

De la complexité d'une approche globale de la conception des logements, au regard de l'atténuation et de l'adaptation au changement climatique

thibaut.lecompte@univ-ubs.fr

Séminaires généralistes, Institut d'Alembert, 18 septembre 2025

Climate change issues: global disparities

Climate change: a limits' to growth symptom

Climate change issues: mitigation and adaptation

Climate change issues: mitigation and adaptation

5/31

Example of France

FRENCH DWELLING PARK BY ENERGY CONSUMPTION CLASS (JANUARY 2018)

YEARLY CARBON FOOTPRINT OF BUILDING SECTOR IN FRANCE (2019)

~ whole: **31%** of anthropogenic GHGs in France

=

~ 5%: Building phases (new and renovation)

+

~ **26%** : Buildings Energy Consumption

- ⇒ Necessity to intensify renovations
- ⇒ Necessity to reinforce energy consumption rules

Carbon Footprint of **low-energy buildings** (after french regulation « RT2012 »), **Lifespan of 50 years**, offices and collective housing

[Parkin et al., Net Zero buildings: when carbon and energy metrics diverge, Buildings and Cities 2020; Röck et al., Embodied GHG emissions of buildings – the hidden challenge for effective climate change mitigation, Applied Energy 2020]

[Données AIE, 2013]

Global Building Sector Assessment

[Parkin et al., Net Zero buildings: when carbon and energy metrics diverge, Buildings and Cities 2020; Röck et al., Embodied GHG emissions of buildings – the hidden challenge for effective climate change mitigation, Applied Energy 2020]

Global Building Sector Assessment

2022 UN environment programme:

- In 2021, emerging economies increased their use of fossil fuel gases in buildings.
- In 2021, GHG emissions from buildings operations have reached an all-time high of around 10 GtCO_{2eq}

•[UN environment program, 2022 global status report for building and construction towards a zero-Emissions, efficient and resilient building and construction sector;

•Rondinel-Oviedo & Keena, 2022 IOP Conf. Ser.: Earth Environ.Sci.]

Operating Carbon Footprint

- Necessity to estimate and measure the real performance of building envelopes
- Necessity to select low GHG emitters energy systems

Embodied GHGs

•[UN Environment Programme (2023). Building Materials and the Climate: Constructing a New Future; Berndes, et al. (2023), Forest biomass, carbon neutrality and climate change mitigation, From Science to Policy 3, European Forest Institute]

Adaptation of the « Kaya » formula

 $CC (housing) = Nb \ of \ Inhabitants \times \frac{Service}{Inhabitant} \times \frac{Energy}{Service} \times \frac{E}{E}$ **Carbon Intensity Efficiency Sufficiency** of energy - Performance of - Ambiant Temperature materials, windows - National Energy Mix - Living Floor Space and systems - Fuel and systems' choices - Orientation **Carbon intensity and energy** Sufficiency intensity of materials - Living Floor Space Low tech materials - Compactness Local materials **Biobased** materials Circular economy

Adaptation of the « Kaya » formula

Sufficiency: living floor surface and compactness

Living Floor Surface: 100 m² (French Climate)

« cubic », 2-floors house compactness = 0.97 m⁻¹

- + 40% materials
- + 30% heating energy

Angular one-floor house compactness = 1,27 m⁻¹

Adaptation of the « Kaya » formula

Efficiency: Windows performance and orientation

« cubic », 2 floors house

Living Floor Surface: 100 m²

Windows area: 20 m^2 U (walls) = 0,14 W/(m^2 K)

(Data from PHPP Sofware)

Sun Right Manifesto!!

Adaptation of the « Kaya » formula

Carbon Intensity of Energy

GHG Emissions for 1 kWh of electric energy (gCO2eq) (French context)

	gCO ₂ eq/kWh electric	
Nuclear	~6	
Wind	~15	X 7
Solar	~44	X 10 X 17
Natural Gas	~420	× 10
Fuel Oil	~730	
Coal	~1000	

Carbon Intensity of Energy

Electricity Mix

(European Union)

Assessment in the French Context, 1990 => 2016

French Government objectives:

- Carbon neutrality= to divide GHG emissions by a factor 6 between 1990 and 2050
- To divide by 2 energy consumption between 1990 et 2030

Assessment in GLOBAL Context

Figure 7. Global buildings energy demand and floor area growth under the IEA Net Zero Emissions by 2050 Scenario

Assessment in GLOBAL Context

Adaptation of the « Kaya » formula

 $CC (housing) = Nb \ of \ Inhabitants \times \frac{Service}{Inhabitant} \times \frac{Energy}{Service} \times \frac{E}{E}$ **OPERATION Carbon Intensity Efficiency Sufficiency** of energy - Performance of - Ambiant Temperature materials, windows - National Energy Mix - Living Floor Space - Fuel and systems' choices and systems - Orientation **Carbon intensity and energy** Sufficiency intensity of materials - Living Floor Space Low tech materials - Compactness Local materials **Biobased** materials Circular economy

Carbon Intensity and Energy Intensity of building materials

[Keena et al., Implications of circular strategies on energy, water, and GHG emissions in housing of the Global North and Global South, Cleaner *Ingineering and Technology, 2023*]

Compare with an appropriate Functional Unit

 $0.14 \text{ kgCO}_{2ea}/\text{ kg}$ (ref) Typical Concrete (30 MPa grade):

0.11 kgCO_{2ea} /kg (~-25%) LC³ (Calcined Clay Limestone Cement) Concrete:

 $0.1 \text{ kgCO}_{2\text{eq}} / \text{kg}$ (~-28%) Timber (Douglas, French context):

 $0.49 \text{ kgCO}_{2eq} / \text{kg} (^+250\%)$ Steel (Arcelor Mittal, French context)

Compare by MASS is NOT VALID

Compare with an appropriate Functional Unit

Function: Vertical structure

Lifespan: 100 years

Performance: load bearing of multistorey building

Quantity: 1m² of wall

- ⇒ Concretes: solid walls, or blocks, or reinforced beams
- \Rightarrow Timber: 45*200mm² beams, every 60 cm
- ⇒ Steel: H beams HEA 180, every 2 m

Comparing Mass Approach and FU Approach

Consider biogenic AND fossil GHGs

Function: Insulation

Lifespan: 50 years

Performance: R=7m²K/W

Quantity: 1m² of wall

=> Even 100% Biobased materials can contain (hidden) embodied Fossil GHGs

Compare with appropriate Metrics

Global GWP100 of human activity:

Compare with appropriate Metrics

Timber+Straw Bales vs Concrete blocks+Glass Wool

The issue of biobased (wood) ressources

Annual forest area net change, by decades and region, 1990-2020

The issue of biobased (wood) ressources

The issue of real performance assessment

Climate Change issues

Action!

- Proper CC indicators/ metrics needs => PhD Thesis of Vladimir Zieger (2023-2026)

Action!

- Design and assessment of low carbon materials for building
 - ⇒ « Bauges Porteuses » (AAP SIC ADEME, 2023-2027) : design and mechanics of Cob
 - ⇒ « LOCABATI » (AAP Bât. Resp. ADEME, 2022-2026) : characterisation and performance of agro-ressources for building
 - ⇒ « PROJETERRE » (Région Bretagne, 2024-2027) : light earth for building: process, rendering and exterior insulation

Material Scale

GdR MBS

MATÉRIAUX de CONSTRUCTION BIOSOURCÉS

Building Scale

Action!

- Dwelling monitoring needs => Rescather project (Région Bretagne, 2024-2026)

Raspberry Pi

⇒ Thermal flux, T°, %rh

 \Rightarrow Pollutants, CO₂...

Conclusion

- 1- Bruce Lee: "Don't pray for an easy life, pray for the strength to endure difficult one"
- ⇒ Don't **search** for an easy life, **search to explain** and endure difficult one!
- 2- Friedrich Nietzsche: "Woe is me, I am nuance!"

thibaut.lecompte@univ-ubs.fr

Séminaires généralistes, Institut d'Alembert, 18 septembre 2025