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There is a large amount of experimental and numerical work dealing with dry granular
flows (such as sand, glass beads, etc.) that supports the so-called w(I)-rtheology. The
reliability of the w(/)-theology in the case of complex transient flows is not fully
ascertained, however. From this perspective, the granular column collapse experiment
provides an interesting benchmark. In this paper we implement the wu(/)-rheology
in a Navier—Stokes solver (Gerris) and compare the resulting solutions with both
analytical solutions and two-dimensional contact dynamics discrete simulations. In a
first series of simulations, we check the numerical model in the case of a steady
infinite two-dimensional granular layer avalanching on an inclined plane. A second
layer of Newtonian fluid is then added over the granular layer in order to recover a
close approximation of a free-surface condition. Comparisons with analytical and semi-
analytical solutions provide conclusive validation of the numerical implementation
of the w(l)-theology. In a second part, we simulate the unsteady two-dimensional
collapse of granular columns over a wide range of aspect ratios. Systematic
comparisons with discrete two-dimensional contact dynamics simulations show good
agreement between the two methods for the inner deformations and the time evolution
of the shape during most of the flow, while a systematic underestimation of the
final run-out is observed. The experimental scalings of spreading of the column
as a function of the aspect ratio available from the literature are also recovered.
A discussion follows on the performances of other rheologies, and on the sensitivity of
the simulations to the parameters of the w(/)-rheology.
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1. Introduction

Despite a large amount of dedicated research, modelling and predicting granular
flows remains a challenging goal. Granular flows are characterized by a very large
diversity of behaviours. For example, the simple controlled experiment of a granular
layer flowing on an inclined plane reveals more intriguing features than one would
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expect. As a consequence, defining a generic continuum granular flow rheology has
not yet been achieved. Recurrent struggles are, for instance, the identification of a
relevant variable to describe the transition from arrest to flow and the corresponding
hysteresis, the initiation of shear banding, or the understanding of non-local effects
(Aranson & Tsimring 2001; GdR MiDi 2004; Pouliquen & Forterre 2009).
Notwithstanding these difficulties, much progress has been made since the
pioneering work of Bagnold (1954); however, these advances have primarily concerned
phenomenological observations rather than reliable modelling. This includes the
following topics: role of initial conditions and hysteretic behaviour, dependence on
system size, wall effects, fluidization, etc. (Daerr & Douady 1999; Courrech du Pont
et al. 2003; Jop, Forterre & Pouliquen 2005; Nichol et al. 2010). Constitutive laws
that could explain and predict these observations are still lacking. Among the different
models and theories developed in the past two decades, the p(/)-rheology has recently
emerged as the only framework so far consistently describing observations from a
great variety of experimental and numerical set-ups (GdR MiDi 2004; Jop, Forterre
& Pouliquen 2006; Pouliquen & Forterre 2009). Initially established for stationary
shear flows, and based on a Coulombic friction model, this rheology relates the
value of the effective coefficient of Coulombic friction p (the ratio of tangential
to normal stresses) to the non-dimensional inertial number / (comparing the typical
time scale of microscopic rearrangements and the typical time scale of macroscopic
deformations). Although the w(/)-rtheology is mostly phenomenological, it rests on
a physical basis based on the origin of frictional properties. Most interestingly, its
validity seems to extend to the case of highly dynamical and transient situations
such as the granular column collapse, as shown by the numerical work of Lacaze
& Kerswell (2009). The granular column collapse experiment was initially designed
to constrain the factors controlling the run-out (or maximum distance reached by
the flowing material) of natural catastrophic granular flows (Lajeunesse, Mangeney-
Castelneau & Vilotte 2004; Lube et al. 2004). It simply consists of initially confined
columns of grains allowed to spread over a horizontal plane in response to gravity.
The main outcome can be summarized as follows. The run-out (normalized by the
initial width of the column) behaves like a power law of the column initial aspect
ratio (initial height to initial width); the exponent of the power law is dependent
only on the geometry of the column; and its value is highly reproducible. Although
the experimental set-up is simple, the origin of the power-law scaling is not fully
understood. In the context of the present work, however, it offers a reference behaviour
against which the w(/)-rtheology can be compared, provided we have a simulation
tool solving this specific constitutive model. Continuum modelling of the granular
column collapse has been the subject of several studies, often based on the Saint-
Venant/shallow-layer approximation, whose validity is intrinsically limited to squat
columns (Kerswell 2005; Mangeney-Castelnau et al. 2005; Larrieu, Staron & Hinch
2006; Doyle et al. 2007; Hogg 2007). Recently, two-dimensional simulations of the
collapse of elastoplastic materials allowed for the modelling of tall columns with
good agreement (Crosta, Imposimato & Roddeman 2009), but using a Lagrangian
approach and a Mohr—Coulomb plastic model. Yet, no systematic comparisons
between discrete granular dynamics and the complete Navier—Stokes equations with
continuum rheologies were carried out. The challenge is no less than the simulation of
granular systems (from silos to geophysical flows) at an affordable computational cost.
In this paper, we simulate numerically the two-dimensional granular column collapse
experiment using the Gerris two-phase flow Navier—Stokes solver, in which we have
implemented the non-Newtonian w(/)-rheology. We consider the flow of dry granular
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material, in contrast to Chauchat & Médale (2010), in which immersed granular flows
were considered. The first validation results of this rheology are presented in §2.
We validate our approach by testing it against two ideal avalanche configurations:
the case of a single granular layer on an incline, and the case of two layers (a
granular layer covered by a viscous flow). Showing that the upper layer plays a
negligible role for the range of parameters in which we are interested, we apply our
approach to the more complex case of the transient flow of the granular column
collapse in § 3. In parallel, we perform simulations using the discrete contact dynamics
method (Moreau 1994), in which the motion of individual grains is explicitly solved,
thus allowing detailed comparison with the continuum p (/) counterpart (Staron &
Hinch 2005, 2007). Details of the discrete numerical methods are presented as well.
We compare experimental scaling laws for the run-out and the deposit height with
the outcome of the continuum simulation. Comparisons with discrete simulations of
the time evolution of the shape of the column are also performed. Other plausible
candidate rheologies (Bagnold, Bingham, constant friction, and a case with linearized
total derivative in the Navier—Stokes equations) are tested and their performances
discussed. Finally, at the end of § 3 we present a detailed discussion on the sensitivity
of the w(I)-rheology to parameters, and on the difficulty of modelling the flow front
from both a theoretical and a numerical point of view.

2. Implementing the u(I)-rheology in a Navier-Stokes solver
2.1. Some results on the u(I)-rheology

Early concepts to explain the behaviour of granular flows were introduced in the
seminal work of Bagnold (1954), who identified many of the features of granular
media by analysing field and laboratory experiments. Since this pioneering work, one
of the major milestone might be the introduction of the so-called w(/)-rheology by
the Midi group (GdR MiDi 2004). Some of the ideas developed in that paper were to
some extent already discussed in Savage (1979), Savage & Hutter (1989) and Ancey,
Coussot & Evesque (1999); however, the w(l)-rheology results from the analysis of a
large number of experimental and numerical data sets, which for the first time revealed
a common framework explaining a wide range of behaviours of granular materials.
The prospect of these efforts is a comprehensive and reliable description of granular
dynamics using a continuum mechanics point of view.

Granular media can flow as complex non-Newtonian fluids or resist shearing as
a plastic solid. First, they are characterized by the existence of a flow threshold
analogous to the classical Mohr—Coulomb friction law. When the flow develops, by
analogy with Coulombic friction, the local normal stress p and the local tangential
stress T are often found in practice and assumed in the model to be proportional:

T = up, 2.1

where p is the analogue of a coefficient of friction. The introduction of a Coulomb-
like friction law in a continuum description of granular flows is not new. It was first
proposed by Savage & Hutter (1989), who derived shallow-layer equations for granular
flows where dissipation was accounted for through basal friction. The value and
physical origin of this basal coefficient of friction have subsequently been the subject
of extensive work (Pouliquen & Forterre 2002; Bouchut et al. 2008; Kelfoun et al.
2009; Davies, McSaveney & Kelfoun 2010; Mangeney et al. 2010). The underlying
question is which mechanisms at the grain scale in the bulk are responsible for
dissipation and/or effective friction.
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The strength and novelty of the p(/)-rheology lay in the fact that it relates the
effective coefficient of friction characterizing the flow to a non-dimensional number
reflecting the local state of the granular packing. This number is known as the inertial
number I (da Cruz 2004), and is defined as

| dou/dy
N/

where du/dy is the shear rate, p is the pressure, and d and p are the diameter
and the density of the grains, respectively. It represents the ratio of two time scales:
(du/dy)~! is a macroscopic shear deformation time scale, and /pd?/p is an inertial
time scale constructed with the pressure force pd®. Gathering and comparing a large
variety of studies of shear flows (Couette plane shear, annular shear, vertical chute
flows, inclined plane, heap flow, rotating drum), either experimentally or numerically
(using discrete methods such as molecular dynamics or contact dynamics simulations),
GdR MiDi (2004) has demonstrated the generality of the dependence of the ratio t/p
on /. The following law was proposed as a possible fit to account for the shape of the
dependence (Jop et al. 2005, 2006):

(2.2)

Ap
Ly/I+1’

where the values of the coefficients u;, Ap and I, are material-dependent; indicative
values for glass beads are w, = 0.38, Au =0.26 and [y = 0.279 (Jop et al. 2005).
Recently, numerical studies using discrete element simulations have shown that the
w(I) dependence was also satisfied in highly transient situations such as the granular
column collapse (Lacaze & Kerswell 2009).

So far, the w(l)-rheology is purely phenomenological. Other models exist, building
on different theoretical backgrounds (Mills, Loggia & Tixier 1999; Aranson &
Tsimring 2001; Josserand, Lagrée & Lhuillier 2006); however, none compares so
well against so many experiments. Although the validity of the p()-rheology might be
questionable close to the jamming transition (Staron et al. 2010), or when non-local
effects are not negligible (Pouliquen & Forterre 2009; Nichol et al. 2010), it emerges
nonetheless as the most reliable description of granular flows so far. Therefore, in
what follows, we will not discuss the validity of the w(/) model. Instead, we will
be interested in the still challenging issue of implementing a granular rheology in a
continuum mechanics model, while going beyond the averaged Saint-Venant/shallow-
layer approaches, which presents the shortcomings of a simplified description of
the flow, and the need for a closure hypothesis. Following the idea of Jop et al.
(2006), who generalize relations (2.2) in a tensorial way to obtain a constitutive
law for granular flows, we implement the w(/)-rheology in an incompressible two-
dimensional Navier—Stokes solver and discuss the solution. Previous attempts to
implement the w(/)-rheology in Navier-Stokes solvers were hampered by the difficult
coupling between a free-surface condition and the (pressure-dependent) w(I)-rheology
(O. Pouliquen 2009, personal communication; Cawthorn 2011). By reusing the two-
fluid model implemented in the Gerris solver (Popinet 2009), we are able to
circumvent this particular problem.

) = u, + 2.3)

2.2. Implementing the viscosity in the Gerris flow solver
2.2.1. The Gerris flow solver
Gerris is an open-source solver for the solution of incompressible fluid motion
using the finite-volume approach (Popinet 2003, 2009). Gerris uses the volume-of-fluid
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(VOF) method to describe variable-density two-phase flows. In this method, the
Navier—Stokes equations are written as

V.u=0, (2.4)
d
P <al: +u -Vu) =—Vp+V.Q2uD)+ pg, 2.5)
ac
5, TV (=0, (2.6)
p=cpr+ (1 —c)pa, 2.7
n=1/lc/m + A —c)/nl, (2.8)

where the volume fraction c(x,y, ) enables the tracking of the position of the
interface; the mixture viscosity is taken as the harmonic mean of the viscosities of
each phase; and D is the strain rate tensor, (Vu + Vu®)/2.

The boundary condition will be supposed to be no-slip at the rigid walls (even if it
is possible to implement a mixed Robin—Navier boundary condition). The pressure will
be imposed at the top of the domain. In the case of avalanches, periodic conditions
will be imposed. Other details will be given later, as they depend on the configuration.

2.2.2. Some details on the solver
Gerris uses a second-order staggered-in-time discretization combined with a time-
splitting projection method. This gives the following time stepping scheme:

cC . 1 —C 1

nty n—y
———= 4+ V.(cu,) =0, 2.9
Ar + V- (c,un) (2.9)
u, —u,
pn+% A7 —}—unJr%-VunJr% =V-(nn+%D*)—Vpn7%, (2.10)
At
Uy =u,— ——Vp,_1—Vp 1), (2.11)
pn+% 2 2
V.u,,=0. (2.12)
Combining (2.11) and (2.12) of the above set results in the following Poisson
equation:
At At
V. 7Vpn+l =V.lu,+ Vpn_l . (2.13)
'On+% 2 'OnJr% :
The momentum equation (2.10) can be reorganized as
Pty D)= o % % 2.14
At u, — ° (77,,+% *) - ,0”+% [E - unJr% ° un+%:| - pn,%a ( . )

where the velocity advection term u,.(,2) * V112 is estimated by means of the
Bell-Colella-Glaz second-order unsplit upwind scheme (Bell et al. 1989; Popinet
2003). Note that the diffusion equation for u,, equation (2.14), uses a backward Euler
implicit scheme that is stable for arbitrary values of 5. This will be important when
dealing with stiff rheologies such as (). For Newtonian fluids, 1,2 is a function
of ¢+ In the case of the pu(I)-rheology, it is computed using ¢, 1,2, D, and p, (so
that the scheme is not strictly second-order in time any more).

Equation (2.13) is a Poisson-like problem with p as unknown variable, while (2.14)
is similar to a Helmholtz problem with u, as unknown variable. An efficient multilevel
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Poisson solver for (2.13) is described in Popinet (2003). However, it is only applicable
to scalar fields and cannot be used directly to solve (2.14) to obtain the vector field u,.
A work-around is to decouple the equations for each of the components of u, and then
use the scalar multilevel algorithm to solve for each component independently. The
equations for each component are coupled through the cross-terms Vu! appearing in
V  (Mn+a2yDs) in (2.14). To obtain scalar Helmholtz-like problems for each component,
we discretize the cross-terms explicitly such that the Laplacian operator in (2.14) is
approximated as

2V - (0,1 D) =V - (1,1 V) +V - (1 1 Vul). (2.15)

nty

The explicit cross-terms can be further rearranged, as we have the tensorial general
identity

V.qVu") =Vu'Vy+ 9V -Vu' =Va Vi +qV(V -u) = Va'Vy, (2.16)

where we have used the incompressibility condition V -u = 0. The final decoupled
scalar equations for each velocity component can then be written in vector form:
Ppil

1
72 —— .
ALY

u 1

= Purl Z’;—u,1+%-Vun+% —Vpn7%+§Vu£Vnn+%. (2.17)
Note that the explicit viscous term on the right-hand side vanishes for a constant
viscosity. For variable viscosities, it is only dependent on the viscosity gradient. The
robustness of the implicit scheme is preserved for large values of viscosities provided
the spatial viscosity variations are small enough. This scheme has been validated for
numerous problems with variable viscosity such as two-phase flows of Newtonian
fluids with different properties (Fuster et al. 2009a,b; Popinet 2009; Bagué et al.
2010), as well as generalized Newtonian fluids (Popinet 2005) including yield-stress
rheologies (Josserand et al. 2009).

Space is discretized using an octree where the variables are located at the centre
of each cubic discretization volume and are interpreted as the average value of
the variable in the cell. Coupled with the VOF representation of interfaces, this
finite-volume formulation guarantees mass and free stream conservation. The octree
discretization used in Gerris allows an efficient mesh refinement or coarsening. The
mesh can be adapted at every time step on demand with a minimal impact on overall
performance. We refer the reader to Popinet (2003, 2009), and references therein,
for a comprehensive presentation of the quad/octree data structure and the numerical
integration procedure of the incompressible Navier—Stokes scheme.

2.2.3. The p(I)-viscosity

The w(l)-viscosity is constructed from the second invariant D, = /D;D;; of the
strain rate tensor D (D; = (u;; + u;;)/2). Then, following Jop et al. (2005), we
implement the expression of w(/) and [ into the Gerris solver, redefining the inertial
number / using the second invariant D, as

pu(d) : dv/2D,
_ 0 hl= . 2.18
n = max < N} p > wit s (2.18)

In practice, the viscosity at very low shear rates is also bounded arbitrarily by
nu = 250p+/gH?, as real ‘solid-like’ behaviour cannot be described by viscosity
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alone. Real arrest of the flow is thus approximated by a very slow creeping motion.
All the results presented were checked to be insensitive to the exact value of 15y
(down to values less than n, = 1.0p0+/gH?, which effectively produce noticeable
creeping). Other regularizations may be constructed. Several non-Newtonian viscosities
are implemented in the following simulations (Newtonian, Bagnold, Bingham, etc.).

2.2.4. Why use a two-phase model?

The imposition of accurate free-surface boundary conditions on an interface of
arbitrary shape whose position is itself an unknown is a non-trivial numerical problem.
A wide range of methods have been developed in the case of Newtonian fluids, but the
extension of these methods to non-Newtonian rheologies is a topic of active research
(Vola et al. 2004; Chauchat & Médale 2010). In the case of the w(/)-rheology in more
than one dimension, the coupling between the rheology (which is pressure-dependent)
and the free-surface boundary conditions makes the problem more difficult. This has
hampered previous efforts of implementation (Pouliquen & Forterre 2009; Cawthorn
2011).

Considering an interface rather than a free surface simplifies a number of numerical
details. In particular, the continuity of the velocity field through the interface is
guaranteed and simple (but approximate) techniques are available to evaluate viscous
stresses at the interface. This treatment of interfaces and viscous terms within Gerris
has been validated extensively using thorough test cases and applications to difficult
problems (Popinet 2009; Bagué et al. 2010). The extension of this method to the
n(I)-rheology is straightforward. We will show that it leads to accurate results for
simple test cases and allows the treatment of complex problems with large interface
deformations (and possibly merging and breakup of interfaces).

2.3. Validation for avalanching dry granular flows

2.3.1. Single-layer case, analytical solution

We first consider a two-dimensional granular flow along an inclined infinite plane.
This case was studied by Bagnold (1954) using a simple model. The tilt angle is
o, x is the direction along the plane and y is the perpendicular direction (figure 1).
The flow is supposed steady and incompressible. We assume that we can use the
formulation of continuum mechanics. In a pure fluid picture, the stress tensor is
decomposed into two contributions, o,, = 7 and o,, = —p, respectively, tangential and
normal to the flow. There is no constraint at the top of the layer: 7 =0 and p =10
at y= H, where H is the thickness of the granular layer (d <« H, where d is the
grain diameter). We assume a no-slip condition at the bottom (i.e. at y = 0). The
conservation of mass is consistent with the velocity field, so that u = u(y) and v =0,
where u# and v are the components of the velocity field in the x and y directions,
respectively. Under these hypotheses, the conservation of momentum implies the
following equilibrium between stress and weight:

d d
0= —t+pgsine and 0=——p — pgcosc, (2.19)
ay dy

where p is the density of the grains. These conservation equations can be integrated
once without assumptions on the constitutive law. There is no constraint at the top of
the layer: 7 =0 and p =0 at y = H. So that we have, for any rheology,

T=pgH <1 - %) sine and p=pgH <1 - %) cos . (2.20)
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FIGURE 1. Sketch of the granular material moving along a flat rigid bed inclined at an angle
a; the coordinate x is along the slope, and y is the coordinate normal to the plane. The bottom
is at y =0, and the top is at y = 2H. The thickness of the flow is H (much larger than the
grain size, d < H). The flow is parallel to the slope u = u(y) and v = 0. In § 2.3.3 the granular
medium is covered by a fluid, and there is an interface at y = H and a rigid wall at y = 2H,
thus forming a channel.

We can here introduce the Bagnold viscosity prior to the p(f)-viscosity. From his
observations, Bagnold (1954) derived a simple rheology in which the granular flow
behaves as a viscous flow obeying

T = pv%, (2.21)
dy
where n = pv is a kinematic viscosity, and v can be constructed with local quantities,
such as the grain size d and the shear rate (note that, in the following, we use the
notation 1 for the dynamic viscosity to avoid confusion with the friction coefficient p
of the granular rheology). In the case of a parallel sheared flow,

p=a? (2.22)
dy
is a good candidate, if only from dimensional analysis. We deliberately choose a unit
constant of proportionality for the sake of simplicity.
This formulation is reminiscent of the Prandtl turbulent viscosity (Schlichting 1987).
Using relation (2.22), the conservation of momentum gives the following solution for
the velocity, known as the Bagnold velocity profile:

2 m\"? Y32
= — 1 —_— 1— (1 — —) y =0,
u 3\/gd(s1nad3> [ I } v=20

(2.23)

p=pgH (1 — 1) cos .

H

In fact, many authors call Bagnold profile the dependence [1 — (1 — (y/H))*/?] itself.
One obvious limitation of this model is that, for any value of the slope angle «,
no matter how small, the velocity is non-zero and a flow develops; in other words,
Bagnold’s model does not take into account the existence of a critical angle of
avalanche below which there is no flow.

We now turn to the w(I) model. As above, we consider a two-dimensional steady
incompressible granular flow of thickness H along an infinite plane inclined at an
angle «. The integrated equilibrium (2.20) gives p and t as functions of y. By
definition, u(I) = t/p; the above expressions for the components of the stress tensor
give that p is constant for a given value of the slope «, that is, w(/) = tana.
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This implies that, for a given value of the slope «, the inertial number / is a constant,
I =1,, with I, = p~'(tan«), where ! is the inverse of the function pu:

tano — Wy

w ' (tana) = I, (2.24)

s+ Ap —tana’

From the definition of the inertial number (2.3), we obtain d(du/dy) = I,/p/p. The
shear rate is thus an explicit function of y:

du 1, y
M _% Jon (1 — 7) cos a, (2.25)
dy d H

which is integrated using the no-slip condition at y = 0. This leads, for tana > u, and

O<y<H,to
2 / H3 32
u=-I\/gdcosa— [1—<l—y> }, v=0,
3 &3 H (2.26)

y
= pgH (1 — —) cos o.
P =pg H o

We thus recover a Bagnold profile (i.e. [1 — (1 — (y/H))*?]), but with a different
prefactor, and a relation expressing hydrostatic balance. The slope angle « now has

to be larger than arctan(u,) to induce a flow, which is consistent with an avalanching
threshold.

Note. The ratio 7/(du/dy) defines an equivalent viscosity for the flow; its expression
in this case is

PVey = p(d/H)M V1—-y/H, (2.27)

(cos )21,

so that its value is zero at the surface. At the limit of validity of the continuum
mechanics approximation, we can consider that the smallest value taken by the
viscosity corresponds to the value at a depth of one grain below the surface: the
smallest kinematic viscosity is thus the kinematic viscosity evaluated at y = H — d.
From relation (2.27),

. 3/2
by~ SaVEHH (d T (2.28)
(cosa)l2l, \ H

and the order of magnitude of the smallest value of the viscosity is approximately
P\ gd*.

2.3.2. Single-layer case, numerical solution

As explained, we implement the w(/)-viscosity (2.18) in the Navier—Stokes solver.
The initial velocity profile at t =0 is u = v =0, but in practice we use the Bagnold
solution to speed up the computations.

We consider a single granular layer of thickness H (see §2.3.2). The pressure
is imposed at the top of the domain, p = 0, as well as the transverse velocity,
v(H) = 0. The longitudinal velocity follows a Neumann condition d,u(H) = 0. The
problem is solved on a square grid periodic in x. The equations are solved using
non-dimensional variables: (x, y) = H(x, y) for space, (u, v) = 4/gH (i, v) for velocities,
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FIGURE 2. Comparison between (a) analytical and (b) computed (on a 32 x 32 grid) profiles
for a single granular layer (0 <y < 1) with the u(Z)-rheology. The slope angle is « = 0.43,
and d = 1/25. (a) Analytical equation (2.26) and Gerris solution for the pressure, velocity
and velocity gradient. (b) Comparison of shear stress 7 = ndu/dy (+), nw(I)p (x) and exact
solution (dashed line); and comparison of the computed (/) ([J) with the exact solution tan o
(dot-dashed line).

and p = pgHp for pressure. The non-dimensional viscosity is thus 7 = [u(l)/ «/552]13
and I = dv/2D,//|pl.

Figure 2 shows an example of solution for the velocity, the velocity gradient and
the pressure profiles for a given value of the slope angle o = 0.43. We obtain a
numerical solution consistent with the analytical solution, within discretization errors.
The computed resulting viscous component 7 du/dy is found to be proportional to p,
and the coefficient of proportionality remains constant and equal to @ (/) as expected.

This simulation was repeated using 8, 16, 32 or 64 points across the channel.
Figure 3 shows the evolution of the L? and max norms of the difference between the
computed velocity and the exact Bagnold solution as a function of the number of grid
points across the layer. The convergence is intermediate between first and second order
in the spatial resolution.

Figure 4 shows the evolution of the velocity at the surface: u(y = H) for both
numerical and analytical solutions as a function of slope angle «. The analytical
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FIGURE 3. Convergence of the error norms of the difference between the computed velocity
and the exact Bagnold solution error norms L? and max as a function of resolution (number of
grid points across the granular layer).
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FIGURE 4. In the case of a single granular layer (0 <y < 1), comparison between numerical
(+4) and analytical (dashed line) solutions for the velocity at the surface u(y = 1) as a function
of the slope angle «. For o < arctan(u,) >~ 0.363 there is no motion, as expected.

solution is given by (2.26) and reads u(1) = 2(«/0050{10,/6_1)/3, with

— s + tan
[ =P ana), (2.29)
Us + Ap —tano

The agreement between the two solutions is excellent. In particular the numerical
method is able to accurately capture the avalanching transition.

2.3.3. Two-layer case, analytical solution
The classical (/) model does not take into account the influence of the fluid
surrounding the granular medium, assumed to be negligible; indeed, the density of
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glass beads is 2500 kg m~, the density of sand is just less than 2000 kg m~, whereas
the density of air is 1.2 kg m=3. This is justified by the fact that experiments show
that dry granular flows are not affected by the surrounding air. We place ourselves in
this case, and directly solve the flow of a dry granular layer overlaid with a Newtonian
fluid. In the limit of a light enough overlying fluid, the pressure at the top of the
granular medium will be close to zero. We insist that underwater avalanches would
require a different formulation, and take into account at least a two-phase mixture in
the bottom and more complex modelling (Cassar, Nicolas & Pouliquen 2005; Pailha
& Pouliquen 2009; Chauchat & Médale 2010), which is not within the scope of the
present analysis.

To recover the solution for a pure free surface, one has to be careful, however.
The viscosity of the overlying fluid must remain small enough to prevent any shear
perturbation of the granular flow. On the other hand, if the fluid is too light and
not viscous enough, numerical problems may arise. We thus consider a granular layer
overlaid with a Newtonian fluid of viscosity 1, = p;v; and density py, and separated
by an interface at y = H. The problem consists of solving the continuity equations for
each of the two layers.

For the upper fluid (H <y < 2H), the conservation of momentum gives simply

d ou d

0=— — sin and 0=——p— cos a, 2.30
oy (nfay> + prgsina oyl ~ Precose (2.30)

with a no-slip condition at the upper wall: u(2H) = 0. We arbitrarily set p =0 at

y =2H. We thus obtain

_ (2H — y)(prgysina — 279)
2ny

At the interface, p(H) = psgH cos «; the stress components are thus py = prgH cos «
and 79 = n;u'(H). We solve for the granular layer (0 <y < H) using the wu(l)-
rheology. Using the equality of constraints at y = H, we introduce 17 and py
as constants of integration for the balance equations (2.19) (thus obtaining p =
po+pgHcosa (1 —y/H) and © = 19+ pgH sino (1 — y/H)). By definition, u(l) = t/p,
so that the expression for / is deduced by inversion of (2.24). Since du/dy = 0 when
there is no flow:

9 H(1 — y/H) si
du:max[\/p()+gH(l_y>COSaM_1(T0+pg ( y/ )SIHOt)’ O:|
oy P H po+ pgH(1 —y/H) cos

u(y)

and  p(y) = prgH (2 - %) cosa.  (2.31)

(2.32)

By integration, using no-slip condition #(0) =0 and the continuity of the velocity
at the interface, u(H") = u(H'), we obtain the velocity profile. In practice, we
solve two ordinary differential equations (ODEs) (using a shooting method with
Runge—Kutta differentiation), and we determine using Newton iterations the value
of 7y that allows the velocity profiles in 0 <y < H and in H <y < 2H to satisfy the
condition u(H™) — u(H*) =0.

2.3.4. Two-layer case, numerical solution

In this second instance, a VOF tracer c¢ is introduced to discriminate between the
granular layer and the overlying Newtonian fluid: ¢ =1 in the granular layer and
¢ =0 in the Newtonian layer. The same periodic condition in x, and a no-slip velocity
condition at the bottom of the domain, # = v = 0, are imposed. In addition, a no-slip
condition is imposed at the top of the domain, # = v =0, as well as the pressure p = 0.
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FIGURE 5. Comparison of the Gerris numerical solution (symbols) and the solution of
the system of ODEs (2.32) corresponding to the case of two (phases) layers (lines), for
vr/+/gH?® = 0.1 and different values of the density ratio p;/p from 0.001 to 0.4 (large
values have no physical application but validate the numerics). The slope is o = 0.43. The
corresponding Bagnold profile is plotted with a solid line for 0 <y < 1.

The initial velocity profile at t =0 is u = v =0, but in practice we use the Bagnold
solution and a linear profile for 2H > y > H to speed up the computations. The density
is scaled by p and we use 7;/(p+/gH?) as viscous parameter.

In this (more challenging) case the interface between the two layers is described
using the VOF method of the Gerris solver. The interface is stable and remains at
its initial position y = H. Figure 5 shows the numerical solution for the two layers
(granular and Newtonian), with different values for the density and viscosity of the
Newtonian fluid. The overall agreement between the semi-analytical and the numerical
solutions is again very satisfying. Gerris computations match the semi-analytical
solutions, with lighter and less viscous overlying fluids allowing convergence towards
the free-surface Bagnold solution for the underlying granular layer. The amount
of deceleration of the granular flow may be computed exactly from the two-layer
equations system, but an estimate is sufficient for practical purposes.

Starting from a linear development at small ty/pgH, we use the formula (2.32)
but neglect the influence of the pressure p, (which could be reintroduced for a more
refined estimate):

a
da—;t i~ \/,ogH (1 — %) cos o' (tan o)

To
(tan @) <ng(1 T cosa) . (2.33)

-1

d
4

dt

After integration, this gives a first-order estimate for the variation of the velocity at the
top of the layer:

Au 3AM To To :
= +0 . (234
u(H) cosa(uy —tana) (A + uy — tanw) pgH pgH
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This variation is linked to the viscosity of the granular layer v,,; however, 7, depends
on the upper fluid characteristics. If its density o, is large, the fluid is flowing in
response to its weight, 1) ~ p;gH sinc. In that case, the velocity of the granular layer
at the interface being /gH H/d, the error estimate is

Au pf
—~ 2.35
vgHH/d  p (239

Conversely, if its density is small, the upper fluid is dragged by the granular layer and
its velocity reaches close to /gH H/d. In that case, the error estimate is
Au Ul

JeHH/d ™~ pygHd

These estimates are useful to evaluate a priori the influence of the Newtonian layer.
Note that the avalanching configuration addressed in this section maximizes this
influence as the upper layer of Newtonian fluid takes much more time to reach a
stationary regime than the granular layer does, thus implying a long total simulation
duration.

In this section, numerical results compare well with analytical solutions with one
or two layers. We are also able to estimate the order of magnitude of the departure
from the free-surface solution as a function of density and viscosity ratios. We expect
that the influence of the external Newtonian fluid will be smaller in the case of
fast transient events than for the stationary two-layer problem considered in this
section. So, we now turn to a more challenging and interesting case: the collapse of
granular columns. This will involve the unsteady and convective derivative terms in
the Navier—Stokes resolution, all the spatial derivatives, complex interface/free-surface
deformation as well as the rheological model itself.

(2.36)

3. The granular column collapse as a continuum
3.1. The collapse experiment from grains to continuum

3.1.1. Experimental scalings in two dimensions

The granular column collapse experiment consists of allowing an initially confined
column of grains to collapse onto a horizontal plane under its own weight. The
subsequent flow starts with a vertical fall combined with lateral spreading, followed
by the advance, and eventually the arrest, of a granular flow front. The experiment
was performed either in axisymmetric configurations (Lajeunesse et al. 2004; Lube
et al. 2004) or in quasi two dimensions, namely using a planar Hele-Shaw cell
(Lajeunesse, Monnier & Homsy 2005; Lube et al. 2005; Lacaze, Phillips & Kerswell
2008). A three-dimensional investigation (namely, planar with varying confinements)
was performed by Balmforth & Kerswell (2005). In all configurations, the material
was released by opening a swinging gate or by swiftly pulling up the container. The
focus was set on the scaling law obeyed by the run-out, that is, the final distance
covered by the flow front. If the initial height of the column is Hy, its initial half-width
is Ly, the final maximum thickness is H,, and the final half-width is L., (see figure 6
for a schematic illustration), the experimental scaling for the run-out in the planar
two-dimensional configuration reads:

3.1)

Loo—Ly ) Ma, a<a,
Ly ha®, a> a,
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FIGURE 6. (Colour online available at journals.cambridge.org/flm) Schematic illustration of
the column collapse experiment in two dimensions. The initial height of the column is Hy, its
initial half-width is Ly and a = Hy/L, is the aspect ratio; the final maximum thickness is H,,
and the final half-width, or run-out, is L.

where a = Hy/L, is the column aspect ratio, and ag, A; and A, are essentially material-
dependent parameters. Lube et al. (2005) found A; ~ 1.2, A, ~ 1.9 and 1.8 < ap < 2.8
for sand, rice and sugar, while Lajeunesse et al. (2005) found A; ~ 1.8, A, >~ 2.3 and
ap 2= 3.0 for glass beads. The exponent « is close to 2/3 in all experiments.

Similar scaling was obtained for the final height of the deposit:

HOON Asa, a < ap,
Ly | Ma®, a>a,

(3.2)

where Lube et al. (2005) found A; ~ 1.0, A4 >~ 1, a9 = 1.15 and an exponent o = 0.4,
while Lajeunesse et al. (2005) found A3 >~ 1.0, A4, >~ 0.9, gy ~ 0.7 and an exponent
a~1/3.

3.1.2. Numerical granular collapse

Two-dimensional numerical simulations of the column collapse were performed
using discrete methods, namely solving individual grain trajectories taking into account
interactions with neighbours while neglecting the influence of the surrounding air and
of confining walls (Zenit 2005; Staron & Hinch 2005, 2007; Lacaze et al. 2008).
They proved successful in reproducing the scaling laws observed experimentally, thus
showing the negligible role of the interaction between grains and air compared to
the grain-to-grain interactions. Moreover, Lacaze et al. (2008) showed that discrete
simulations reproduce very accurately experimental results in two dimensions, down to
the grain size scale. Applying a contact dynamics method (Moreau 1994), Staron &
Hinch (2005) recovered scaling (3.1) with an exponent of 0.7 and A; >~ 2.5, A, >~ 3.25
and ay >~ 2, and scaling (3.2) with A3 ~ 1, A4 =~ 0.65, ap ~ 1 and an exponent o = 0.35,
although a third regime (H,, /Ly = 1.45) was also observed for a 2> 10.

Discrete numerical simulations are a powerful tool to explore the internal structure
of the flow and its dynamics. In the following, we apply a contact dynamics algorithm
to simulate the collapse of granular columns in two dimensions. This method assumes
perfectly rigid grains obeying the standard Newtonian equations of motion. The grains
interact at contacts through a Coulombic friction law involving a single parameter,
the contact coefficient of friction u. In addition, a coefficient of restitution e sets the
energy dissipated in the advent of a collision. More details on the method can be
found in Moreau (1994).

Using two-dimensional circular grains of mean diameter d, we simulate the collapse
of columns with aspect ratios a = 0.5, a = 1.42 and a = 6.26, containing 3407, 6041
and 6036 grains, respectively. We have also explored the extreme case of a column
with a = 67.9 containing 20050 grains. Contact parameters are u = 0.5 and e =0.5;
these values were not varied. The simulation protocol is exactly that described in
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FIGURE 7. Strip representing a series of snapshots of a column collapse with aspect ratio
a=0.5,1.42,6.26 (from top to bottom) simulated with Gerris at time 7 =0, 1, 2, 3, 4. The
surrounding fluid is Newtonian of density o, and viscosity 7y, while the non-Newtonian
w(I)-rheology is used for the column.

—

Staron & Hinch (2007): the column of grains is prepared by random deposition under
gravity, and is allowed to collapse at + =0 onto a horizontal plane made rough
by gluing grains on its surface. In the following, trusting that discrete simulations
accurately reproduce the phenomenology of the granular column collapse, contact
dynamics simulations are used for systematic comparison with the continuum model
using the Gerris flow solver, in which the p(l)-rheology (as well as others) was
implemented as explained in § 2.2.

3.1.3. The Gerris collapse in two dimensions

The Navier—Stokes equations are non-dimensionalized using the characteristic length
H, (the initial column height), characteristic velocity +/gH, and characteristic time
/Hy/g. The continuum simulation of the granular collapse consists of allowing a
column of fluid obeying the non-Newtonian pu()-rheology to collapse in response
to gravity onto a horizontal plane. The column is surrounded by a light fluid of
density py = 10~* (normalized by Pgrains) and viscosity 7y = 10~* (normalized by
gLy 2,ogm,-,,s). Rather than imposing a zero-pressure condition at the top of the
simulation cell, we impose p = —p,¢, where £ is the size of the computation domain.
Doing so, the pressure at the top of the granular layer is close to zero, and is actually
zero at the very front of the flow. We find, however, that this correction has a very
small influence for p; = 10™>. A no-slip condition is implemented at the bottom,
while a slip (symmetry) condition is imposed on the left wall of the simulation cell.
The quadtree spatial discretization used in Gerris allows for efficient adaptive mesh
refinement. This is used in this study to refine the mesh within the granular material.
A coarse mesh is used to discretize the surrounding Newtonian fluid far enough from
the interface with the granular flow. This allows one to limit confinement effects
by using a very large domain (¢/L, ~ 64) at a negligible computational cost. In all
the results presented, care was taken to ensure grid independence (the typical spatial
resolution within the granular material is of order Ly,/Ax = 32). For illustration, series
of snapshots for a =0.5, a =142 and a = 6.26 showing the initial state and the
collapse at 7 =t/(Hy/g)"/*> =0, 1, 2, 3, 4 are displayed in figure 7.

3.2. Comparing scalings and dynamics
3.2.1. Shape and inner deformation
Applying the contact dynamics method, we have simulated the collapse of granular
columns with a =0.5, a = 1.42 and a = 6.26. In order to highlight the deformations
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=244 r=00

FIGURE 8. Comparison between the p (/) continuum model (red line) and contact dynamics
simulations (grains) for an aspect ratio a = 0.5 at different times (non-dimensionalized
by /Hy/g). The grains are coloured in the initial heap, which allows one to track the
displacement (see Staron & Hinch 2005). The parameters of the w(I)-rheology are p;, = 0.32,
Ap =0.28 and I, = 0.4.

t=0 t=0.66

FIGURE 9. Comparison between the (/) continuum model (red line) and contact dynamics
simulations (grains) for an aspect ratio a = 1.42 at different times (non-dimensionalized by
~/Hy/g). The parameters of the (/)-rheology are u; = 0.32, Au=0.28 and I, = 0.4 .

occurring in the bulk of the flow, grains at the periphery and in the centre were
initially coloured in black and act as tracers. For the same values of aspect
ratios, continuum simulations applying Gerris and the p(/)-rheology were performed.
For all three cases, the value of the rheological parameters is the same, namely
ws =0.32, Ap=0.28 and I, = 0.4. Systematic comparison with discrete simulations
was carried out; the results are displayed in figures 8—10. The continuum simulations
are represented by two red lines showing the time evolution of the shape of the outline
as well as the shape of the inner volume. We observe that in all cases the agreement
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FIGURE 10. Comparison between the p(I) continuum model (red line) and contact dynamics
simulations (grains) for an aspect ratio a = 6.26 at different times (non-dimensionalized by
/Hy/g). The parameters of the i (/)-rheology are u; =0.32, Au=0.28 and I, = 0.4 .

between continuum and discrete simulations is good: both the outer shape and the
inner deformations are well predicted by the continuum model. This is particularly
visible in the case of the tall column (a = 6.26, figure 10), where an inner triangular-
shaped area develops at the base of the falling edifice. As can be seen in figure 10,
however, the head of the front when close to arrest reduces to a few grain diameters.
Continuum simulation of such a thin granular layer is expected to be problematic. The
following subsection deals with this issue.

3.2.2. Propagation of the flow front

In two-dimensional discrete simulations, the position of the flow front in the course
of time is defined by the last grain(s) flowing at the foot of the flow, but still touching
the bulk: any grain rolling free ahead is not considered. This criterion is difficult
to apply in practice, as the front looks like a cloud of colliding grains rather than
a dense flow of contacting spheres. Hence, we have determined the position of the
granular front in the course of time by analysing the shape of the falling edifice and by
identifying the position where the outline reaches a zero height, discarding all grains
bouncing beyond (as an illustration, figure 18 shows the front of the collapsing column
for a =6.26 at r = 1.33, 2.0 and 2.66).

In the case of the continuum model, the flow front is defined by the position of the
contact point on the bottom plane of the interface between the granular continuum and
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FIGURE 11. Normalized position of the flow front x/L, as a function of the normalized time
t=1t/(Hy/g)"* and height profiles at different instants t,/g/H; = 0, 1, 2 and 4, in the case
of columns of aspect ratios (a,b) a = 0.5, (¢,d) a = 1.42 and (e,f) a = 6.26, for discrete
contact dynamics simulation (noisy dashed line) and continuum Gerris simulation with the
w(I)-rheology (plain line).

the surrounding fluid. This is in fact a ‘moving contact line’ problem, which presents
difficulties of its own. Although this position is usually well defined, ‘droplets’ of
granular material can sometimes detach from the bulk near the foot of the avalanche,
thus offering an interesting analogue with detaching grains in the discrete version.
These droplets are, however, largely an artefact of the numerical treatment of the
moving contact line problem (their diameter is typically comparable to the grid size).
They are ignored when estimating the position of the front. Care was taken in all cases
to ensure that the flow front position was independent of grid size (so that possible
numerical artefacts linked to the treatment of the moving contact line did not affect the
results).

For the three cases a = 0.5, a = 1.42 and a = 6.26, we have reported the position
of the flow front in the course of time for discrete and continuum simulations, as
well as height profiles at different instants of the collapse (figure 11). In all three
cases, the front propagation in the first part of the granular collapse (corresponding to
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the acceleration phase, namely 7 < 2) is well captured by the continuum simulations.
When the flow starts decelerating, however, the continuum simulations slow down
earlier than discrete granular flows, and systematically underestimate the run-out, i.e.
the front final position. The error is larger for larger aspect ratios (reaching 10 %)
and coincides with the final part of the granular deposit formed by a thin layer of
a few grains in height, where the assumption of a continuum is questionable. This
aspect is further discussed in §4.3. Furthermore, we see for example on figure 11(e)
that the position of the front computed by Gerris may slightly decrease owing to
the ejection of droplets mentioned in the previous paragraph. In spite of this, the
correct description of the front propagation at earlier stages, as well as the recovery of
the bulk shape evolution in the course of time, support the ability of a continuum
Navier—Stokes approach with a p(l)-rheology to reproduce correctly the granular
collapse and the subsequent flow.

3.2.3. Scaling for the run-out for the continuum (I)-rheology

The main outcome of the granular column collapse experiment is the scaling
relationship obtained for the run-out (see §3.1.1): (Lo — Ly)/Lo xx a for a < ay and
(Lo — Lo) /Ly o< a*’? otherwise.

Applying Gerris with the w(/)-rheology, we have carried out collapse experiments
with values of aspect ratio a ranging between 0.25 and 64. To check the grid
independence of the results, the spatial resolution was varied from Ly/Ax = 16 (nine
levels of refinement) to Ly/Ax = 128 (12 levels of refinement). The run-out distance
L., was measured, and the normalized run-out (L., — Lo)/Ly plotted as a function
of the aspect ratio a (figure 12a). In agreement with experimental results in two
dimensions, we observe the existence of a linear regime for smaller a, followed by a
power-law regime with an exponent o = 0.7 for larger a. The scaling obtained reads:

~ ~

Lo — Ly 2.2a, a<1,
~13.94%7, a>7. (3-3)

Note that both regimes are closely approximated by power laws. The exponents
obtained are within the error bars of the exponents obtained using contact dynamics
simulations or experiments (which typically display a much larger scatter of run-out
values). Only the value of the aspect ratio ay characterizing the transition between
these two regimes differs from previous observations: we obtain ay >~ 7 instead of
the experimentally observed 1.8 < ay < 4 (Lajeunesse et al. 2005; Lube et al. 2005),
and the numerically observed ay ~ 2 (Staron & Hinch 2005). The origin of this
discrepancy is not obvious. However, the general agreement in the time evolution
of the shape and inner deformation observed in figures 8-10 when comparing
continuum and discrete simulations suggests that this difference may result from the
underestimation of the run-out by Gerris, rather than from a difference in the bulk
dynamics.

3.2.4. Scaling for the final height

Considering the same set of continuum simulations as reported in figure 12(a),
we give the normalized final height H, /Ly, as a function of the aspect ratio a in
figure 12(b). The following scaling is observed:

H a, a<0.5,
—2~{0.67a", 05<a<6, (3.4)

0 1.4, 6 <a.
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FIGURE 12. (Colour online) (a) Normalized run-out (L, — Ly)/Ly and (b) normalized final
height H,/L, as functions of the aspect ratio a for p (/) continuum simulations. The different
sets of symbols correspond to increasing spatial resolutions.

The agreement with experimental observations in two dimensions is very good for
a < 6 (Lajeunesse et al. 2005). For a = 6, we observe a deviation from the power-law
regime to a constant regime, as observed numerically in Staron & Hinch (2005). The
appearance of such a plateau is also visible in Lajeunesse et al. (2005) (although
not interpreted as such) and even in Lajeunesse et al. (2006) for Martian data. For
larger values of a, H, /Ly decreases, which coincides with the formation of a ‘side
bump’. This side bump is initially thinner than the central part of the deposit (for
12 < a < 32) but becomes thicker when a > 32, which explains the increase in the
maximum thickness for large aspect ratios. No experimental data are available for
comparison in this range of aspect ratios.

3.2.5. Sideways propagation of a bump: the case of a = 67.9

In the case of high aspect ratios, the falling material propagates sideways with
increasing energy, thus forming a bump and leading to a ‘Mexican hat’ shaped
deposit, as described by Lajeunesse et al. (2004). To test the ability of the continuum
Gerris simulations to reproduce the formation and propagation of this bump, we have
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simulated a column collapse with aspect ratio a = 67.9, and compared the outcome
with a granular contact dynamics simulation. The result is displayed in figure 13.
We observe that the evolution of the flow shape obtained with contact dynamics
simulations is well reproduced by the continuum simulation. The formation and
sideways propagation of the bump is accurate. Moreover, the default set of parameters
used for the lower aspect ratios presented earlier also gives a sensible solution for this
extreme case (curve in cyan in figure 13). As was the case for lower aspect ratios, the
continuum simulation systematically underestimates the flow front position, however.

4. Discussion
4.1. What of other formulations?

As seen in the previous section, the w(I)-rheology allows for the recovery of most
of the granular column collapse dynamics. For completeness, the results need be
confronted to the performance of other plausible candidate rheologies for granular
flows. In the following, we successively explore the Newtonian Navier—Stokes
model, the Bingham model, the Bagnold model and the constant friction model, all
implemented in the Gerris flow solver. Solutions are presented for simple visual
inspection on figure 14.

4.1.1. Newtonian Navier-Stokes

For reference, the Newtonian Navier—Stokes case is illustrated in figure 14(b).
The flow tends to evolve towards a quasi-uniform thickness, which results in a
very different flow front shape compared to the reference w(/)-rheology solution
(figure 14a). The flow obviously never stops. Note that there is no surface tension
in this computation.

4.1.2. The Bingham model

Bingham fluids are characterized by their ability to resist shear at low stresses, while
flowing like Newtonian fluids at higher stresses. The existence of a yield value for the
shear stress 7, is the strongest analogy that Bingham fluids bear with granular flows,
which present a frictional yield value separating solid-like behaviour (coinciding with
an infinite value of viscosity) from avalanching (when the viscosity is finite) (Dufour
& Pijaudier-Cabot 2005). The Bingham rheology is implemented by

T,

n=rno+ NN (4.1)
and is one of the test cases of the Gerris test suite. Using Gerris, we performed
simulations of the column collapse for a = 1.42. As previously, at low shear rates the
viscosity is capped to ny. The values taken for the yield stress and the viscosity were
7, = 0.001 and 5y = 0.1. The result is displayed in figure 14(c), where a series of
snapshots showing the shape of the column at 7 =t./g/Hy, =0, 1, 2, 3, 4 is displayed,
together with the result obtained with the 1 (/)-theology (figure 14a). Not surprisingly,
the agreement with the experimental granular collapse is poor. In particular, the
existence of a yield stress 7, is responsible for the creation of a solid-like corner
advected by the flow, which modifies the final shape of the deposit. When the flow
comes to rest, the front exhibits a rounded shape very different from the sharp angle of
the granular front.

4.1.3. The Bagnold model
As mentioned in § 2, Bagnold (1954) was the first to establish a rheology where the
viscosity is defined by 1 = pd®+/2D,. In that case, the existence of a flow threshold
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T

FIGURE 13. A series of snapshots (7 = 0.5, 1.0, 1.2, 1.4, 1.7 and 2.0) of a column collapse
with aspect ratio a = 67.9 computed by contact dynamics (plain colour) and different values
of the w(I)-rheology, as an illustration of the sensitivity of the solution to the rheological
parameters. The most advanced curve (in green) corresponds to u; = 0.3, Ap = 0.26 and
Iy = 0.30; the less advanced (in blue), u, = 0.32, Au = 0.28 and I, = 0.30, fits better the
end of the heap. The curve in between (in cyan) corresponds to u, = 0.32, A = 0.28 and
Iy = 0.40 and fits better the top of the surge. This last set of values is the default used
throughout this paper.
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FIGURE 14. Series of snapshots of a column collapse simulated using Gerris with different
viscous models (the surrounding fluid is Newtonian of density oy and viscosity 1s): (a) the
w(I)-rheology with u(l) = 0.3 + 0.26/(0.3/I 4+ 1); (b) a simple Newtonian rheology with
Nerains = 0.1; (¢) a non-Newtonian Bingham rheology with 7 = 0.1 /«/EDZ + 0.001;
(d) Bagnold with 74,4, = (1/32)?+/2D%; and (e) the u(I)-rheology with no advection term
u;0;u; in the total derivative. Times are t=0,1,2,3and 4.

depending on the ratio of the tangential to the normal stress is not described. The
flow never stops (figure 14d). To create a flow threshold, one needs to introduce a
divergence of the viscosity, taking into account the jamming transition, or introduce
a second contribution standing for the compressive stress (as in Josserand, Lagrée
& Lhuillier 2004). Doing so, however, is far from trivial. In the following, we only
consider a Bagnold viscosity without introducing a flow threshold. As a consequence,
we do not obtain an inner core, which remains essentially static during the collapse,
nor do we reproduce the arrest phase of the flow.

4.1.4. Neglecting nonlinear terms

In this part, we investigate the effect of neglecting nonlinear terms. We have carried
out a collapse using the p(/) continuum but with a linearized total derivative in the
Navier—Stokes equation leading to an unsteady Stokes w(l). The results are displayed
in figure 14(e) for a column of aspect ratio a = 6.26, at instants #./g/Hy =0, 1, 2, 3, 4.
We observe that the shape of the flow strongly differs from what is observed for
a granular material, involving the formation of a wave-like structure. This structure
disappears during the propagation, so that the final state is closer to the granular
phenomenology than the transient flow is. The fact that the nonlinear advection terms
are not negligible for the column collapse highlights the fact that inertia is important
relative to viscous dissipation in this particular case.

4.1.5. The constant friction model

The w(l)-theology relates the frictional properties of the flow to the inertial number
I, which changes during the flow; as seen in § 3.2, this model reproduces the granular
column collapse with a good accuracy. However, one can question the performance
of the w(I) model compared to a simple constant friction model p = cst = u;.
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FIGURE 15. A collapse at time #/(Hy/g)'/*> = 1,2 and 3, with aspect ratio a = 1.42, with
us =0.32, [ = 0.4 and Au = 0.28 in the three panels. In each panel, the same case with
a constant p (/) = 0.33 (cst) is plotted; the arrow is from the variable (/) to the constant
w(l) =0.33.

FIGURE 16. A collapse at time f = t/(Hy/g)'/> = 2 with aspect ratio a = 1.42, with
s =0.32, Iy = 0.4 and Ap = 0.28 is shown in the three panels. In each panel, a second
computation with only one parameter changed is displayed: (left panel) u, is decreased, Au
and [, preserved; (centre panel) smaller Au, but same I, = 0.4 and u; = 0.32; (right panel)
smaller 7, but same Ap = 0.28 and u; = 0.32.

One example is given in figure 15, where the shape of the collapsing column at
three different times for a = 1.42 is displayed for the constant friction continuum
simulations (/) = 0.33 and the case u(l) =0.32 4 0.28/(0.4/1 + 1) for comparison.
The beginning of the collapse (namely 7 < 1.5) shows a good agreement between
the constant friction and (/) models. However, as the flow develops, the agreement
between the constant friction model and the granular model degrades; the spreading
and flow arrest are best captured by the w(/) model. This good agreement at initial
times is due to the fact that / is initially small. The same holds for small a, so that
good agreement between the (/) and constant friction models is obtained for a = 0.5
(not shown). For larger a, the difference increases and a larger u, needs to be taken to
recover an acceptable solution. However, this rather good performance of the constant
friction model questions the actual relevance of the shape of the w(/) dependence.
This aspect is discussed further in the next section.

4.2. Sensitivity to the shape and parameters of the w(I)-rheology

The results discussed so far indicate that the w(/)-theology is able to capture the
dynamics of highly transient granular flows. Indeed, the complex evolution of the
granular column collapse, for a wide range of aspect ratios, was recovered with very
good accuracy. However, the fair (although less good) results obtained with a constant
friction model question the sensitivity of the results on the particular shape of the
I dependence as well as the value of the rheological parameters. Furthermore, the
continuum simulations proved unable to reproduce the last stages of granular flow
front propagation. These aspects are discussed next.

What is the sensitivity of the results for the collapsing column to the rheological
parameters (i, A, ly)? As a first quick visual inspection, figure 16 displays three
snapshots at the same time, of the same initial column, but on each of the images
a second computation is shown where a single parameter is changed. We observe
that a decrease of u, (every other parameter being fixed) increases the displacement
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FIGURE 17. Example of isolines (one isoline every 0.03 grain) of the errors between
Navier—Stokes and contact dynamic solutions as functions of p; and Au, here for Iy = 0.4:
(a) a= 0.5 (minimum error 0.65 grain, maximum 2.56 grain); (b) a = 1.4 (minimum error
1.36 grain, maximum 3.65 grain); (¢) a = 6.26 (minimum error 2.06 grain, maximum 4.36
grain); (d) averaged error for the three cases a = 0.5, 1.4, 6.26 (minimum error 1.36 grain,
maximum 2.39 grain.

of the front and decreases the height. A decrease in Ap has the same effect,
and a decrease in I, has the opposite effect. These behaviours are consistent with
what is expected from the w(/) dependence: a decrease in one of the parameters
(s, A, 1/1y) increases the total friction. To better quantify this sensitivity, we
performed a systematic campaign of comparisons. We considered the three cases
a=0.5, a=1.42 and a = 6.26. For each case, simulations were performed with pu;
varying in the range [0.3,0.36], Au varying in the range [0.2,0.3] and /, varying in
the range [0.3, 0.4]. The error for each case was evaluated as the difference between
the height profile of the continuum model and the height profile of the granular results
integrated over time and over the shape of the deposit. This barycentric mean gives
less weight to the front of the flow (which is not so well predicted, as discussed later).
An example of the resulting error maps (for Iy = 0.4) is illustrated in figure 17. The
optimal parameter set depends on a. For example, the higher a, the higher the value
of (us, Aw, 1/1). To obtain the optimal parameter set over the whole range of aspect
ratios, we created a single error map by averaging error maps for individual aspect
ratios (bottom right on figure 17) — the error is only 1.36 grain. This resulted in the
(s =0.32, Ap =0.28, Iy = 0.4) combination used as default in the results presented
earlier.

The isolines of error are tilted more or less in a direction corresponding to A/l
constant. This corresponds to a linear contribution w(l) >~ u, + IAu/ly for small
enough /. A linear formulation pu(l) = u; + bl with p; ~0.25 and b ~ 1.1 was initially
proposed by da Cruz (2004), da Cruz et al. (2005) and GdR MiDi (2004). This shape
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r=1.33 1=2.00

FIGURE 18. (Colour online) Snapshots of the flow front at 7 = 1.33, 7 = 2.00 and 7 = 2.66 for
a discrete numerical simulation with aspect ratio a = 6.26. Note the rough plane obtained by
‘gluing’ grains.

was then further refined to best-fit the experimental data by Jop et al. (2006) in (2.3),
namely, u(l) = uy + IAw/(y + I), which is the formulation followed in the present
work. We also tested a linear rheology, which showed good agreement for small /
(as expected from figure 17); however, the lack of saturation led to discrepancies for
larger . This tends to confirm the relevance of the w(/)-rheology of Jop et al. (2006),
although other dependences have also been proposed: for example, a power law of I in
Hatano (2007); or a square dependence in I, i.e. u(I) = ju, + wurl?, in Josserand et al.
(2004).

4.3. Modelling the front of the flow

Although the continuum simulations describe the acceleration stage of the column
collapse very well, they are not as accurate during the deceleration phase, when
the flow front slows down and eventually stops. The propagation of the flow front
is in effect a ‘moving contact line’ problem, a well-known and difficult problem
in fluid mechanics even in the case of Newtonian fluids (Pomeau 2002). From the
point of view of the contact point, the no-slip condition implemented in Gerris
is in effect analogous to a Navier slip condition with a slip length comparable
to the mesh size (this is due to the finite-volume representation). This allows for
propagation of the contact line but is unlikely to be physically meaningful. Obtaining
a consistent description of the flow front is thus likely to require a contact line model
itself consistent with the w(/)-theology in the vicinity of the contact line. This was
done for early global models of (/) — when I was averaged as a Froude number
(Pouliquen 1999). This is a difficult problem whose solution will probably require
further advances in the description of contact lines, starting with Newtonian fluids.
Another difficulty lies in the fact that the tip of the flow is formed by a cloud
of bouncing grains where binary collisions tend to replace long-lasting frictional
contacts. The snapshots of figure 18, showing the granular flow front in the case
a = 6.26, illustrate this point. Consistently, the values computed by Gerris for the
inertial number [ in this part of the flow are of the order of one (between one and
two, and larger on the final points), which is significantly larger than the typical values
for which the w(/) relationship was established (GdR MiDi 2004). It thus seems
reasonable to suspect that the p(/)-rheology, valid in the denser bulk of the flow, may
become inaccurate when the volume fraction becomes too low. Alternatively, kinetic
theory may provide a framework to capture this part of the flow (Jenkins & Savage
1983). More fundamentally, moving closer to the tip of the flow front, the number of
grains involved in the flow rapidly decreases, so that the definition of a representative
elementary volume in this area becomes problematic. While statistical properties can
be defined in the bulk, this is hardly the case at the very front. In other words, the
continuum mechanics assumptions may become invalid at the tip of the flow.
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5. Conclusion

While the formulation of constitutive equations for granular flows remains an active
field of research, our aim in this contribution was to test the performance of the
empirical p(f)-rheology using the well-characterized column collapse experiment. To
do so, we have developed a continuum simulation tool for dry granular flows by
implementing a w(/)-dependent viscosity in a complete Navier—Stokes solver (Gerris),
using a VOF approach. In contrast to previous works using averaged shallow-layer
approximations, we solve the complete velocity field of the equivalent continuum
medium. Although the results presented in this paper were two-dimensional, the
current implementation in Gerris should also work in three dimensions.

In a series of preliminary numerical tests, we first considered the simple case of
a single infinite layer flowing over an inclined plane, for which analytical solutions
exist, followed by the case of an infinite granular layer covered with a viscous layer,
for which ODEs can be solved. Comparing the solutions of the Gerris solver with the
analytical and semi-analytical solutions, we were able to validate the implementation
of the (I)-rheology for simple gravity-driven shear flows. Moreover, we were able to
show that the existence of a surrounding fluid of lower density and viscosity (air, for
instance) did not significantly perturb the behaviour of the granular flow, so that the
two-phase approach adopted by Gerris was suitable for the simulation of dry granular
systems in air without modifying the shape of the w(I) dependence.

Applying the same tool to the granular column collapse experiment, we then
considered several column geometries of aspect ratios a varying from 0.25 to 67.9.
In addition to continuum simulations, two-dimensional granular simulations using the
contact dynamics algorithm were performed to allow for systematic comparison of the
shape of the falling column, the position of the front in the course of time and the
final run-out. For aspects ratios 0.5, 1.42 and 6.26, the outer and inner deformations
of the collapsing column showed good agreement between the two methods. Then by
varying the value of the aspect ratio between 0.25 and 64, continuum simulations led
to scaling laws linking run-out and final height to aspect ratio in good agreement
with experimental scaling laws. The position of the flow front in the course of
time shows the same behaviour for both continuum and granular methods during
the greater part of the spreading dynamics. Close to arrest, however, continuum
simulations systematically underestimate the run-out in the case of large aspect ratios.
Finally, considering the extreme case of a = 67.9, continuum simulation proved able
to reproduce the formation and the outward propagation of a bump as observed in the
granular counterpart.

The ability of the u(f)-rheology to reproduce the dynamics of the granular collapse
was then compared to the performances of some simple model rheologies: Newtonian,
Bingham, Bagnold, and the case of constant friction. Of these alternatives, only the
constant friction model leads to reasonable results, provided the friction constant is
varied according to the aspect ratio. This supports a more complex dependence, and
we indeed demonstrate that the additional degrees of freedom of the w(/)-rheology can
be used to obtain a single ‘optimal’ set of rheological parameters, which describes the
collapse accurately across the whole range of aspect ratios (using the contact dynamics
simulations as reference).

The value of I becoming noticeably high at the flow front (where volume fraction
decreases and bouncing dynamics takes place), the friction coefficient at this point may
be overestimated, and may result in the underestimation of the final run-out by the
continuum model. It is, however, uncertain whether the w(/)-rheology applies at all at
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the tip of the front, where grains are in a nearly gaseous state, and where their number
is small enough to question the validity of continuum modelling.

Only dry granular flows have been considered so far, but an interesting perspective
is to introduce in the present model the physics of immersed dense granular
flows (Cassar et al. 2005; Chauchat & Médale 2010; Rondon et al. 2011). Wider
perspectives of this work include the efficient simulation of real systems such as
geophysical flows or industrial handling of granular matter: the two-dimensional
continuum simulations presented here only take a few minutes to run on a standard
PC. Moreover, the work provides a new approach to validate and possibly improve
Saint-Venant/shallow-layer approaches.

The complete two-dimensional continuum simulations presented in this paper
support the reliability of the w(/)-rheology to capture the dynamics of dry gravity-
driven non-uniform transient granular flows (beside steady shear), at least in two
dimensions. They are reproducible, and now part of the Gerris test suite (Lagrée 2010;
Popinet 2011). We next plan to study the flow structure of the continuum model in
more detail. We also hope that further applications in more severe configurations
(three-dimensional, moving boundaries, etc.) will confirm these encouraging first
results.
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