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Memory of the unjamming transition during cyclic tiltings of a granular pile
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Discrete numerical simulations are performed to study the evolution of the microstructure and the response
of a granular packing during successive loading-unloading cycles, consisting of quasistatic rotations in the
gravity field between opposite inclination angles. We show that internal variables—e.g., stress and fabric of the
pile—exhibit hysteresis during these cycles due to the exploration of different metastable configurations.
Interestingly, the hysteretic behavior of the pile strongly depends on the maximal inclination of the cycles,
giving evidence of the irreversible modifications of the pile state occurring close to the unjamming transition.
More specifically, we show that for cycles with maximal inclination larger than the repose angle, the weak-
contact network carries the memory of the unjamming transition. These results demonstrate the relevance of a
two-phase description—strong- and weak-contact networks—for a granular system, as soon as it has ap-

proached the unjamming transition.
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I. INTRODUCTION

The discrete nature of granular materials makes their evo-
lution very complex. In response to an external driving force,
the macroscopic behavior of a granular system is determined
by the intimate interplay between the evolving disordered
microstructure—i.e., the arrangement of the grains and the
geometry of their contact network—and the frictional inter-
actions at the contacts, which allow for nontrivial force trans-
missions [1-3]. Even though significant advances have been
made in the last decade [4-7], the underlying question of a
physically based identification of the relevant internal vari-
ables and of their evolution laws remains open [8,9].

A particular issue of recent works on granular media con-
cerns the transition from (to) a rigid-solid-like state to (from)
a flowing-fluid-like state, due to its broad interest in geologi-
cal and industrial processes and in particular to its challenge
for condensed matter physics. This transition—e.g., the sig-
nature of the development of a yield stress or flow threshold
in a disordered granular system or of an infinite relaxation
time compared to the actual experimental time scale—has
recently generated a flurry of activity [10-13]. Even though
dense granular materials are athermal, it has recently been
proposed that the transition could be seen as a “unjamming-
jamming transition” at zero temperature [11,14,15], moti-
vated by remarkable analogies between granular and glassy
systems at both macroscopic and microscopic scales
[16-19].

In this picture, the granular system is driven out of equi-
librium under quasistatic external driving force, introducing
fluctuations, as the system explores different packing con-
figurations or metastable states that could be related to an
“effective temperature” [20,21]. Important nonequilibrium
effects of structurally disordered granular systems, beside the
slow relaxation to equilibrium [12,22,23], are bistability and
hysteresis [24-26] as the result of a memory effect due to the
internal history dependence of systems out of equilibrium
and the lack of a unique metastable state [2] and a jerky
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response to the external driving force with impulselike
events (local rearrangements of grains or avalanches), as the
result of the exploration of local minimal-energy configura-
tions [27,28]. A related important question is whether a di-
verging length scale exists on the jammed side of the transi-
tion [29].

The well-known observation of different characteristic
angles of the stability of granular systems results from such
memory effects. When dense granular piles are inclined in
the gravity field, there exists a maximal angle of stability, or
avalanche angle 6, at which the pile starts inevitably to flow,
and an angle of repose 6,.< 6,, defined as the slope angle at
which the system comes back to rest. In the range [6,,6,],
the system exhibits a bistable behavior where it can be in a
jammed—rigid—or an unjammed—flowing—state. In that
region, the jammed state of the granular pile is conditionally
stable; e.g., an avalanche can be triggered by perturbations of
finite amplitude [30,31], evidencing metastability of the pile
for slopes in [6,, 6,]. Under rotation in the gravity field, the
pile undergoes therefore a subcritical transition.

In [27,32,33], the unjamming transition of a two-
dimensional (2D) cohesionless granular bed slowly tilted to-
wards the avalanche angle 6, was numerically investigated.
This transition is characterized by a jerky response to the
smooth rotation of the principal stress direction with respect
to the packing, as attested by the occurrence of local rear-
rangements of grains. An analysis of the local stresses re-
veals the existence of a significant population of overloaded
grains, carrying a shear stress ratio larger than the critical
threshold of the packing at the unjamming transition. This
allows one to define a coarse-graining length scale, or corre-
lation length, which increases with the rotation up to an
angle identified to 6,, where it jumps to a length scale com-
parable with the thickness of the granular bed. This jump can
be mapped onto a percolation transition of the overloaded
grains and coincides with the onset of a packing dilation,
indicating coherent shearing—a macroscopic shear strain
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across the sample—prior to the unjamming transition. Fur-
ther insights into the domain [#6,,6,] were achieved when
analyzing the highly frictional contacts—e.g., the critical
contacts where the friction is fully mobilized. Indeed the
critical contacts are at incipient slip and likely give rise to
local rearrangements of grains. A correlation length, based
on the multiscale analysis of the critical contacts, exhibits a
power-law-type divergence with an onset that coincides with
0.. These highly frictional contacts tend to be associated with
the weak-contact network, as defined in [34,35], suggesting a
two-phase system and a second-order phase transition. The
emergence of long-range ‘“correlation lengths” within the
range [ 6,, 6,], both in the stress and frictional states, is con-
sistent with experimental measurements of both the ampli-
tude of the local perturbation required to trigger an avalanche
and the increasing scale of the response to a local perturba-
tion, close to the unjamming transition [22,31]. This suggests
that a peculiar regime exists before the unjamming
transition—namely, in the range [#6,, 6,], where the accumu-
lation of frictional forces and resulting local rearrangements
of grains leads to coherent shearing and enhances the struc-
tural disorder in the packing [36].

Such modifications of the microstructure of granular sys-
tems within the range [6,,6,] at the unjamming transition
should have a signature on nonequilibrium effects, such as
the system hysteresis during cyclic solicitations. In contrast
to cyclic shear solicitations [17,23,37-40], we focus
here—in the continuation of [27,32,33]—on quasistatic cy-
clic rotations of dense cohesionless granular systems under
gravity. Depending on the amplitude of the cyclic solicita-
tions, the granular system can approach the unjamming tran-
sition, without overpass it, so as to keep a solidlike state and
a quasistatic evolution. The internal history dependence or
hysteresis can therefore be investigated depending on how
far from equilibrium the system has been driven—i.e., on the
distance from the unjamming transition. We report here re-
sults of discrete numerical simulations, based on the contact
dynamics method, of quasistatic cyclic solicitations applied
to a 2D cohesionless granular bed. These results show that
the hysteresis does depend on the amplitude of the cycles
and exhibit specific memory effects when the system ap-
proaches the unjamming transition, as a result of the struc-
tural evolution. In particular, the hysteresis is analyzed in
terms of both strong- and weak-contact network contribu-
tions to the global response. It is found that the weak-contact
network carries most of the signature of the memory effects,
confirming the relevance of a two-phase description for the
unjamming transition and extending it to the quasistatic rhe-
ology, as soon as the granular system has approached the
transition.

The paper is organized as follows. The numerical proce-
dure and details of the numerical simulations are presented in
Sec. II. Section III focuses on critical contacts: after discuss-
ing previous results during monotonic external loading, we
investigate the evolution of the critical contacts during relax-
ation and cyclic solicitations. In Sec. IV the hysteresis of the
granular system is analyzed with respect to the amplitude of
the cycles. Then the respective contributions of the weak-
and strong-contact networks to the hysteresis of the packing
are investigated in Sec. V. The paper ends with a discussion
of the results in Sec. VL.
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FIG. 1. A typical simulated granular pile of 4000 disks whose
diameters are polydispersed at 20%, inclined at an angle #=17° in
the gravity field g with the xy frame linked to the bottom of the box
and the unity vector normal to the free surface, 7.

II. NUMERICAL PROCEDURES

Discrete simulations of granular media take into account
the individual existence of each grain constituting the sys-
tem. The behavior of the collection of grains is entirely
driven by the usual equations of motion and the contact laws
ruling the interactions between the grains. The contact dy-
namics method, applied for this work, deals directly with
infinitely stiff contact laws, assuming that grains interact
through hard-core repulsion and nonsmooth Coulomb fric-
tion only [41]. This implies that the contact force between
two grains is nonzero only if the latter are touching. Once a
contact is created between two grains, the latter cannot get
closer, so that any normal relative motion is only repulsive:
the grains are perfectly rigid and cohesionless. The Coulomb
frictional law consists of an inequality between the tangential
and normal forces at contact, referred to as 7 and N, respec-
tively: + uN<T<= = uN, where u is the microscopic coeffi-
cient of friction and sets a threshold for a contact to slip.
Accordingly, this controls the frictional dissipation at the
contact scale in the case 7=+ uN when tangential slip mo-
tion is possible according to the immediate environment of
the contact, by contrast with the case +uN<T<+uN, and
no slip motion is allowed. In the present work, we are inter-
ested in the quasistatic evolution of the packing and concen-
trate on microplastic rearrangements only; therefore, we con-
sider purely dissipative collisions and set the coefficient of
restitution to zero.

The performed simulations are bidimensional. We con-
sider packings of 4000 circular grains, randomly deposited in
a rectangular box. The grains diameters are uniformly dis-
tributed in the interval [d,,;,;dq] With d,,../d,;,=1.5. The
polydispersity, measured as (d,,,,—d,,;,)/ (2d) =20% with d
the mean disk diameter, prevents long-range crystal-like or-
dering in the packing by enhancing structural disorder. Each
granular bed shows a nearly flat surface parallel to the bot-
tom of the box, with a slope 6 with respect to the horizontal
direction; its thickness is =354, and its length is =120d. The
granular packings have an initial solid fraction C=0.785 and
an initial coordination number Z=3.46. The microscopic co-
efficient of friction (u=0.5) is the same between all the
grains and between the grains and the walls of the box. Fig-
ure 1 shows a typical granular pile inclined in the gravity
field ¢ at an angle #=17°, with the xy frame linked to the
bottom of the box and the unity vector normal to the free
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FIG. 2. Temporal plot of the surface slope 6(r) of the granular
pile during the loading-unloading solicitations for 6,,,=10° (in
gray) and 6,,,=18° (in black). The horizontal lines, with a thickness
equal to the size of the fluctuations among 50 realizations, corre-
spond to the repose and avalanche angles 6, and 6,,. The initial state
of the pile just before the cycles start is represented by a diamond.

surface 7. In practice, instead of rotating the granular pile in
the constant gravity field, the direction of g with respect to
the pile is rotated to simulate tilting.

The cyclic solicitations consist of rotations at a constant
rate (+0.001° per time step), the rotation being positive when
clockwise. A positive rotation is first applied to newly gen-
erated granular piles so that the slope of the free surface
increases from 6=0° to a maximal inclination angle 6,,,,
corresponding to a loading stage. After the inclination ,,, is
reached, the direction of rotation is reversed and the slope
decreases back to 0°, corresponding to an unloading stage.
Rotation is maintained so that the slope of the pile evolves
from O toward the opposite maximal inclination angle —6,,,.
The direction of rotation is again reversed, and the cyclic
solicitation is resumed. Two successive cycles are performed.
This solicitation is applied on 50 granular piles differing in
the initial disordered microstructure—i.e., the grain arrange-
ment and the contact network geometry, showing character-
istic angles 6,=15° and 6,=21°. In the following, averages
are taken over all 50 simulations. The granular beds and data
describing the first loading stage are the actual data of Staron
et al. [32].

We study the influence of the cycle amplitude and dis-
tance from the unjamming transition on the evolution of the
pile state by considering two values of the maximal inclina-
tion angle 6,,,—namely, by applying small and large cycles.
The smallest value of 6,,, is chosen so that the small cycle
keeps the pile out of the coherent shear regime identified
prior to the unjamming transition: 6,,,=10°<6,. On the
contrary, the largest value of 6,,, is chosen in the range of
slopes [6,;6,], but below the minimal avalanche angle ob-
served among the 50 realizations to prevent the pile from
avalanching: 6,,,=18° €[6,; 6,]. These two kinds of cycles
are represented in Fig. 2, where the slope of the pile 6 is
plotted against the time 7 for both small (in gray) and large
(in black) cycles. Solid lines represent loading stages, and
dashed lines represent unloading ones. The horizontal lines
indicate the repose and avalanche angles 6, and 6,, with a
thickness equal to the size of the fluctuations. A diamond
indicates the initial state of the granular pile just before the
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FIG. 3. Density of critical contacts v averaged over 50 simula-
tions (a) during the first loading starting from 6=0° and (b) during
one large cycle, starting from a pile inclined at —6,,,=—18°, when
varying the slope inclination towards the avalanche angle.

cycles start, which will be reported on all the next figures.

III. CRITICAL CONTACT CLUSTERING

As discussed in the case of slow monotonic external load-
ing of a granular slope in [27,32,33], the coherent shear re-
gime identified prior to the unjamming transition corre-
sponds to the structuration in the packing of highly frictional
contacts—e.g., contacts where forces have reached the Cou-
lomb frictional threshold—i.e., T=+uN—referred to as
critical contacts. An interesting issue would be the evolution
of the critical contacts during cyclic solicitations.

We discuss first the robustness of previous results on criti-
cal contacts [27,33] against the pile preparation. Figure 3
displays the evolution of the density of critical contacts v,
defined as the proportion of critical contacts to the total num-
ber of contacts in a granular packing, averaged over 50 piles,
when varying the pile inclination 6 toward 6,, from 0° (a)
and from —6,,,=—18° (b). At the beginning of the solicita-
tion, both evolutions of » show a sudden drop to a minimum
value indicating the instantaneous loss of critical contacts.
After this first stage and in spite of the different initial con-
ditions, the behavior of the critical contacts when approach-
ing the unjamming transition is approximately the same: v
increases up to a maximal value v,=8% [27].

The loss of critical contacts occurring at the transition
from loading to unloading in Fig. 3(b) also observed in [39],
indicates that the averaged frictional state of the packing
related to past solicitations is immediately modified. It is
related to a systematic grain rearrangement, during which
critical contacts leave the Coulomb frictional threshold. Note
that the amount of critical contacts lost at the transition is not
larger than the typical fluctuations around the averaged criti-
cal contact density v during the cycle. In fact, the transition
from loading to unloading imposed at 6,,, synchronizes the
grain rearrangements for the various realizations, hence a
larger response on average than in the other parts of the
cycle. The effect of the reversal on a single realization re-
mains an open issue, which is beyond the present averaged
analysis.
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FIG. 4. Relaxation of the density of critical contacts v as a
function of time in five granular piles inclined at different angles
(#=3°,11°,16°,18°,20°) after the rotation was stopped at r=0.
The state of the pile just before the relaxation starts is represented
by a circle.

We now observe the relaxation to a static packing in terms
of critical contacts by suddenly stopping the rotation. Figure
4 shows the evolution of v as a function of time after the
rotation was stopped at =0 in five granular piles inclined at
different angles (6=3°,11°,16°,18°,20°). The state of the
pile before the relaxation starts is represented by a circle.
Whatever the density of critical contacts and the inclination
when the packing start to relax, v vanishes after a complex
transient dynamics. The time needed for critical contacts to
relax is larger for slopes close to 6,: this confirms the com-
plex relaxation towards equilibrium of a granular packing
[12,22,23], and this is consistent with observations of long-
range correlations close to the unjamming transition
[22,27,30-32]. The relaxation of the critical contacts for rig-
orous static conditions shows that the critical state is a tran-
sient state. This can be understood by the fact that the con-
tacts cannot sustain the sliding condition once the loading is
stopped. In this sense, the density of critical contacts does
not characterize the pile plastic state, because v is a dynamic
response function to the actual loading of the pile. Also other
variables could be more representative of the plastic state of
the pile—e.g., the averaged cumulative slip dislocation at
critical contacts. However, critical contacts remain active
during quasistatic loading, and it was shown that the evolu-
tion of v for one realization [27] becomes more and more
intermittent, exhibiting successive frictional demobilization
and remobilization periods, when the rotation rate decreases.

Figure 5 shows the evolution of v as a function of the pile
slope during loading and unloading process for 6,,,=18°.
The density of critical contacts at an angle 6 is smaller dur-
ing unloading than during loading, as attested by the hyster-
etic loops. Figure 6 displays the evolution as a function of 6
during the large cycles, of the correlation length r., defined
as the mean size of clusters such that locally v=w,. During
each loading stage, r, increases sharply above 6, and is ex-
pected to reach the size of the pile at the unjamming transi-
tion, as shown in the case of monotonic external loading
[27]. At the transition from loading to unloading, a signature
of the loss of critical contacts is visible: r, immediately re-
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FIG. 5. Density of critical contacts v averaged over 50 simula-
tions, slide-averaged over 1° intervals as a function of the slope
angle 6 during the successive cyclic solicitations for 6,,,=18°.

duces to a few grain diameters. There is no more evidence of
correlation within the granular pile in terms of critical con-
tacts upon reversal of the solicitation. Note that after the first
loading, v as well as r, shows the same cyclic evolution,
indicating the same behavior of critical contacts during the
two successive cycles, especially when approaching the un-
jamming transition. The reduction of frictional mobilization
after the reversal induces a strong hysteresis in both the evo-
lution of v and r,. during loading and unloading cycles. Is this
hysteresis apparent on other global characteristics of the
granular pile?

The critical contacts play a significant role when ap-
proaching the unjamming transition, since they likely give
rise to microplastic events. Accordingly, one may wonder
whether the response of the pile is modified by the hysteretic
evolution of critical contacts observed in the range of slopes
[6,;6,]. Also one would like to know whether the possible
effect of the observed hysteresis is localized in the domain
[6,;6,] or conditions the response of the pile along the full
cycle of solicitation. In the following, we investigate the hys-
teretic response of the pile to cyclic solicitations and the
effect on this response of having approached the unjamming
transition. To do so, we consider two different amplitudes of
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FIG. 6. Size of the correlated clusters of critical contacts r,.,
slide-averaged over 1° intervals as a function of the slope angle 6
during the successive cyclic solicitations for 6,,,=18°.
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loading-unloading cycles—namely, two values of the rever-
sal angle 6,,,—and we compare the response of the granular
pile in terms of stress, strain, and evolution of the contact
network for 6,,=10° and 6,,,=18°.

IV. HYSTERETIC PHENOMENA DURING LOADING
AND UNLOADING SOLICITATIONS

During cyclic tiltings, the induced stresses as well as the
resulting deformations of the granular pile are investigated.
We start with the comparison of the global stress state during
loading and unloading stages.

A. Stress state of the granular pile

The maximal value of the shear to confinement ratio, the
so-called inertial number in [13], is defined as I,
= YVouard\p/! P, With v, the maximal shear strain rate evalu-
ated during coherent shearing in the range of slopes [ 6,; 6,],
p the volumetric mass of the grains, and P the typical pres-
sure induced by gravity. In the present case, I, =107
shows that the pile evolution is actually quasistatic. As a
result, static stresses transmitted via contacts are much larger
than kinematic ones due to momentum transport during col-
lisions, so that the stress tensor of the granular pile o in the
xy frame is evaluated as follows from [42]:

1 n¢
O-ij=_szqu’ (1)
Va:l

where i and j denote the space dimensions and « the contact.

f is the contact force, [ is the vector normal to the contact
surface, and n¢ is the total number of contacts in the repre-
sentative element volume V. The tangential and normal
stresses o7 and oy along the direction of the free surface are
calculated:

; 2)

ON= ||(0' : ﬁs) : ﬁs

: 3)

where 7 is the unity vector normal to the free surface. The
direction of the eigenvector of o corresponding to the largest
eigenvalue is the principal stress direction, whose angle with
the direction 7y is W. The principal stress direction corre-
sponds to the direction where stress is purely compressive.

Figure 7(a) displays the shear stress ratio o7/ oy and Fig.
7(b) the evolution of the principal stress direction W during
small (0,,=10°) and large (6,,,=18°) loading-unloading
cycles. Both o/oy and W exhibit hysteretic evolutions re-
lated to irreversible modifications of the force transmissions
at contacts, but the hysteresis loops are of rather small am-
plitude and independent of 6,,,.

During the first loading, o;/oy=a tan(#) in agreement
with the predictions of continuous-media mechanics for an
infinite slope inclined in the gravity field at static equilib-
rium, except that a is not exactly equal to 1: a=0.8. It can be
shown that this difference is to be attributed to finite-size and
wall effects [32]. During the following cycles, o;/oy

0-T=||0"ﬁS_O'N'ﬁS
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FIG. 7. Shear stress ratio o7/ oy (a) and principal stress direc-
tion ¥ (b) as a function of the pile slope @ during cyclic rotations
for small (6,,,=10°) and large (6,,,=18°) amplitudes. The vertical
lines correspond to the value of —6, and 6,. The initial state is
represented by a diamond.

=aq tan(6) + e(oy/ oy),.» Where e=—1 (e=+1) during load-
ing (unloading) and a=0.8. A residual stress ratio (o7/ oy) s
of the order of 5% of the typical shear stress ratio is recorded
for §=0°. The principal stress direction W tends to +45° for
large inclinations, exhibiting a rather smooth evolution. For
hydrostatic equilibrium—i.e., equal normal stresses o,
=0,,—it would be expected that W=-45° (V'=+45°) for
6>0 (0<0).

The stress-state evolution of the granular pile is plotted in
Fig. 7 for the two successive cycles: the plots perfectly col-
lapse after the first loading. In the following, the two succes-
sive cycles are reported in all figures.

Altogether both the shear stress ratio o7/ oy and the prin-
cipal stress direction WV are controled by the inclination 6
(and its temporal derivative, as evidenced by the weak hys-
teresis), whatever the solicitations path and the history of
past cycles.

B. Deformation of the granular pile

The exploration of different metastable configurations re-
sults in the apparition of critical contacts in the packing,
which induces local rearrangements of grains (see Sec. III
and [27]). The effect of these rearrangements at the scale of
the pile is apparent when plotting the variations of the volu-
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FIG. 8. Volumetric strain €, as a function of the pile slope
during small and large cycles (same symbols as Fig. 7). The two
lines are indications of the compaction rate dey/dt for 6,,,=10° and
0,0,=18°.
metric strain e,=(V-V;)/V,, where V is the volume of the
pile and Vj, its initial volume, as a function of the slope of the
pile during successive small and large cycles (Fig. 8). At first
sight, we notice that, even if the initial solid fraction C and
the stress-state evolution of the pile are the same for the two
cyclic amplitudes (Fig. 7), the volumetric strain evolution
does depend strongly on 6,,,.

Irrespective of the value of 6,,,, cycles produce an overall
densification of the pile of the order of 107, corresponding
to a slight increase of the solid fraction C from 0.785 to 0.79.
Obviously, the small number of cycles experienced in the
present work does not allow one to observe a saturation of
the volume and eventually a critical state [9,43]. It is known
that in similar cyclic solicitations [39], as well as in other
experimental setups [10,44], even after a large number of
cycles (10* cycles), the volume still slowly decreases.

For slopes 6= 6,, the granular pile is contracting: €, de-
creases. On the contrary, for slopes in the range [ 6,;6,], the
rearrangements cause the granular pile to dilate: ey increases.
As a result, for small cycles (6,,,=10°), the compaction of
the granular pile remains monotonous (Fig. 8), whereas for
large cycles (6,,,=18°), the granular pile exhibits compac-
tion and dilation stages (Fig. 8). This latter behavior is typi-
cal when shearing dense granular media, because shear de-
formation is possible only if grains unjam, confirming the
onset of a coherent shearing above 6,.

Interestingly, the overall behavior of the pile over the
complete solicitation is modified in the case of large cycles:
the instantaneous compaction is twice more efficient for
large cycles (dey/dt=-7>%107s~") than for small ones
(dey/dt=-2x107° s7"). As a result and despite the dilation
stage occurring when 6 € [6,; 6,], the overall densification is
larger for large cycles than for small ones for the same num-
ber of cycles, showing that densification depends on the so-
licitation path [45]. This leads us to speculate that grains are
much more allowed to rearrange when the pile has previ-
ously evolved in the coherent shear regime identified prior to
the unjamming transition.
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FIG. 9. Kinetic energy E averaged over all the grains and slide-
averaged over 1° intervals, normalised by the typical potential en-
ergy of a grain of mass m for a height d, as a function of 6 for
0,.,=10° and 6,,,=18° (same symbols as Fig. 7).

This largest susceptibility for grains to rearrange in the
case of large cycles (6,,,=18°) is confirmed by monitoring
the averaged kinetic energy of the grains Ej, represented as a
function of the pile slope in Fig. 9 after slide-averaged over
1° intervals. The kinetic energy E, involved in the local re-
arrangements, also occurring at small inclinations 6, is much
higher when the granular pile has been loaded up above 6,
during its history. This evolution underlines the two different
states and evolutions of the pile for the two cyclic ampli-
tudes.

Exploring the domain [6,;6,] allows for stronger rear-
rangements and larger volumetric strains during the full so-
licitation despite no apparent signature on o7/ oy. As a result,
the volumetric deformation of the granular pile shows a
strong dependence on the amplitude of the cycles.

C. Evolution of the contact network

We now investigate the effect of the deformations on the
evolution of the microstructure—i.e., the geometry of the
contact network—which are candidates at relevant internal
variables [8,9,46-50].

1. Coordinancy of the grains

The coordinancy Z—i.e., the mean number of contacts per
grain, slide-averaged over 1° intervals—is plotted in Fig. 10
as a function of the pile slope during the cyclic solicitations.
For both values of the amplitude 6,,,, the coordinancy Z
varies less than 1%. Nevertheless, it exhibits a weak hyster-
esis according to the sense of rotation: Z tends to decrease
during loading, but to increase during unloading.

Small and large cycles are identified by two different
states: the value of the coordinancy depends on 6,,,. During
small cycles (6,,,=10°), Z remains approximately at its ini-
tial value, by contrast with large cycles (6,,=18°), for
which a variation of the coordinancy occurs during the first
exploration of the domain [6,;0,] and remains afterwards.

The smallest coordinancy observed for 6,,,=18° corre-
sponds to the densest granular piles, contrary to intuitive

051305-6



MEMORY OF THE UNJAMMING TRANSITION DURING...

3.48—=
344t =
S

34} IFE

20 -15 10 -5 0 5 10 15 20

0 (deg)

FIG. 10. Coordinancy of the grains Z slide-averaged over 1°
intervals as a function of the slope of the pile for successive small
and large cycles (same symbols as Fig. 7).

observations [51]. Such an anticorrelation between the evo-
lutions of the coordinancy and volume under an external
driving field could be related to the dependence of the pack-
ing equilibrium on its number of contacts. An “isostatic”
packing has the minimal number of contacts required to re-
main at metastable equilibrium, by contrast with a “hyper-
static” one, which could lose some contacts and not its equi-
librium. Yet for an initially static grain to rearrange, its
contacts have to cooperate, which is easier for a smaller
number of contacts. In the hyperstatic packing, a significant
cooperation of contacts is needed for a grain to rearrange, by
contrast with the isostatic packing, in which a slight change
in the force transmission at contacts will enable a local rear-
rangement of grains. In the case of large cycles, the signifi-
cant decrease of Z observed during the first loading makes
the packing become less hyperstatic: grain rearrangements
occur easily, enhancing the deformation of the pile.

2. Fabric of the pile

To further analyze the evolution of the microstructure of
the pile, we now consider the statistics of the orientation of
contacts. To do so, the fabric tensor ¢ is computed using the
following definition as defined in [52]:

1
tij:;

€
2 ninf, )
a=1
where i and j denote the space dimensions and « the contact.
n is the unity vector normal to the contact surface, and n° is
the total number of contacts. The fabric allows one to inves-
tigate the evolution of the geometry of the contact network,
especially if contacts are created, opened, or modified such
that their alignment tends towards a privileged direction. In
particular, the anisotropic intensity A is calculated as

A=2X(t;-1), (5)

where #; and #, are, respectively, the larger and smaller ei-
genvalues of £. In the case of an isotropic contact network—
e.g., spatially periodical—the anisotropic intensity A=0. The
direction of the eigenvector of ¢ corresponding to the largest
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during the successive cyclic rotations for 6,,,=10° and 6,,,=18°
(same symbols as Fig. 7).

eigenvalue is the fabric anisotropic direction, whose angle
with the direction ng is ®.

Figure 11(a) displays the evolution of the anisotropic in-
tensity A as a function of the pile slope during the cyclic
solicitations for 6,,,=10° and 6,,,=18°. During small cycles,
a rather isotropic state is observed, and only small variations
of A with € are observed (A =0.05): the geometry of the
contact network is only weakly affected by the solicitation
and remains close to the initial one. On the contrary, for large
cycles, the anisotropic intensity evolves significantly, show-
ing variations up to the maximum value A =0.12. Approach-
ing the unjamming transition obviously strongly modifies the
geometry of the contact network—e.g., by introducing struc-
tural anisotropy.

Figure 11(b) displays the evolution of the fabric aniso-
tropic direction @ as a function of the pile slope during the
cyclic solicitations for 6,,,=10° and 6,,,=18°. Irrespective
of the value of 6,,,, ® evolves during the solicitations and
rotates in the sense opposite to the driving rotation: @ de-
creases (increases) when @ increases (decreases). Following
this evolution, the fabric anisotropic direction tends to ap-
proach that of the free surface, and for large inclinations, ®
tends towards the principal stress direction W'=+45°. This
behavior corresponds to the mechanisms of creation of con-
tacts in the direction of compressive stress and the loss of
contacts in the direction of extension.
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Besides these general observations, the contact network
evolution exhibits more complex features. Both for small and
large cycles, the fabric exhibits a strongly marked hysteresis,
probing the irreversible modifications of the disordered mi-
crostructure. The hysteresis loops of A and ® are very
smooth. Furthermore, when the granular pile has approached
the unjamming transition—namely, for large cycles (6,
=18°)—the shape of the hysteresis is dramatically changed
and the loop amplified. This points out the peculiar effect of
coherent shearing occurring prior to the unjamming transi-
tion on the granular packing evolution. More particularly, the
fabric evolves less rapidly during unloading than during
loading for large cycles (6,,=18°). In other words, the
packing seems to be less able to reorganize its structure dur-
ing unloading than during loading when having approached
the unjamming transition in its history. The same remark
applies both to the evolution of the anisotropic intensity A
and to the fabric anisotropic direction ®. This may be rather
unexpected given that the efficiency of rearrangements is in-
creased in the case of large cycles and this during the com-
plete solicitation.

Note that for large amplitudes (6,,,=18°), the hysteretic
cycles of A and & are symmetric, by contrast with small
amplitudes (6,,,=10°), for which an asymmetry related to
the initial fabric anisotropy remains. Exploring the range of
slopes [6,;6,] when approaching the unjamming transition
allows a profound modification of the contact network ac-
cording to its initial state, by increasing structural disorder.

Altogether the fabric of the pile (Z, A, and ®) at an angle
0 strongly depends on the solicitation path, as observed for
the pile deformation (e, and Ej).

V. RESPECTIVE ROLE OF STRONG AND WEAK
CONTACTS

Dense quasistatic granular media are known to exhibit
two complementary contact networks, strong and weak, de-
pending on the intensity of the normal force transmitted at
contacts [32,34,35,53,54]. Very recently, the role of the criti-
cal contacts in the destabilization of a pile [27,33], as well as
in the elastoplastic response of a granular packing [46] has
also been underlined. Still, it was shown that during the slow
tilting under gravity of a granular pile, critical contacts and
more generally high frictional contacts are mainly weak con-
tacts [27,33]. Here, in the line of these studies
[32,34,35,53,54] and as a first step towards the understand-
ing of the role of the microstructure and the heterogeneous
nature of contacts in the observed hysteresis, we choose to
concentrate on the respective contributions of the strong and
weak contacts to the hysteretic behavior of the pile. Further
works should definitely examine in more detail the role of
highly frictional contacts in the spirit of [33,46].

Accordingly, the computation of the stress and fabric ten-
sors is now restricted to strong or weak contacts using, re-
spectively, Eq. (1) and (4). In the present work, since a ver-
tical gradient of the contact forces is related to the gravity
field, a contact at a depth y is defined as strong (weak) if it
transmits a normal force larger (smaller) than the averaged
normal forces at depth y.
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Ws as a function of the pile slope during the successive loading-
unloading cycles for small and large amplitudes (same symbols as
Fig. 7).

A. Strong-contact network

Figure 12 displays the principal stress direction in the
strong-contact network W* as a function of the surface slope
during small (6,,,=10°) and large (6,,,=18°) cycles. The
evolution of W* is weakly hysteretic as a function of the pile
slope, and the hysteresis is approximately the same irrespec-
tive of the amplitude of the solicitation, as observed previ-
ously for the total contact network [Fig. 7(b)]. The strong-
contact network represents by far the largest contribution to
the global stress [34]. Accordingly W* and W exhibit very
similar behaviors.

The fabric anisotropic direction of the strong contact net-
work ®° is displayed as a function of the pile slope during
the cyclic solicitations in Fig. 13. The evolution of ®* exhib-
its hysteresis during the cycles of both amplitudes. However,
unlike the previous observations on the fabric of the total
contact network [Fig. 11(b)], the size of the hysteresis loops
is small for 6,,=10° and 18°. The evolution of ®° is very
much correlated with the evolution of W*, and the shapes of
the hysteresis loops of both W* and ®* are smooth.
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FIG. 13. Fabric anisotropic direction of the strong contact net-
work @ as a function of the pile slope during successive loading-
unloading cycles for small and large amplitudes (same symbols as
Fig. 7).
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During cyclic solicitations, neither the stress nor the fab-
ric of the strong-contact network is sensitive to the amplitude
of the cycles.

B. Weak-contact network

Figure 14 displays the principal stress direction in the
weak-contact network W" as a function of the surface slope
during small (6,,=10°) and large (6,,=18°) cycles. The
evolution of " is strongly influenced by the amplitude of
the solicitations. This qualitative change is not reflected by
the total-contact network response [Fig. 7(b)] due to the
dominant contribution of the strong-contact network to the
global stress [34].

Figure 15 displays the evolution of the fabric anisotropic
direction of the weak-contact network ®" as a function of
the pile slope for small (6,,=10°) and large (6,,=18°)
cycles. The response of the weak-contact network is again
strongly dependent on the cycles amplitude 6,,,, by contrast
with the response of the strong-contact network (Fig. 13).
For small cycles (6,,,=10°), ®" exhibits nearly no hyster-
esis and remains approximately always normal to ®°, as ob-
served in the case of continuous loading [33]. On the con-
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FIG. 15. Fabric anisotropic direction of the weak-contact net-
work ®" as a function of the pile slope 6 during small and large
cycles (same symbols as Fig. 7).
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trary, for large cycles (6,,=18°), a strong hysteretic
behavior is observed, which consists of a premature rotation
of ®" upon reversal: ®" switches beforehand during unload-
ing in comparison with loading. This effect leads to a re-
markable orientation of the fabric of the two contact net-
works: @ and ®° are equal during a part of the cycle,
attesting to the temporary alignment of the privileged direc-
tion of the two contact networks. The particularly early evo-
Iution of the weak-contact network geometry when the pile
has approached the unjamming transition is actually respon-
sible for the delay observed in the reorganization of the total-
contact network. As a consequence, upon reversal, the pack-
ing keeps the memory of the previous orientation of the
total-contact network during a large part of the cycle [Fig.
11(b)].

Contrary to the smooth shape of the hysteresis loops in
the strong-contact network (Fig. 13) and in the total-contact
network [Fig. 11(b)], the hysteresis loops in the weak-contact
network (Fig. 15) exhibit an abrupt macroscopic jump. It
should also be mentioned that the weak-contact network re-
sponse exhibits large fluctuations from one realization to an-
other one. These fluctuations are strongly enhanced close to
the unjamming transition. Evidence of these fluctuations is,
for instance, the noisy signal for V" (Fig. 14) and the ab-
sence of superposition of the hysteretic loops for ®" (Fig.
15).

Altogether, in the weak-contact network by contrast with
the strong one, both stress and fabric are very sensitive to the
amplitude of the cyclic solicitations. Two conclusions can be
drawn from these observations.

(i) In the limit of small solicitations—e.g., for cycles with
6,.,=10°—the hysteretic behavior of the granular pile when
looking at both the stress and fabric states is dominated by
the strong-contact network contribution.

(ii) For large cycles, with 6,,,> 6,—namely, when the
pile approaches the unjamming transition—the response of
the weak-contact network becomes strongly affected and the
hysteretic behavior of the pile is strongly modified despite
the lack of modification of the response of the strong-contact
network.

Accordingly the hysteretic behavior of the pile is the re-
sult of a complex interplay between the strong- and weak-
contact networks, whose relative contributions strongly de-
pend on the amplitude of the cycles.

VI. DISCUSSION AND CONCLUSION

The successive tiltings of the granular pile from different
initial conditions up towards the avalanche angle allow one
to demonstrate that the density and correlation length of the
critical contacts are relevant dynamic response functions to
describe the metastable evolution of the packing towards the
unjamming transition under external loading. Due to the
transient nature of the critical contact state, these quantities
are representative of actual loading of the pile, but they do
not characterize its plastic state.

The response of the granular packing to the quasistatic
cyclic solicitations reveals that the evolution of the critical
contacts is hysteretic when the pile has approached the un-
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jamming transition. At the transition from loading to unload-
ing, critical contacts cannot anymore sustain the sliding con-
dition, so that the frictional state of the packing is
immediately removed, attesting to the end of coherent shear-
ing, as observed in the case of experimental shear reversal
[23,37].

When looking for such memory effects on other features
of the pile—namely, on stress, strain, and fabric—they ex-
hibit different responses. The stress state exhibits weak hys-
teretic evolutions as a function of the slope, and the hyster-
esis is revealed to be independent of the amplitude of the
cycles. On the contrary, the strain and fabric evolutions of
the pile, related to structural disorder, are very sensitive to
the amplitude of the cycles. These observations will hardly
be explained by a simple constitutive law relating only stress
and strain of the granular pile: such a relation should be not
so trivial, but should take into account the anisotropy of the
pile microstructure [46-50,55]. The observation of piles with
the same stress state, but characterized by different granular
fabrics, would suggest that stress induced by gravity is trans-
mitted in the pile whatever the geometry of the total contact
network and whatever the structural disorder level.

Further analyses of the strong- and weak-contact contri-
butions to the macroscopic behavior allow us to clarify these
intriguing observations. In the strong-contact network, nei-
ther the stress nor the fabric depends on the solicitation am-
plitude. In the weak-contact network, both the stress and the
fabric are sensitive to the cyclic amplitude. The apparent
mismatch between stress and fabric at the scale of the total
contact network does not survive when separating weak- and
strong-contact network contributions. It simply comes from
the strong-contact network weight in the overall stress [34].
Accordingly, the above analyses stress the relevance of a
constitutive law which specifies the two-phase nature—weak
and strong—of granular media. In the strong-contact net-
work, stress and fabric are very much synchronized and a
rather simple relation could relate them. The behavior of the
weak-contact network is much more complex. A strong
memory of the unjamming transition affects the response of
the weak-contact network during the full solicitation, prob-
ably due to high sensibility of weak contacts to coherent
shearing occurring prior to the unjamming transition. Finally
the observed fluctuations in the weak-contact network are
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presumably related to long-range correlations. These correla-
tions within the pile allow a local rearrangement of grains to
further propagate and to affect essentially the weak contacts,
due to their highest frictional mobilization, as recently shown
in [27,33]. This high sensibility of the weak contacts to local
perturbations enables them to evolve collectively and to
change the microstructure of the packing. A signature of the
localization of the correlations in the weak-contact network
could be seen in the particular shape of the hysteresis loops.
Whereas the loops are very smooth in the total and strong
contact networks, the hysteresis loops in the weak contact
network exhibit abrupt macroscopic jumps. These respective
delay and instantaneous responses could be related to the
relative contribution of structural disorder and finite-size in-
teractions or correlations, as suggested in [56,57]. In this
picture, the hysteresis with a jump in the weak-contact net-
work would suggest that the size of correlations is larger than
the typical length scale of the structural disorder in this
phase, contrary to the predominant role of disorder in the
microstructure of the packing. Altogether, such complex
behaviors—spatial correlations and memory effects—call for
more elaborated constitutive laws as in [46-50,55].

To conclude, the behavior of the pile is strongly modified
close to the unjamming transition, as experimentally ob-
served [22,28,31], coinciding with important irreversible
modifications of the microstructure. These modifications re-
sult from a specific solicitation of weak contacts: these latter
play a considerable role in the behavior of the pile despite
their marginal contribution to the stress state. The present
paper demonstrates the relevance of a two-phase description,
not only for the destabilization process, but also for the qua-
sistatic rheology, as soon as the granular sample has ap-
proached the unjamming transition in its past history. Further
studies should investigate the complex behavior of the weak
phase in order to extract a constitutive relation for granular
materials, accounting for their two-phase nature.
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