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Global warming: monthly temperature anomaly

The combined land-surface air and sea-surface water temperature anomaly is given as the deviation from the
1951-1980 mean.
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Data source: NASA Goddard Institute for Space Studies - GISS Surface Temperature Analysis
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Emissions de GES jusque en 2021

Greenhouse gas emissions until 2021
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Focus on France
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Focus on France

France is doing certain things well
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PLANETE - POLLUTIONS

= fe¢ mnnﬂg Planéte Comprendre le réchauffement climatique 9 indicateurs de I'urgence climatique

sz S, Zaleski

Climat: les émissions de gaz a effet de serre ont
baissé en France sur les trois premiers trimestres de

2023

Selon le barométre du Centre interprofessionnel technique d’études de la pollution atmosphérique, les
trois grands contributeurs de cette baisse, estimée a 4,6 % par rapport 4 2022, sont la production

d’énergie, I'industrie et les batiments.

Par Stéphane Foucart

Publié le 26 décembre 2023 4 15h44, modifié le 27 décembre 2023 4 09h06 - & Lecture 3 min.
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Article réservé aux abonnés

La centrale nucléaire EDF de Cattenom (Moselle), le 13 juin 2023. YVES HERMAN / REUTERS
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Annual CO, emissions

Carbon dioxide (CO,) emissions from fossil fuels and industry*. Land-use change is not included.
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Data source: Global Carbon Budget (2023) OurWorldInData.org/co2-and-greenhouse-gas-emissions | CC BY
1. Fossil emissions: Fossil emissions measure the quantity of carbon dioxide (CO,) emitted from the burning of fossil fuels, and directly from

ndustrial processes such as cement and steel production. Fossil CO, includes emissions from coal, oil, gas, flaring, cement, steel, and other
ndustrial processes. Fossil emissions do not include land use change, deforestation, soils, or vegetation.
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Annual CO, emissions from land-use change, 1850 to 2022

Emissions from land-use change can be positive or negative depending on whether these changes emit (positive)
or sequester (negative) carbon.
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Other things not so well
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Add emissions embedded in imported products and services.
Remove emissions embedded in exported products and services.

Consumption-based CO, emissions

Consumption-based emissions include those from fossil fuels and industry?®. Land-use change emissions are not
included.
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INTERGOVERNMENTAL PANEL oN Climate chanee

Climate Change 2022
Mitigation of Climate Change

Summary for Policymakers



Pathways

a. Global GHG emissions
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Modelled pathways:

== Trend from implemented policies ™==———

= Limit warming to 2°C (>67%) or return warming to
1.5°C (>50%) after a high overshoot, NDCs until 2030

= Limit warming to 2°C (>67%)
—— Limit warming to 1.5°C (>50%) with no or limited overshoot

-1 Past GHG emissions and uncertainty for 2015 and 2019
(dot indicates the median)

NDC : National Determined Contibutions
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Emissions de GES jusque en 2021

Trend from
implemented
policies
World
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Soilutions are available: wind and solar have become much cheaper
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Li-on battery packs ($2020/kWh
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But energy storage remains a big issue

Batteries for passenger
electric vehicles (EVs)
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Hydrogen economy ?
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Electric / Hydrogen energy system.

grid connection
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photovoltaic I I storage
[ [ [ 1 [ [ ] 1] ' '
[ 1 [ [ [ [ [
IEEEEEER
INEEEEEN
A It
Y \
DC/DC AC/DC DC/AC DC/DC
A A
Y Y ‘t
/Y
v DC bus
DC/DC DC/DC
alkaline water fuel Iy
Y electrolysis cell
EI H, storage H, L
! A
b !
H,O ; optional H,0
: O, : 0, : O, or air
--------------- > !
1 storage
_ _ _____ 1
"\ SORBONNE
v e =
vie /55 Cir) (3 UNIVERSITE



n4

Colors of Hydrogen

Green hydrogen: wind or solar electricity + electrolysis
Pink hydrogen: nuclear electricity + electrolysis
White hydrogen: native, from underground geological sources

Turquoise hydrogen: from pyrolisis of methane

/55

h )

S

SORBONNE
UNIVERSITE

uuuuuuuuuuuuuuuuu
ssssssssss



'l‘
1P

Green Hydrogen version

grid connection
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Colors of Hydrogen

Green hydrogen: wind or solar electricity + electrolysis
Pink hydrogen: nuclear electricity + electrolysis
White hydrogen: native, from underground geological sources

Turquoise hydrogen: from pyrolisis of methane
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Pink Hydrogen version

grid connection

energy
' ' storage
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Turquoise Hydrogen version

200 kt.a* H,

Hy
storage

mobile power sources

fuel
cell

y
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Turquoise Hydrogen version

200 kt.a* H,
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Yet another use : how to still use your Ferrari car

Pyrolisis

Other gases
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Is Direct Air Capture realistic ?

- the price range is from 140 to 990 USD !!!

/155

" SORBONNE
b UNIVERSITE
RRRRRRRRRRRRRRRRR

ssssssssss



Is Direct Air Capture (DAC) realistic ?

- the price range is from 140 to 990 USD !!!

- The Inflation Reduction Act, passed in 2022, allocates subsidies of USD 180 (€165) per
tonne captured through DAC.

- Burning a ton of gasoline emits 3 tons of CO2, so it would cost 3000 USD per ton of
gasoline. But 1000 liters of gasoline cost 2200 USD at the gas station in France: same
order of magnitude, but significantly more expensive.
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Techno-solutionism ?
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Three tOPiCS 200 kt.a™ H,

Molten tin
1100°C

- Pyrolisis

>
3
o
fey,
[0

- Electrolysis ElecTyte
s Solution

Gas separator

Hydrogen tank for aerospace
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Pyrolisis

CH4 ———  2H2+(Q)

- Non-catalytic
- Catalytic : steel, gallium, carbon

Two types of reactor: liquid metal or carbon bed.
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Liquid Metal Bubble Reactor

(a) Product H,, Unreacted CHy and PAHs

Gas
Clarbon il
(LMBR) o had
Solid I
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Solid
carbon /
Bubbles
Molten Hyp
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b (b)
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Inlet gas (mainly CH,)
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Essential phenomena

- hydrodynamics (two phase)

- reaction on surface or in bulk

- soot formation

- radiative transfer.

- conductive and convective heat transfer.
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Fluid equations: Navier--Stokes

O¢(pu) +V - (puu) = =Vp+ V- T + pg + F.,
Species transport is described by Fick's law

O¢(px;) + V- (pux;) =V - j;
where x; is the mass concentration and j is the Fickian diffusive transport
of species i.

Heat transport is described by the energy equation.

De
Dt

p FpV-u=9+V.q
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q is the heat flux which may be decomposed into diffusive and radiative flux as

follows

q=da

with

qr,

qa = — )\VT

where A is Fourier's coefficient and q, is the radiative flux. The opacity of the soot
and any more compact carbon layer may affect the radiative transfer importantly,

fortunately we have

Guillaume Legros and Raghavendra Raman

who are great experts of radiative heat transfer.
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Can we do radiative transfer with Basilisk ?
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JOURNAL OF COMPUTATIONAL PHYSICS 139, 380-398 (1998)
ARTICLE NO. CP975870

An Adaptive Mesh Refinement Algorithm
for the Radiative Transport Equation

J. Patrick Jessee,™ Woodrow A. Fiveland, Louis H. Howell,t Phillip Colella,f
and Richard B. Pemberf

* Research and Development Division, Babcock & Wilcox, Alliance, Ohio 44601 ; tCenter for Computational
Sciences & Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720
E-mail: patrick.jessee@mcdermott.com

Received March 18, 1997; revised October 17, 1997
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Anticipated difficulties:

- Narrow regions for reaction or surface reactions >combustion models.
- Marangoni (surface tension gradient) effects.

- Large density ratio, large surface tension effects.

- Thin chemical boundary layers.

(In technical terms, small Morton number and large Schmidt numbers)
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Mag(u)
1

2.7mm bubble
in molten tin.

Video by

Mohammad . 0
Taleghani

with the help
of Jieyun Pan

using Basilisk

Mo = 2.992e—-15 , N = 1.794e+07 , Eo = 9.874e—-01 |, eta_rho = 4.3e+04
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Elctrolisis

apouy

Electrolyte

Solution
(Water)

Gas separator
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(i) Nucleation (ii) Growth (iii) Detachment

Electrolyte @
. TFb @ et @ .
. L R\ Evolution of an hydrogen bubble
S e Mo | L
2e V*F \/
Electrode 9
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(i) Nucleation (ii) Growth (iii) Detachment
Electrolyte @
@/ I @ Evolution of an hydrogen bubble
2&\4+ /‘Hm ‘ \ )
2e V V * F V
Electrode g
(i) Nucleation (ii) Growth (iii) Detachment
_ vapor T=Te
T=T(2) bubble
@ b @ Evolution of a vapor bubble
’ \
CT=Tg + AT_ . evaporation | ]
QV.L v L
T =T
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(i) Nucleation (ii) Growth (iii) Detachment

T =T(z)
RebIl
T=Te +AT evaporation O IT=T, \ /
- JQ.L \/ N v /.
T = TwaII * Fo
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Level 12

T VOF
112
110
. . 1108
Simulation by 9
Tian Long ©
106 g
. ofe 2
using Basilisk 5
(modified
104
for phase change
and heat transfer)
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Simulations by Xiangbin Chen,
(modified for phase change and heat transfer)

Using Basilisk with contact-embed (modified)
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Electrolysis simulation by Wei Qin and Tian Long

constant H2 flux

v
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Electrolysis simulation
by Wei Qin
and Tian Long
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interaction

of many small bubbles
with large detaching
bubbles.
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X
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Difficulties

- Physical understanding : why so many small bubbles ?
- Marangoni effects

- Large density ratios.

- Thin chemical boundary layers.
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The Hydrogen Aircraft Sloshing Tank Advancement (HASTA) project
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Universities

Le Cap (Arnaud Malan,Yusufali Omar)
Bristol

Roma La Sapienza

Roma Niccolo Cusano

d’Alembert and SU

Public and private agencies

Von Karman Institute

UK Research and Innovation (UKRI)
CNR (Italie)

Military Technical Academy Ferdinand |
DLR

Industrial partners

Airbus
ArianeGroup
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Non-dimensional Pressure
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plan: use VOF and phase change models to simulate
sloshing with heat and mass transfer.

Project start September |, 2024.
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The end
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Morton number

Schmidt number

Galileo number

Eotvos number
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Temperature gradient  lon concentration gradient

Single H, gas bubble
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Subgrid method

Fit a boundary layer
distribution of concentration

above the interface.

Boundary layer shape solution of

[ur + w(z — 2ou)]0,C = D,,02.C

Allows to deal with super thin boundary layers.
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Figure: Visualization of Advection Correction: The green region
represents the SGS tracer flux
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Greenhouse gas emissions by gas, World, 1850 to 2021

Greenhouse gas emissions® from all sources, including agriculture and land-use change. They are measured in
tonnes of carbon dioxide-equivalents? over a 100-year timescale.
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Data source: Jones et al. (2023) OurWorldInData.org/co2-and-greenhouse-gas-emissions | CC BY

1. Greenhouse gas emissions: A greenhouse gas (GHG) is a gas that causes the atmosphere to warm by absorbing and emitting radiant energy.
Greenhouse gases absorb radiation that is radiated by Earth, preventing this heat from escaping to space. Carbon dioxide (CO,) is the most
well-known greenhouse gas, but there are others including methane, nitrous oxide, and in fact, water vapor. Human-made emissions of greenhouse
gases from fossil fuels, industry, and agriculture are the leading cause of global climate change. Greenhouse gas emissions measure the total
amount of all greenhouse gases that are emitted. These are often quantified in carbon dioxide equivalents (CO,eq) which take account of the
amount of warming that each molecule of different gases creates.

2. Carbon dioxide equivalents (CO,eq): Carbon dioxide is the most important greenhouse gas, but not the only one. To capture all greenhouse

gas emissions, researchers express them in “carbon dioxide equivalents” (CO,eq). This takes all greenhouse gases into account, not just CO,. To
express all greenhouse gases in carbon dioxide equivalents (CO,eq), each one is weighted by its global warming potential (GWP) value. GWP
measures the amount of warming a gas creates compared to CO,. CO, is given a GWP value of one. If a gas had a GWP of 10 then one kilogram of
that gas would generate ten times the warming effect as one kilogram of CO,. Carbon dioxide equivalents are calculated for each gas by multiplying
the mass of emissions of a specific greenhouse gas by its GWP factor. This warming can be stated over different timescales. To calculate CO,eq
over 100 years, we'd multiply each gas by its GWP over a 100-year timescale (GWP100). Total greenhouse gas emissions - measured in CO,eq -
are then calculated by summing each gas’ CO,eq value.

S

SORBONNE
UNIVERSITE

CREATEURS DE FUTURS
DEPUIS 1257



ve
[ po¢

Nitrous oxide emissions

Nitrous oxide (N,O) emissions are measured in tonnes of carbon dioxide-equivalents.

~ L China

400 million t

300 million t

_— India
\/ _E United States
European Union (28)

200 million t

100 million t

— France

O t ) T T T T T T T 1
1850 1880 1900 1920 1940 1960 1980 2000 2021

Data source: Jones et al. (2023) OurWorldInData.org/co2-and-greenhouse-gas-emissions | CC BY

1. Carbon dioxide equivalents (CO,eq): Carbon dioxide is the most important greenhouse gas, but not the only one. To capture all greenhouse

gas emissions, researchers express them in “carbon dioxide equivalents” (CO,eq). This takes all greenhouse gases into account, not just CO,. To
express all greenhouse gases in carbon dioxide equivalents (CO,eq), each one is weighted by its global warming potential (GWP) value. GWP
measures the amount of warming a gas creates compared to CO,. CO, is given a GWP value of one. If a gas had a GWP of 10 then one kilogram of
that gas would generate ten times the warming effect as one kilogram of CO,. Carbon dioxide equivalents are calculated for each gas by multiplying
the mass of emissions of a specific greenhouse gas by its GWP factor. This warming can be stated over different timescales. To calculate CO,eq
over 100 years, we'd multiply each gas by its GWP over a 100-year timescale (GWP100). Total greenhouse gas emissions - measured in CO,eq -
are then calculated by summing each gas’ CO,eq value.
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Ficure 19. Top: Northern hemisphere summer sunshine intensity as
modulated by orbital variation. Bottom: ice volume. Vertical bars are times
when summer sunlight drops below a Trigger value. In those times, ice

grows.

David Archer, The Long Thaw, 2009, Princeton University Press
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