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Bingham plastics exhibit complex behaviors, depending on both geometrical and rheo-

logical factors, and are difficult to characterize systematically. This is particularly true in

the case of transient flows, where solid-like and fluid-like behaviors coexist in an intermit-

tent fashion. The aim of this contribution is to study the slump of Bingham columns under

gravity while varying systematically and independently both the geometry of the system

and the rheological parameters. To do so, numerical experiments are carried out in two

dimensions (2D) with a non-Newtonian Navier-Stokes code, the Gerris flow solver, using a

Volume-Of-Fluid approach. We are able to determine the slump height and the spreading

of the column after motion ceased. These characteristics are related to the rheological

properties and initial shape through scaling relationships. The results are compared with

previous scalings and prediction from the literature. A discussion ensues on the impor-

tance of the normalization choice and of unambiguous discrimination between geometrical

and material factors.
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1 Introduction

The flow of yield stress materials under gravity is encountered in many situations of in-

dustrial, engineering and geophysical relevance. Muds and slurries, as those dealt with in

off-shore construction, but also in mining processes and in the agro- and food- industries

(fertilizers, emulsified food etc), show a typical yield behavior: a minimum stress must

be applied for the material to start flowing. Fresh concrete, whose rheological properties

are crucial for those using it, is a well-known example of yield stress material (Ferraris

& de Larrard, 1998; Schowalter & Christensen, 1998; Roussel et al, 2005). In a different

context, lahars resulting from heavy rainfalls in volcanic areas show similar flow properties

(Whipple, 1997; Tallarico & Dragoni, 2000). The slow failure of muddy soils is another

dramatic manifestation of yield behavior.

Despite their apparent diversity, in a first approximation, all these materials can be de-

scribed as Bingham plastics in a large number of situations: they behave like solids at low

stress, and flow like viscous fluids at high stress. In this simplified picture, a yield stress

and a viscosity define them nearly completely. However, in the face of the simplicity of

the mathematical form of Bingham’s model, Bingham plastics exhibit a complex behavior

difficult to characterize systematically. This is particularly true in the case of transient

flows, where solid-like and fluid-like behaviors coexist in an intermittent fashion. Because

the existence of a yield stress implies the existence of an intrinsic length scale (given by

the ratio of the yield stress to the density times gravity Ly = τy/ρg), the geometry of

the system will play a role. In the case of gravity induced flows, the height of the sys-

tem will command whether the system can flow or not (Roussel & Coussot, 2005). This

geometrical constraint is not easy to deal with. In spite of its fundamental role in the

subsequent flow (Sader & Davidson, 2005), previous works on slump test for concrete do

not offer an unambigous characterization of the role of rheology and geometry indepen-

dently one from the other (Pashias et al, 1996; Ferraris & de Larrard, 1998; Schowalter &

Christensen, 1998; Roussel & Coussot, 2005). Extensive theoretical work on the slump-

ing of viscoplastic material was achieved, however it is mostly valid in the framework of

long-wave approximation, that is for squat systems (Balmforth et al, 2007; Dusbash et
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al, 2009; Hogg & Matson, 2009). Predictions using limit analysis for cylinders and rect-

angles of yield stress material can be made for incipient failure conditions (Chamberlain

et al, 2004). Yet, the complex interplay of geometry and rheology in the gravity flow of

Bingham systems still needs clarification. Because high values of the yield stress implies

small lateral deformation, it is often assumed that plastic viscosity plays no role in the

final shape of the slumping system (Sader & Davidson, 2005; Roussel & Coussot, 2005).

In the case of low yield stress however, lateral spreading becomes important, hence shear

deformation, and viscous stresses is likely to affect the overall deformation. Again, the

specific role of the plastic viscosity may depend on the initial geometry of the system.

The aim of this contribution is to study the slump of 2D Bingham columns under gravity

while varying systematically and independently both the initial geometry of the system

and the two rheological parameters: yield stress and plastic viscosity. To do so, numerical

experiments are carried out in two dimensions (2D) with a non-Newtonian Navier-Stokes

code, the Gerris flow solver, using a Volume-Of-Fluid approach (Popinet, 2003; Sader &

Davidson, 2005; Lagrée et al, 2011). Determining the slump height and the spreading of

the column after motion ceased, we relate these characteristics to rheological properties

and initial shape and try to disclose ”universal” scaling relationships. The results are

compared with previous scaling and prediction from the litterature (Sader & Davidson,

2005; Pashias et al, 1996). A discussion ensues on the importance of the normalization

choice and the importance of unambiguous discrimination between geometrical and ma-

terial factors.

2 Numerical model and simulations

The slumping test consists of allowing a column of material to collapse and spread under

gravity onto a horizontal plane, as shown in Figure 15 (half-column shown with a symmetry

condition). This well-constrained system in terms of both rheology and geometry is of

academic interest, and furthermore, is of practical relevance to in-situ rheological tests for

concrete (the Abrams cone test, for instance) or for the failure of geological material. In

practical applications - for instance when testing fresh concrete using slumping tests - the
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Figure 1: Adaptative mesh refinement during the simulation of a slump using the Gerris

flow solver.

column obeys an axisymmetric geometry; for the sake of simplicity however, we consider in

the present study a real 2D geometry, but will nevertheless refer to the lateral dimension

of the system as radius.

2.1 The Gerris flow solver: a two-phase description

The simulations were performed using the (open source) Gerris flow solver in two dimen-

sions. Gerris solves the Navier-Stokes equation for a bi-phasic mixture using a Volume-Of-

Fluid approach (Scardovelli & Zaleski, 1999; Popinet, 2003). The existence of two fluids

translates numerically in different properties (viscosity and density) on the simulation grid

following the advection of the volume fraction representing the proportion of each fluid.

In our case, one fluid stands for Bingham plastic (characterized by a yield stress and a

plastic viscosity) and the other stands for the surrounding air (with a low density and low

viscosity); the position of the interface between the two is solved in the course of time

based on the spatial distribution of their volume fraction. This method is in its main

features identical to that applied by Davidson et al (2000) and Sader & Davidson (2005)

for the gravity flow of visco-plastic material.

In Lagrée et al (2011), we show that choosing for the surrounding fluid (or ”air”) a viscos-

ity and a density 100 times smaller than that of the non-Newtonian fluid studied does not

affect the dynamics of the latter, based on systematic comparison with an analytical solu-
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tion. Accordingly, in this contribution, we choose for the surrounding fluid a viscosity and

a density 100 times smaller than that of the Bingham fluid. The viscosity of the Bingham

fluid is constant at large shear and diverges at low shear. Using a simple regularization

technics, we implement the viscosity as follows:

ηBingham = min

(
τy
D2

+ η ; ηmax

)
,

where τy is the yield stress, η is the plastic viscosity and D2 is given by the second in-

variant of the strain rate tensor D: D2 =
√

2DijDij . Numerically, the divergence of the

viscosity is bounded by a maximum value ηmax set to 104 to 105 times the value of η; we

have checked that the choice of ηmax does not affect the results as long as ηmax/η is large

enough (down to 102 in the configuration studied here). Following this formulation, we see

that the plastic viscosity η plays a role only in the limit of sufficiently high deformation; for

large values of the yield stress τy, its influence is expected to become marginal, justifying

the choice of setting its value to zero (Sader & Davidson, 2005; Roussel & Coussot, 2005)

or ignoring its influence (Pashias et al, 1996; Schowalter & Christensen, 1998). In this

contribution however, we show that the influence of the plastic viscosity η in the sideways

spreading, when the latter occurs, is always apparent.

A no-slip boundary condition is imposed at the base of the flow, and a symmetry condi-

tion is imposed at the left wall. The Gerris flow solver uses an adaptive mesh refinement

as shown in Figure 14, thus limiting computational costs. No experimental data were

available to test the results of the numerical simulations of Bingham fluid; however, it was

successfully tested against analytical solution for cylindrical Couette flow (Bird et al, 1987)

as part of the Gerris test suite 1. Moreover, the Gerris solver was used to reproduce the

gravity flows of granular media as non-Newtonian viscous fluid, and led to the successful

recovery of experimental results in different configurations, including the silo (Staron et al,

2012), and more relevantly to the present work, the collapse of 2D columns under gravity

(Lagrée et al, 2011). The reader is refered to Popinet (2003, 2009) for a comprehensive

presentation of the Gerris Navier-Stokes solver.

1http://gerris.dalembert.upmc.fr/gerris/tests/tests/couette.html
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Figure 2: Snapshots of the slumping of a half-column of Bingham plastic simulated with

Gerris, with initial aspect ratio a = H0/R0 = 5, yield stress τy/ρgR0 = 0.33 and plastic

viscosity η/ρg1/2R3/2
0 = 0.86, at times t/

√
H0/g = 0, 0.85, 1.70 and in the final state.

2.2 The slumping test: geometrical and rheological parameters

The initial geometry is characterized by the initial (real 2D) radius R0 and initial height

H0; the initial aspect ratio is denoted a = H0/R0 (Figure 15). In order to investigate the

effect of geometrical factors on the slumping, both the radius R0 and the initial height H0

were alternatively varied. Accordingly, the aspect ratio varies between 0.2 and 19.

The final state is characterized by the final spread - or runout - R and the final height H,

the slump being defined as the difference between the initial and the final height H0 −H.

In the course of time, the position of the front is denoted r and the position of the top of

the collapsing column in contact with the left boundary is denoted h. In practice, r and R

are given by the maximum lateral excursion of the domain occupied by Bingham material,

and h and H by the maximum excursion of the Bingham material at the left-hand-side

boundary of the simulation domain. The transition between the Bingham material and

the surrounding air being sharp (over 2 to 3 cells), the error when evaluating R and H is

about 2% to 5% (error bars are not shown on the graphs).

The rheological properties of the material were systematically varied. Because the initial

height H0 sets the value of the initial compressional stress, to be compared with the char-
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Concrete (Dufour & Pijaudier-Cabot 2005)
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Figure 3: Combined values of the normalized yield stress τ̄y = τy/(ρgR0) and normalized

plastic viscosity η̄y = ηy/(ρg1/2R
3/2
0 ) used in the simulations (black circles); each point

coincide with a series of simulations with varying aspect ratio a (0.2 ≤ a ≤ 19). Squares

and empty circles coincide with values for concrete and toothpaste respectively after proper

normalization.
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acteristic yield length scale Ly = τy/ρg, we choose to use the initial width R0 to normalize

the rheological parameters in order to allow unambigous discrimination between material

and geometrical factors. The effect of the initial height H0 is singled out using the purely

geometrical parameter a = H0/R0.

The yield stress τy was set so that the normalized yield stress τ̄y = τy/ρgR0 varies be-

tween 0.06 and 1.6. Since a = H0/R0 varies between 0.2 and 19, the simulations cover the

two following cases: H0/Ly << 1, for which we expect no or little motion to occur, and

H0/Ly >> 1, for which large motion is expected. The value of the plastic viscosity η was

set so that η̄ = η/ρg1/2R3/2
0 varies between 10−2 and 5. Figure 16 shows all the combined

values of normalized yield stress and plastic viscosity used for this study; each point on

the graph corresponds to a series of simulations with aspect ratio a varying from 0.2 to

19. For comparison, fresh concrete exhibits a yield stress ranging typically from 0.012 to

0.076×ρgL, and a plastic viscosity typically between 3.10−2 and 6.10−2×ρg1/2L3/2, where

ρ $ 2500 kg.m−3, g = 9.81 m.s−2 and L = 1m (data taken from Dufour & Pijaudier-Cabot

(2005)). For toothpaste, a typical value for the yield stress is 0.017 × ρgL, while the vis-

cosity is about 0.022 × ρg1/2L3/2 (with ρ $ 1200 kg.m−3, g = 9.81 m.s−2 and L = 1m).

These values, properly normalized using the different values of the initial radius R0 of the

columns, are also shown in Figure 16.

Defining the Bingham number Bi = τ̄y/η̄, Bi ranges from 0.014 to 30 for the total of 1020

simulations performed. Their behavior is analyzed in the following.

3 A typical slump in the course of time

Figure 15 shows different snapshots of the evolution of a column of initial aspect ratio

a = 5 with plastic viscosity η/ρg1/2R3/2
0 = 0.86 and yield stress τy/ρgR0 = 0.33. The

corresponding time evolution of the position of the front in the course of time r(t) − R0

and of the slump H0 − h(t) (normalized by R0), are displayed in Figure 17. During the

flow, the upper-right edge of the column is preserved (due to locally low compressional

stress); in the case of very large a, it can be advected downstream. Closer inspection of the
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Figure 4: Evolution of the normalized position of the front (r −R0)/R0 (or run-out) and

of the top of the column (H0 − h)/R0 (or slump) as a function of the normalized time

t̄ = t/
√

H0/g for the system displayed in Figure 15.

Figure 5: Snapshot showing areas of maximum viscosity close to flow arrest.
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state of the spreading layer reveals the existence of areas of higher viscosities (Figure 18):

a ”dead” corner is located at the basis of the initial column, and spreads sideways while

the flow decelerates and stops; small patches of higher viscosity also appear at the surface

of the spreading layer. The preserved edge forms one of them. The inner deformations

are made visible in Figure 19 by mean of passive tracers; we observe maximum stretching

in the vicinity of the bottom and in the inner part of the column.

As expected, the typical evolution described above is sensitive to both the rheological

parameters and the initial aspect ratio. Larger values of the plastic viscosity η induce

smaller run-outs but larger flow durations due to the increase of the time scale related

to viscous deformation. Through a different mechanism, larger values of the yield stress

induce smaller run-outs and smaller slumping times, the material being quickly frozen in

a stress state below the yielding value. Finally, a dependence on the initial aspect ratio

a, rather than on H0 or R0 alone, is observed, as previously stressed in Sader & Davidson

(2005). In particular, for a small initial aspect ratio, depending on the value of the yield

stress, no flow may occur at all. All these points are investigated in details in the following

section.

4 Scaling laws for the slumping and spreading

In the analysis of slumping experiments, it is common practice to use the initial height

of the system (H0) as characteristic length scale against which all other quantities are

normalized (Pashias et al, 1996; Schowalter & Christensen, 1998; Davidson et al, 2000;

Piau, 2005; Roussel & Coussot, 2005). However, the initial height is not the only length

scale affecting the deformation of the column: as demonstrated in Sader & Davidson

(2005), its initial radius R0 plays a major role. The initial height sets the value of the

initial compressional stress, to be compared with the typical length scale related to the

yield stress: Ly = τy/ρg. To single out these two aspects, and prompted by earlier works

on slumping of granular matter (Lube et al, 2004; Lajeunesse et al, 2004; Balmforth &

Kerswell, 2004; Zenit, 2005; Staron & Hinch, 2005), we will use the initial radius R0

(rather than the initial height H0) to normalize the slumping and the spreading of the
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Figure 6: Snapshots of the slumping shown in Figure 15 (a = 5, τy/ρgR0 = 0.33 and

η/ρg1/2R3/2
0 = 0.86), at t/

√
H0/g = 0, 0.85, 1.70, and in the final state, showing inner

deformations using VOF tracers. (color online)

column. Hence, we search for scalings laws relating (R −R0)/R0 and (H0 −H)/R0 to

τ̄y = τy/ρgR0 and η̄ = η/ρg1/2R0
3/2, and to the aspect ratio a.

4.1 A simple prediction based on equilibrium shape

A simple prediction for the final shape of the slumping material can be obtained by

assuming that the final state results from the equilibrium between the pressure induced

by the variations of the deposit height and the yield stress (Pashias et al, 1996; Roussel

et al, 2005; Roussel & Coussot, 2005):

ρgh(r)
∂h(r)

∂r
= τy, (1)

and by supposing moreover that the final shape can be approximated by a cone (or triangle

in 2D):

h(r) $ H

R
(R− r).

Integrating (1) between 0 and R gives immediately:

τy = 2ρg
H2

R
. (2)
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Figure 7: Typical dependence of the normalized runout (R−R0)/R0 on the initial aspect

ratio a = H0/R0, for η/ρg1/2R
3/2
0 = 0.86 and τy/ρgR0 = 0.33. Inset: R/R0 as a function

of a in log-log scale.

Since volume conservation implies HR = 2H0R0, relation (2) leads to the straightforwards

predictions:

R

R0
= 2

(
ρgR0

τy

) 1
3
(
H0

R0

) 2
3

= 2 τ̄
− 1

3
y

(
H0

R0

) 2
3

, (3)

H

R0
=

(
τy

ρgR0

) 1
3
(
H0

R0

) 1
3

= τ̄
1
3

y

(
H0

R0

) 1
3

, (4)

with τ̄y = τy/ρgR0. For large values of the aspect ratio a, the approximation of a cone-

shape deformation becomes questionable. Moreover, for small values of the yield stress

and large aspect ratios, important spreading and large shear deformations will occur, thus

large viscous stresses. We can thus suspect these predictions to be inaccurate in this limit.

As a matter of fact, both predictions are poorly supported by the result of the simulations,

presented in the next section.
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Figure 8: Scaling laws for the runout co-

efficient λ as a function of the normalized

yield stress τ̄y and plastic viscosity η̄.
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Figure 9: Scaling laws for the critical aspect

ratio a0 (see equation (6)) as a function of

the normalized yield stress τ̄y and plastic

viscosity η̄.

4.2 Scaling law for the run-out as derived from the simulations

An example of the typical dependence of the normalized runout (R−R0)/R0 on the initial

aspect ratio a = H0/R0 is displayed in Figure 20. For small values of a, the stress state

remains below the threshold: no flow occurs and (R−R0)/R0 = 0. For larger values of a,

the material spreads and we observe an affine dependence between (R−R0)/R0 and a:

R−R0

R0
= λa− α. (5)

Extrapolating this affine dependence allows us for making an estimate of the minimum

aspect ratio a0 characterizing the transition towards sideways spreading: a0 = α/λ. Hence,

we search for a scaling law for the runout obeying the shape:





(R −R0)/R0 = 0 if a < a0 ,

(R −R0)/R0 = λ(a− a0) if a ≥ a0 .
(6)

We determine the values of λ and α for all 45 sets of simulations performed, corresponding

to different values of η̄ and τ̄y. The dependences allowing for the collapse of data following

a single master curve are reported in Figure 21 and Figure 22 . The prefactor λ is best
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approximated by

λ $ 0.40

[
1

η̄
× 1

τ̄y

]0.29±0.01

, (7)

with a correlation coefficient of 0.97 (and τ̄y = τy/ρgR0 and η̄ = η/ρg1/2R0
3/2). We

observe that both yield stress and plastic viscosity contribute to the sideways spreading

with equal weight. We note that the exponent characterizing the dependence on the yield

stress is close to the prediction derived in section 4.1 from mass conservation.

It is interesting to note that the minimum aspect ratio characterizing the transition

towards sideways spreading a0 does not reflect the slumping behavior. Indeed, a0 shows

the following dependence:

a0 $ 2.25 τ̄y

(
1

η̄

)0.20±0.03

,

with a correlation coefficient of 0.96. It is surprising that a0 should depend on the plastic

viscosity, moreover following an inverse correlation: indeed we expect a small viscosity

to favor slumping. Yet consistently, in the range of parameters studied, we observe that

a large viscosity associated with a small yield stress (that is, a small Bingham number

Bi = τ̄y/η̄) implies a smaller offset in the dependence between run-out and initial aspect

ratio. The fact that no sideways spreading is detected does not mean however that no

slumping occurs. Indeed, depending on the value of τy, a low plastic viscosity may result

in squat columns flanks to deform and create a sideways swell, without the base of the

column to actually move. In that case however, slumping occurs. Hence, the critical

aspect ratio characterizing the transition to slumping must be estimated from the direct

evaluation of the final height H.

4.3 Scaling law for the slumping as derived from the simulations

Using the same set of simulations as shown in Figure 20, the normalized slump (H0 −H)/R0

as a function of the initial aspect ratio a = H0/R0 is shown in Figure 23. For small a, no

slump occurs and (H0 −H)/R0 = 0. For larger a, we observe an affine dependence:

H0 −H

R0
= λ′a− α′, (8)
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ized yield stress τ̄y = τy/ρgR0.
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as exhibited by the run-out (see equation (5)). However in this case, seemingly irrespective

of the value of η̄ or τ̄y, the slope is constant and equal to one: λ′ $ 1. In other words, the

effect of the initial aspect ratio a on the final height H is negligible. Hence, relation (8) is

equivalent to
H

R0
$ α′ (9)

As precedentely, α′ is determined for all 45 sets of simulations corresponding to different

values of τ̄y and η̄ (shown in Figure 16). The resulting dependence is reported in Figure

24, and is best approximated by:

H

R0
$ 3.01

(
τy

ρgR0

)0.66±0.03

= 3.01 τ̄ 0.66±0.03
y (10)

with a correlation coefficient of 0.95. The final height of the collapsed column is thus

independent of the initial height, presumably due to the absence of large inertial effects.

Moreover, it is not affected by the value of the plastic viscosity η̄, as generally assumed

in numerical studies (Tattersall & Banfill, 1983; Schowalter & Christensen, 1998; Sader &

Davidson, 2005; Roussel & Coussot, 2005) and theoretical derivations (Chamberlain et al,

2004)

Using (8) and (10), we can write:






(H0 −H)/R0 = 0 if a < ac ,

(H0 −H)/R0 = (a− ac) if a ≥ ac ,

ac = 3.01 τ̄ 0.66
y ,

(11)

where ac is the critical aspect ratio characterizing the transition to slumping.

This result is qualitatively in agreement with the result of Sader & Davidson (2005) where a

polynomial relation between ρgR0/(2τy) and 1/ac was observed for axisymmetric columns:

we find that a polynomial relation (although of a different order) is acceptable for the same

range of τ̄y (see Figure 25). Differences between the two approaches includes the geometry

(axisymmetric in Sader & Davidson (2005) vs planar in the present contribution) and the

values of the plastic viscosity (equal to zero in Sader & Davidson (2005) while varied over

two orders of magnitude in the present contribution); yet, the dependences found involve
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the same parameters, namely yield stress and critical aspect ratio, following the same

trend.

By contrast, our results are not fully compatible with the theoretical prediction of Pashias

et al (1996), also discussed in Schowalter & Christensen (1998); Davidson et al (2000);

Roussel & Coussot (2005). Indeed, the theoretical derivation in Pashias et al (1996) leads

to the following prediction for the slump:

H0 −H

H0
= 1− 2

τy
ρgH0

(
1− ln

(
2

τy
ρgH0

))
. (12)

Rewritten in term of final height H and normalized according to the choice adopted in

the present contribution, (12) is equivalent to:

H

R0
= 2τ̄y (1− ln (2τ̄ya)) , (13)

with τ̄y = τy/ρgR0. While our simulations suggest that H/R0 is only dependent on τ̄y

(scaling (10)), the prediction of Pashias et al (1996) implies an additional dependence on

the aspect ratio a. In other words, it combines the effect of both rheological properties

and geometry, i.e. compressional stress. This is illustrated in Figure 26 where we have

reported (H0 −H)/H0 as a function of τy/ρgH0 for two distinct values of the yield stress

τy, i.e. corresponding to two different materials. For each value of τy (i.e. for each mate-

rial), the aspect ratio a varies, while R0 and η̄ are kept constant. In the case τy = 0.01ρgL

(where L = 1m is an arbitrary length scale not related to the system geometry) we observe

that our data points nicely match the prediction (13); this is however a purely geometrical

effect due to the representation in terms of τy/ρgH0. Indeed, varying a implies varying

H0 and thus varying the ratio τy/ρgH0 although τy is constant: in this precise case, we

verify equation (12) while actually not probing the material property.

If we look at the case τy = 0.04ρgL (where L = 1m), we observe a systematic shift com-

pared to the case τy = 0.01ρgL, that is, our data do not collapse following (12); yet, it

is still compatible in shape with equation (12). Here again, only the geometry (i.e. the

variations of a) is responsible for the relative agreement with the prediction (12), without

involving any meaning in terms of the material rheological properties.

This result prompt a comment on the importance of the normalization choice. By us-

ing the initial height, one mixes the effect of compressional stress and rheology. While
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Figure 12: Comparison with the results of Sader & Davidson (2005) for axisymmetric

columns with zero viscosity: 1/2τ̄y $ 1/ac + 0.5(1/ac)2 + 0.005(1/ac)4. We find in 2D

1/2τ̄y $ 1.5(1/ac + 0.5(1/ac)3).

this is common practice to define such non-dimensional numbers where the behavior of

the system is well described by an equation (as Newtonian fluids for instance), it is not

straightforward when the behavior of the system regarding all independent parameters is

far from fully understood, as for the Bingham slump. As a result, one can easily mistake

the effect of geometry for those of material, thus allowing for incorrect interpretation.

This is particularly likely to happen in experiments where the yield stress of materials

used varies over a relatively small interval, while geometry can be changed at command.

5 Discussion

5.1 Comparison with the slumping of granular material

Granular materials and Bingham plastics share an important rheological property: they

behave like a solid at low shear stress and like a fluid at higher shear stress. However,

the threshold marking the transition between one and the other state is of a different

nature. While in Bingham plastics, the threshold is given by an absolute yield value τy, the

threshold in granular matter is given by frictional properties, and thus depends locally on
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Figure 13: Comparison with the results of Pashias et al (1996): Slump normalized by

the initial height (H0 −H)/H0 as a function of the normalized yield stress τ̄y = τy/ρgH0

for two series of simulations corresponding to two given materials (ie two given values

of τy/ρgL, L = 1m), and theoretical prediction from Pashias et al (1996) (see equation

(12)). The agreement reflects geometrical constraints only.
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the compressional stress: τy = µP , where µ is the coefficient of friction and P the pressure.

Moreover, granular flows exhibit shear thickening properties. It is interesting to observe

how these differences reflect on the slumping dynamics and the corresponding scaling

laws. In Lajeunesse et al (2004); Lube et al (2004); Balmforth & Kerswell (2004); Staron &

Hinch (2005) for instance, the collapse of granular material was investigated experimentally

(using sand, rice, glass beads) and numerically (applying the discrete Contact Dynamics

method), following the same set-up as applied in this paper. The scaling laws thus obtained

in 2D read:

R−R0

R0
= λ(µ)× aα, a ≥ ac (14)

H

R0
= λ′(µ)× aα

′
, a ≥ a′c (15)

with α $ 0.67 and α′ ∈ [0.3, 0.4] depending on the authors, and where ac and a′c are

critical values of the aspect ratio, varying from 0.7 to 2.8 depending on the authors. The

prefactors λ and λ′ are functions of the coefficient of friction µ only.

The difference between these scalings and those obtained from the present simulations -

that is relations (7) and (10) - is manifest. However, they might not be incompatible.

Indeed, the yield stress for granular columns is given by τy = µρgH0. Replacing this

in (10) gives immediately H/R0 = λ′(µ) a0.66, where λ′(µ) = 3.01 µ0.66, thus becoming

similar in shape to (15). In the same way, replacing τy = µρgH0 in (7) leads directly to

(R−R0)/R0 ∝ λ(µ) a0.71, where λ(µ) = 4.0 µ−0.29 (a trend compatible with numerical

observations in Staron & Hinch (2007))), thus sharing similarities with (14).

Viscous terms are more intricate. In dry granular flows, the viscosity can be approximated

by η = µP/|γ̇|, where γ̇ is the shear rate (Jop et al, 2006; Lagrée et al, 2011). There

are no obvious scales for the pressure and the shear rate during the sideways spreading.

Note however that the choice of P = ρgR0 and |γ̇| =
√
g/R0 leads immediately to the

following relation between friction and viscosity: µ = η/ρg
1
2R

3
2
0 , and can thus be replaced

in the scaling (7). This is certainly too speculative to draw any conclusion on the viscous

behavior of granular slump experiments. But we can nevertheless conclude that Bingham

and granular scalings may be less different than they appear at first. Granular matter forms

an example of visco-plastic behavior where yield stress and viscosity are not independent,
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but are coupled (here through internal friction properties). We may question the existence

of such coupling in other common materials, like muds or fresh concrete.

5.2 About cement and concrete

Granular matter forms an example of visco-plastic behavior where yield stress and vis-

cosity are coupled. It would be interesting to establish whether such a coupling exists in

real Bingham-like materials, and among them concrete. Indeed, unlike the ideal Bingham

material simulated in this paper, viscosity and yield stress in fresh concrete are not neces-

sarily independent quantities. For instance, the data given in Dufour & Pijaudier-Cabot

(2005) for three different model concretes suggest that plastic viscosity and yield stress

are related quantities: the greater the viscosity, the greater the yield stress.

From the systematic analysis of the simulations, the final slump height appears to be

essentially independent of the viscosity, but to scale like (τy/ρgR0)
0.66. This brings the

conclusion that slumping tests, like the Abram cone widely used to measure the proper-

ties of fresh concrete, do give information on the yield stress, but little on the viscosity.

Clarifying the relation between these two quantities might contribute to a more reliable

calibration of slump tests as in-situ measurements of rheological parameters. In this per-

spective, the present study suggests that sideways spreading rather than slumping keeps

the signature of the viscous behavior.

6 Conclusion

Applying the Gerris Navier-Stokes solver allowing for the modeling of bi-phasic mixtures

using a VOF method, we simulate the collapse of columns of Bingham plastics under

gravity in 2D. The rheological properties of the material - plastic viscosity and yield stress

- as well as the geometry of the columns - initial radius and initial height - were varied

independently. The final slumping height and final run-out were measured and scaling

laws derived. Our results show that the runout R increases linearly with the initial height

of the column H0, with a prefactor depending inversely on both plastic viscosity and yield
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stress: 




(R −R0)/R0 = 0 if a < a0 ,

(R −R0)/R0 = λ(a− a0) if a ≥ a0 ,

λ $ 0.40
[
1
η̄ × 1

τ̄y

]0.29±0.01
,

a0 $ 2.25 τ̄y
(
1
η̄

)0.20
,

where a = H0/R0 is comprised in the interval [0.2, 19], τ̄y = τy/ρgR0 is comprised in the

interval [0.06, 1.6] and η̄ = η/ρg1/2R0
3/2 is comprised in the interval [0.01, 5].

By contrast, we find that the final height H is essentially insensitive to plastic viscosity

and depends on the value of the yield stress. We find no effect of the initial height of the

column, whereby we conclude that inertial effects are negligible. We derive the transition

to slumping following the scaling:





(H0 −H)/R0 = 0 if a < ac ,

(H0 −H)/R0 = (a− ac) if a ≥ ac ,

ac $ 3.01 τ̄ 0.66
y ,

where a = H0/R0 is comprised in the interval [0.2, 19] and τ̄y = τy/ρgR0 is comprised

in the interval [0.06, 1.6]. This last result is compatible with the conclusions of Sader &

Davidson (2005) relative to the slump in axisymmetric configuration. When compared

with the theoretical prediction of Pashias et al (1996), we find a partial agreement which

however only reflects the geometrical constraints imposed by varying the aspect ratio.

This result shows the importance of the normalization choice. By using the initial height,

one mixes the effect of compressional stress, geometry and rheology in one single non-

dimensional parameters. While this is common practice to define such non-dimensional

numbers where the behavior of the system is well described by an equation (as Newtonian

fluids for instance), it is not straightforward when the behavior of the system regarding

all independent parameters is far from fully understood, as for the Bingham slump. As

a result, one can easily mistake the effect of geometry for those of the material proper-

ties, thus allowing for incorrect interpretation. This is particularly likely to happen in

experimental settings where the yield stress of materials used varies over a relatively small
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interval, while geometry can be changed at command.

The scaling laws discussed in this contribution were obtained for 2D configurations; an

interesting step for practical application would be to investigate how the scalings are mod-

ified in the axisymmetric case, as studied by Sader & Davidson (2005). This aspect will

be addressed in future work.
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