 � µ1)/( I0

I
+ 1) is shown in dotted

line, and an acceptable trend is obtained in red for more classical

values for the static friction µ1 (see text).

dynamical, excluding onset and arrest phases, and apply

expression (1). We then plot all points µ, µe f f and µG

e f f
as

a fonction of the flow volume V in Figure 5. Unexpect-

edly, µ does not at all compare with µG

e f f
. By contrast, it

coincides with the e↵ective friction µe f f derived from the

runout distance.

If the values of µ computed here were relevant for the

whole flow (and not only for the area around the gravity

centre), that would mean that the geometry of the final de-

posit is a straightforward translation of the dissipation oc-

curring in the flow. To discuss this point, we examine the

friction mobilisation in the various regions of the flowing

mass: centre, head and tail.

4.3 Two regimes showing up

The highly unstationary nature of the flow, with a mass

strongly deforming while flowing, and a topography

evolving from incline to horizontal, means that dissipative

processes may depend on which part is considered,

ranging from a slow bulk motion upstream to a rapid thin

shear flow downstream. To clarify this issue, we consider

now two secondary gravity centres, upstream tail G
0

and

downstream front G
00

. We compute the corresponding

coe�cients of friction µ0 and µ00 from the stress state

in local neighbourhoods (see Figure 2) in the same way

that we have computed µ in the neighbourhood of G in

subsection 4.2. Their values is displayed in Figure 6 as a

function of the volume V involved in the flow.

Two aspects can be noticed. First, the upstream tail G
0

shows the same feature as the main gravity centre G,

while downstream front G
00

exhibits much larger values

of friction. This suggests that the tail of the flow follows

the behaviour of the middle core, while the front has

an independent, significantly di↵erent, behaviour of its

own. This also implies that mean values are dominated

by what happens in the upstream part of the flow, and

say little on the processes occurring downstream. This
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Figure 5. E↵ective coe�cient of friction derived from the

final runout µe f f = H/L and from the final position of the

centre of gravity µG

e f f
= HG/LG, and coe�cient of friction

µ = ⌧/P computed from the stress tensor in the neighbour-

hood of the gravity centres.
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Figure 6. Coe�cient of friction computed from the stress

tensors in the neighbourhood of the gravity centre G and

the secondary upstream and downstream ones G
0

and G
00

as a function of the volume V involved during the flow.

coincides with a bouncy dynamics at the front, e�ciently

dissipating energy through a collisional regime, while

the tail, moving in a denser regime, ressembles more a

smooth bulk translation.

Second, for all three gravity centres, two regimes seem to

emerge depending on the volume involved. For smaller

volumes (here V . 0.09m
2
), friction coe�cients decrease

distinctly with V , but reach a plateau afterward. This

suggests that large volumes no longer facilitate motion

after a threshold is reached. Note that this departs from

the established - yet still discussed and explored - volume-

induced lubrication theory/observation in Geosciences.

This point needs systematic verification while discussing

not only the volume of the flow, but the geometry of

the topography, in the spirit of [11]. Increasing volume

favours motion through spreading over sliding, namely

bulk volume dissipative processes over bottom boundary

interactions. How this may determine the macroscopic

behaviour, and how this compete with other factors

(roughness, rheology, grain-size distribution... ) remains

an open question.

5 Conclusion

In this contribution, we have analysed the frictional be-

haviour of a series of numerical 2D granular mass flows

down a model topography. Following Geoscience prac-

tice, we have estimated e↵ective friction coe�cients from

the geometry of final deposits, and compare it with data

from natural geophysical flows from the literature. Nu-

merical and natural data show a consistent behaviour as

far as run-out distance is concerned.

We then analyse the mobilisation of friction from the com-

putation of micro-mechanical stress tensors, namely the

ratio of the deviatoric part to the pressure, and disclose a

behaviour consistent with the µ(I) dependence. We ob-

serve that the friction computed near the gravity centre

is well estimated from analysing the deposit geometry in

terms of the run-out distance. However, defining upstream

and downstream secondary gravity centres, the computa-

tion of stress tensors in the vicinity of each reveals that

the downstream part of the flow actually exhibits a much

larger friction coe�cient, presumably due to a collisional

flow regime. All three gravity centres, however, show a

similar dependence on the flow volume, departing from

the volume-induced lubrication theory. Further simula-

tions, varying the topography characteristics, are needed

to clarify this issue.
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