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Abstract 
Using a discrete simulation method, we investigate 
numerically two-dimensional bi-disperse chute flows 
formed of a layer of larger grains overlaid by a layer 
of smaller grains, and analyze their evolution for 
different slopes and different volume fraction of large 
beads. As size segregation occurs, the vertical 
position of the centre of mass of the large beads is 
shown to increase exponentially with time with a 
typical time scale decreasing with the volume 
fraction of large beads. A simple model balancing lift 
and drag forces acting on large particles recovers this 
dynamics, successfully predicts the typical time scale 
of segregation, and allows this typical time scale to 
be related to the flow dynamics.  
 
 
1. Introduction 
Size segregation in granular systems is a frequent 
phenomenon observed once the distribution of grains 
size is sufficiently large, and the system undergoes a 
sufficiently rapid, or long-lasting, shear motion [1, 2, 
3, 4]. In this situation, larger grains raise to the 
surface while smaller one sink to the bottom as a 
result of "kinematic sieving", leading to 
heterogeneous patterns and spatial ordering [5, 6]. In 
the present study, we are interested in characterizing 
the rise of the larger beads as a results of the flow 
dynamics, and understanding what controls the 
efficiency of the mechanism, ie the typical time scale 
of segregation. To this purpose, discrete numerical 
simulation is a helpful tool, first because it allows for 
perfectly well-controlled "experimental" conditions 
(grain contact properties, flow geometry, flow 
duration), but mostly because it provides direct 
knowledge of the state of the system (velocities, 
forces, volume fraction). Simulating numerical two-
dimensional bi-disperse chute flows formed of larger 
and smaller grains, we analyze their evolution for 
different slopes and different volume fraction of large 

beads.  

 
 
Figure 1: A periodic bi-disperse granular bed in its 
initial state: a layer of large grains is overlaid by a 
layer of small grains. 
 
 
2. The numerical flows 
Considering a perfectly two-dimensional geometry, 
we form a granular layer made of two species of 
grains of circular shape, on an incline of slope θ and 
subjected to gravity. The large beads have a mean 
diameter dL and the small beads have a mean 
diameter dS. The ratio dL=dS was not varied: we 
chose dL=dS = 2. To ensure long flow durations, 
periodic boundary conditions were implemented; the 
width of the simulation cell is 50dS. We denote ξ the 
volume fraction of large beads, ie the ratio of the 
volume of large beads to the total volume of grains: ξ 
= VL/(VS + VL). Accordingly, the volume fraction of 
small beads is given by (1 - ξ). In the simulations, _ 
was varied between 0.08 and 0.89. The slope of the 
granular bed θ was varied between 17°5 and 22° to 
the horizontal, allowing different flow velocities. 

3. An exponential evolution 
The center of mass of the large beads yG is plotted as 
a function of time in Figure 2: it exhibits an 
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exponential increase towards a saturated segregated 
state which corresponds to the stationary regime. The 
exponential rise of the large beads in the flow is a 
robust feature: the position of the centre of mass of 
the large grains yG obeys the following evolution: 

yG(t) = y0 + (y∞ - y0) [1-exp(-t/τ)]              (1)                
 
where y0 and y∞  are respectively the initial and final 
value of yG, and τ is the typical time scale character-
izing the segregation process. 
  

Figure 2: Position of the center of mass of the large 
beads yG as a function of time t for a granular flow 
inclined at an angle θ = 18° and with a volume 
fraction of large beads ξ = 0.37. The dotted line 
shows the exponential fit. Inset graph: same 
evolution with respect to initial and final position (y∞ 
- yG)  / (y∞ - y0) in a log-lin graph.  
 
 
4. A Lift-and-drag model 
Assuming the existence of a lift force, a possible 
form for the lift is: 

Flift  = C  (y∞ - yG)  / (y∞ - y0)             (2) 
where C is a function with the following dimension: 
[C] = ρL3T–2 in a two-dimensional problem. 
Due to the lift force Flift, the large grains rise in the 
flow. As a result, they experience a drag applied by 
the smaller grains. By analogy with the drag in 
viscous fluids, the mean vertical velocity of the flow 
being zero, the drag force is given by [7]: 

Fdrag = D dyG/dt                                         (3) 
where D is a function with the following dimension 
[D] = ρL2T–1 in a two-dimensional problem. Equating 
lift and drag force recovers the observation: 

yG (t) = y0  + (y∞ - y0 ) 1 - exp(– C
D(y∞ - y0 )

 t)
⎛
⎝⎜

⎞
⎠⎟

 (4) 

 

Deriving lift and drag expression from dimensional 
arguments, we can thus make a prediction for the 
time scale τ : 

 τ = D(y∞ - y0 )
C

                                          (5) 

This prediction, explicitly discussed in the 
contribution, proves a good description of the data 
(Figure 3). 
 

 
Figure 3: The normalized typical time-scale of 

segregation  τ / H
dL
(1−ξ )  as a function of the 

normalized shear rate γ . The plain line shows the 

prediction (1 / γ
2
+75) . 
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