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Abstract: Numerical simulations of the collapse of granular columns are performed. They are in good agree-
ment with experimental results. We find that the collapse dynamics is mainly driven by free-fall. Simple basal
friction is shown to be a good approximation for the dissipation. We give evidence of the key role played by the
dynamics of mass sideways ejection. Accordingly, a scaling law for the runout distance is proposed.

1 INTRODUCTION

The flow of granular media has been the subject of
numerous experimental and theoretical studies. How-
ever, until recently, the highly unsteady situation of a
column of grains collapsing onto a horizontal plane
due to gravity had not been investigated. Yet this sit-
uation is of particular interest for the geophysical is-
sues of flow mobility and runout distance. Lately, sev-
erall experimental works have brought new insights in
the runout distance problem (Lubeet al 2004a; Laje-
unesseet al 2004; Balmforth & Kerswell 2004). The
experiments consist of releasing suddenly an initially
confined column of granular material, of initial height
H0 and initial radiusR0, and let it spread freely onto
a horizontal plane. The main outcome of these stud-
ies consists of scaling laws relating the runout dis-
tance(R∞−R0) to the initial geometry of the column
both in quasi-2D (or planar) and axisymmetric config-
urations. When the initial aspect ratio of the column,
a = H0/R0, is sufficiently large, the runout distance
normalised by the initial radius of the column shows a
power-law dependence ona. This power-law depen-
dence is incompatible with a simple friction model,
and suggests more complex dissipation mechanisms
within the flow. However, no clear and comprehen-
sive physical modelling of the collapse dynamics has
been achieved yet.
We present here the results of 2D numerical sim-
ulations of the column collapse experiments using
the Contact Dynamics algorithm (Moreau 1994). The
scaling laws obtained for the runout distance are in
good agreement with the experimental results. The
dominating role of the free-fall dynamics over the
spreading dynamics is established. Dissipation in the
sideways flow is shown to be very well approximated
by a simple basal friction. Investigating the process
of mass ejection from the base of the column to the

Figure 1. Snapshot of the spreading process. The gray shade
shows the velocity of the grains. White corresponds to zero ve-
locity, while black indicates the maximum velocity.

outflow, we establish its major influence on the over-
all dynamics. These results allow us to propose a new
scaling law for the runout distance, compatible with a
simple friction model, and providing a qualitative ex-
planation for the behaviour of the collapsing columns.

2 NUMERICAL EXPERIMENT

The grains simulated are perfectly rigid disks. Their
diameterd is uniformly distributed in a small interval
such that dmin/dmax = 2/3. The grains interact
through Coulombian friction, with a coefficient
µ = 1, and through collisions with a coefficient of
restitutionρ = 0.5. The horizontal plane over which
the grains are allowed to spread is perfectly smooth,
and contacts between grains and plane have the same
properties than contacts between grains only.
The initial columns are prepared by a random rain
of grains between two vertical walls. The compacity
of the packing isc0 ' 0.82. The column initially has
a radiusR0 and a heightH0, anda = H0/R0 is the
initial aspect ratio. The total mass of grain is denoted
m0; m denotes the mass of each grain. At time
t = 0, the vertical walls are removed, and the column
collapses due to gravity. We measure the final radius
of the depositR∞. The compacity of the final deposit
is c∞ ' 0.78, namely close to the initial compacity
in spite of a slight loosening of the packing. We have
carried out 25 simulations witha ranging between
0.21 and17 and using between 1000 and 8000 grains.



Figure 2. Normalised runout distance(R∞−R0)/R0 as a func-
tion of the initial aspect ratioa.

3 SCALING LAW FOR THE RUNOUT
For each collapse, the runout distance is evaluated
considering the course or the grains in contact with
the main mass; any solitary grain escaping the collec-
tive motion and rolling away is not taken into account.
The runout distance normalised by the initial radius of
the column(R∞ −R0)/R0 is plotted as a function of
the aspect ratioa in Figure 2. Two different scalings
can be observed depending ona, giving first a linear
and then a power-law dependence:

R∞ −R0

R0

'
{

2.5 a if a < 2,

3.25 a0.7 if a > 2.
(1)

These scalings are in very good agreement with the
experimental results, which also show a linear and a
power-law dependence depending on the aspect ratio
a, irrespective of the planar or axisymmetric configu-
ration of the experiment. The exponent found is1/2
in axisymmetric experiments, while it is2/3 in planar
ones (Lubeet al 2004a; Lubeet al 2004b; Balmforth
& Kerswell 2004). The exponent0.7 found numer-
ically is thus close to the experimental finding. The
origin of the difference in the exponent of the scal-
ings in planar and axisymmetric configuration has not
been clarified yet. However, in both cases, the exis-
tence of a power-law with an exponent lower than1
has the same implication: simple friction is no satis-
factory description of the collapse dynamics. Indeed,
if we suppose that the totality of the initial potential
energyE0 = 1

2
m0gH0 of the column is dissipated by

the work of friction forces over the runout distance,
we can write:

1

2
m0gH0 = µem0g(R∞ −R0), (2)

whereµe is the effective coefficient of friction. This
would lead to the s caling law for the runout distance

R∞ −R0

R0

=
1

2µe

a,

Figure 3. a) Normalised runout distance(R∞ − R0)/R∞
as a function oft/T∞ and b) normalised runout distance
(R∞−R0)/R0 as a function oft/t0.

Figure 4. Duration of the collapseT∞ (s.) as a function of the
characteristic timeT0 = (2H0/g)1/2.

while we observe the scaling given in relation (1). We
thus conclude that the friction model given in (2) does
not apply.

4 THE FRONT PROPAGATION
The positionr −R0 of the flow front, normalised by
the final runoutR∞, is displayed in Figure 3a for dif-
ferent values of the aspect ratioa as a function of the
normalised timet/T∞, whereT∞ is the total duration
of the collapse. The plots nicely join in a single curve,
showing first a period of acceleration, followed by a
constant velocity regime and finally a slow decelera-
tion leading the flow to a stop. The constant velocity
regime is characterized when plotting the normalised
front position(r − R0)/R0 as a function of the nor-
malised timet/t0, wheret0 = (2R0/g)1/2 (Figure 3b).
Whena is sufficiently large, the following relation ap-
pears to be a good approximation:

(r−R0)

R0

' 3
t

t0
− 3

which can be rewritten in terms of the characteristic
propagation velocityv0:

r ∝ v0t, r > 2R0, (3)
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Figure 5. Snapshots of the spreading dynamics showing the pro-
cess of mass sideways ejection for a very large aspect ratio.

where v0 = (2gR0)
1/2. The total duration of the

collapseT∞ is plotted in Figure 4 as a function
of the free-fall time over the initial column height
T0 = (2H0/g)1/2. We observe a linear dependence
T∞ ' 2.25T0, suggesting that the free-fall controls the
spreading dynamics. Considering that the characteris-
tic velocity of the flow front isv0 = (2gR0)

1/2, and
that the typical time of spreading isT0 = (2H0/g)1/2,
we should expect the following scaling for the runout
distance:

(R∞ −R0) ∝ v0T0,

(R∞ −R0)

R0

∝ a1/2,

as observed in axisymmetric experiments. The fact
that we observe a different scaling in planar experi-
ments (with an exponent2/3) suggests that the decel-
eration phase has a non-negligible contribution to the
runout distance, less noticeable in axisymmetric con-
figuration. Here, the dynamics of mass ejection seems
to be a key aspect of the spreading dynamics. Indeed,
while the columns is falling, grains are accelerated in
free fall, so that the sideways flow is fed by an increas-
ing flux of grains of increasing momentum. The flow
must accommodate this addition of mass as can be
seen clearly in Figure 5 for a large aspect ratio. This
effect is expected to be more important in 2D than in
axisymmetric configuration, for which the increase of
the surface area of the flow is quadratic with the front
position. The process of mass ejection is thus likely

Figure 6. Normalised energyES/(mSgR0) available for the
flow as a function of the normalised runout distance(R∞ −
R0)/R0.

to influence the deceleration phase, and the spreading
dynamics more generally.

5 DISSIPATION IN THE FLOW
In order to check whether basal friction is a correct
approximation of the dissipation process in the side-
ways flow, we mesure the mass of grainsmS and the
energyES (potential and kinetic) taking part to the
flow, namely crossing the initial radius vertical sec-
tions−R0 andR0. Assuming that the totality of the
energyES is dissipated during the flow propagation,
we compare for each value ofa the energyES with
the work of the massmS over the runout distance
R∞ − R0. As shown in Figure 6, we obtain a linear
relation, thus compatible with a simple friction:

ES = µemSg(R∞ −R0), (4)

whereµe is an effective coefficient of friction, found
to be0.16. Moreover the evolution of the energyES

as a function of the initial potential energyE0 shows
a linear dependence (Figure 7). We can thus introduce
an effective coefficient of restitutionρS = 0.46 so that
the equation 4 can be rewritten:

ρS
1

2
m0gH0 = µemSg(R∞ −R0). (5)

This equation is slightly different from the equa-
tion (1) in the account of the massmS flowing side-
ways. Again, the process of mass ejection at the base
of the column appears to be dominating the spread-
ing dynamics. In terms of runout distance, the equa-
tion (5) implies the following scaling

(R∞ −R0)

R0

∝ m0

mS

a. (6)

This scaling is discussed here after.

6 MASS EJECTION: A NEW SCALING
The process of mass ejection, illustrated in Figure 5,
plays a non-trivial role in the flow dynamics. When
plotting the proportion of mass taking part to the side-
ways flowmS/m0 as a function of the aspect ratioa
( Figure 8), we observe a slow increase towards the
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Figure 7. Normalised energy available for the flowES/mgd as
a function of the normalised initial potential energyE0/mgd.

Figure 8. Mass of grains ejected sidewaysmS normalised by
the initial column massm0 as a function of the aspect ratioa.

limit casemS/m0 = 1. This evolution is well approx-
imated by the form

mS

m0

= 1− f(a), (7)

wheref(a) = 4.8/(a + 6) is a phenomenological fit.
No physical argument for the form of the functionf
is to be discussed here. Let just appreciate that it sat-
isfiesf(a)→ 0 whena→∞.
Equations 6 and 7 suggest for the runout distance a
new scaling of the form:

(R∞ −R0)

R0

∝ a

1− f(a)
. (8)

This new scaling is plotted in Figure 9 together with
the power-law one; we observe that both are equally
acceptable. For large values ofa, the two scalings di-
verge. The newly suggested approximation tends to
behave likea, namely as in a simple friction case, ac-
cordingly to our analysis of the energy dissipation.

7 CONCLUSION
The numerical simulations of the granular column
collapse are in very good agreement with the exper-
imental findings, in particular concerning the runout
distance. Analysing the collapse dynamics we find
that it is mainly driven by free fall. An accurate study
of the energy transfer shows that simple basal fric-
tion is a good approximation of the dissipation. We
give evidence of the key role played by the process
of mass ejection sideways, and propose, accordingly,

Figure 9. Normalised runout distance as a function of the as-
pect ratioa, with the power-law scaling (dashed line) and the
empirical fita/(1− f(a)) (dotted line).

a new scaling for the runout distance. These results
suggest that the understanding of the runout depen-
dence on the column geometry requires a clear for-
mulation of the ejection dynamics at its base. Beyond
the frictional properties of the material, we show that
the flow characteristics strongly depend on the early
dynamics of the collapse. This dependence should be
of importance when transposed in the complex case
of natural granular flows.
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