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We use an elastic rod model with contact to study the extension versus rotation diagrams of single
supercoiled DNA molecules. We reproduce quantitatively the supercoiling response of overtwisted
DNA and, using experimental data, we obtain an estimate of the effective supercoiling radius and
of the twist rigidity of B-DNA. We find that the twist rigidity of DNA seems to vary widely with
the nature and concentration of the salt buffer in which it is immersed.

PACS numbers: 36.20.-r, 62.20.Dc, 87.15.La, 05.45.-a

Primarily the DNA molecule simply is the carrier
of our genetic code. But in order to understand how
a 2 m long string of DNA can fit into a 10 µm nu-
cleus, one has to also consider its mechanical proper-
ties, namely the fact that the DNA double helix is a
long and thin elastic filament that can wrap around it-
self or other structures. These mechanical properties
will in general depend on the sequence of base pairs
(bp) of which the molecule is made. Nevertheless the
behavior of long molecules, i.e. more than a hundred
bp, is well described by a coarse-grained model known
as the worm-like chain [1], where DNA is considered as
a semi-flexible polymer with bending persistence length
A. This is the contour length over which correlations
between the orientation of two polymer segments is lost.
It can be viewed as the ratio of the elastic bending rigid-
ity K0 to the thermal energy kB T , hence K0 = A kBT .
The commonly accepted value is A = 50 nm in a physi-
ological buffer. In the magnetic tweezer experiment [2]
a single DNA molecule (of total contour length L) is
anchored on a glass surface at one end, and glued to a
magnetic bead at the other end, see fig. 1. A magnet
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FIG. 1: The magnetic tweezer experiment.

controls the bead and transmits to it a twisting moment

and a pulling force F . The force is tuned via the mon-
itored distance between the magnet and the bead and
its intensity is measured using the Brownian motion of
the bead. In order to input a twist constraint into the
system, one gradually rotates the magnet around an
axis perpendicular to the glass surface. Experiments
are carried under constant force F , and the end-to-end
distance Z of the DNA molecule is recorded together
with the number of turns, n, made on the bead. Since
no direct measurement of the twist moment is possible
with magnetic tweezers, the twist persistence length C
is not directly available. When no rotation is put in, the
DNA molecule behaves like a semi-flexible polymer, i.e.
the relative extension z = Z/L is a function of the tem-
perature T , the persistence length A and the applied
pulling force F [3]:

z(n = 0) = 1 −
√

kB T/(4 A F ) . (1)

A refined version of this relation is used to extract A val-
ues from experimental data [4]. Then under gradually
increased rotation, the extension z decreases with the
number of turns, n, put in and eventually the molecule
starts to wrap around itself. Geometrically speaking,
the DNA molecule is coiling around itself in a helical
way. Since the molecule is already a double helix, we
refer to this as supercoiling. Each helical wave of the
super helix is called a plectoneme. Different theoreti-
cal studies have been applied to this experiment, intro-
ducing the concepts of worm-like rod chain [5], or the
torsional directed walk [6], but neglecting self-contact.
Monte Carlo simulations of a model chain with hard-
wall contact and an effective diameter have also been
performed [7]. Plectonemic structures were considered
in [8] by introducing the superhelix solution in the free
energy of the chain.

Here we present an elastic model that specifically
includes self-contact but leaves out thermal fluctua-
tions. Our point is that, in the regime where plec-
tonemes are formed, the relevant physical information
is already present in our zero-temperature elastic rod
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model with hard-wall contact. In order to focus on su-
percoiling, we consider the simplest elastic rod model
that includes twist effects and can have 3D shapes. Fol-
lowing the classic terminology of the Euler planar elas-

tica for twistless 2D shapes, we call the present model
the Kirchhoff ideal elastica [9]. The elastic energy reads:

E =
1

2

∫ L

0

(

K0 κ2(s) + K3 τ2(s)
)

ds ,

where s is the arclength, κ(s) the curvature of the centre
line, τ(s) the twist rate of the cross section around the
centre line (in the case of an ideal elastica τ is a constant
of s), and K0 and K3 are the bending and twist rigidities
respectively. The Kirchhoff equilibrium equations read:

F ′(s) + p(s) = 0 (2)

M ′(s) + r′(s) × F (s) = 0 (3)

where F (s) and M(s) are the internal force and mo-
ment respectively. The external force per unit length
p(s) can model electrostatic repulsion, gravity or hard-
wall contact. The centre line of the rod is given by r(s)
and t(s) = r′(s) is its tangent. In the case of an ideal
rod it can be shown [10] that:

K0 t′(s) = M(s) × t(s) (4)

K0 d′

1
(s) = (M(s) − τ (K3 − K0) t(s)) × d1(s) (5)

where d1(s) is a unit vector, lying in the cross section,
that follows the twist of the centre line. For a DNA
molecule, it is generally taken as the vector pointing
toward the major groove. For the parts free of contact,
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FIG. 2: Fitting the linear part of the response curve.

we have p(s) ≡ 0. In the case of self-contact there are
two points along the rod, say at arclengths s1 and s2,

where the inter-strand distance |r(s1) − r(s2)| is equal
to twice the radius of the circular cross-section (which
we denote by ρ). At point s1, we introduce a finite jump
in the force vector F (s):

F (s < s1) = F (s > s1) + δF12 (r(s1) − r(s2)) /2ρ (6)

where δF12 is a positive real number. The same treat-
ment is done at point s2, with the same δF12 [10, 11].
This corresponds to having a Dirac function for p(s)
in (2). In the case of continuous sections of contact,
p(s) is a function with changing direction and inten-
sity. In our model we only consider cases where the
contact occurs either at discrete points or along straight
lines. This model has already been used [12, 13] and is
well described in [11]. We numerically find equilibrium
configurations matching the boundary conditions using
classical path following techniques; first a self made al-
gorithm relying on multiple (or parallel) shooting, then
using the code AUTO [14] that discretizes the boundary
value problem with a refined finite differences scheme.
The different types of solutions (straight, buckled, su-
percoiled) are found in the following way. We fix the ra-
dius ρ and the vertical component F of the force vector
F (s = 0) acting on the bead. We start with a straight
rod with no rotation (z = 1, n = 0) and we twist the
rod gradually. This corresponds to following the z = 1
line on fig. 2 (σ is proportional to n). At point b0, the
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FIG. 3: Experimental response curves with a 48 kbp DNA
molecule in a 10 mM phosphate buffer. The differents curves
correspond to experiments carried at fixed force (from bot-
tom to top, 0.25, 0.33, 0.44, 0.57, 0.74, 1.1, 1.31, 2.2, and
2.95 pN). Unpublished data by S. Komolikis.

path of straight solutions crosses the path of buckled
solutions. Following this new path, configurations get
more and more buckled, and eventually (at point b1) we
cross another path of solutions with one discrete con-
tact point. At b2, this latter path will intersect a path
of configurations with two contact points. At b3 solu-
tions with three discrete contact points arise, and even-
tually, at b4, they bifurcate to solutions including a line
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of contact in addition to discrete contact points. We
call them supercoiled configurations. In a supercoiled
configuration, the parts that are in continuous contact
have a helical shape. We call this twin super-helix a ply.
The ply is defined by its radius ρ and its helical angle
θ (see fig. 1). Each time we choose a different force F
or radius ρ, the entire numerical continuation has to be
re-run. Since we do not consider thermal fluctuations,
it is no wonder that the first part (b0 to b2) of our nu-
merical response curve does not correspond to what is
found experimentally. On the other hand our model re-
produces quite precisely the part of the response curve
where the distance z decreases linearly with n, provided
we identify ρ not with the crystallographic radius of the
DNA molecule but with an effective supercoiling radius
due to electrostatic as well as entropic repulsion. We
numerically find that in the linear regime the helical
angle θ does not vary with n. We fit numerical solution
curves as in [15] and find that θ only depends on F , K0,
and ρ:

ρ2 F = K0 φ(θ) with φ(θ) = 1.65805 θ4 . (7)

This result enables us to extract the effective supercoil-
ing radius ρ and the twist rigidity K3 from magnetic
tweezer experiments on DNA. First we note that the
number of turns n applied to the magnetic bead can
be interpreted as the excess link of the DNA molecule:
n = ∆Lk. Link is normally defined for a closed rib-
bon but careful use of a closure permits the introduc-
tion of the link of an open DNA molecule [16, 17]. We
use the Călugăreanu-White-Fuller theorem to decom-
pose the excess link:

(n =) ∆Lk = ∆Tw + Wr (8)

where ∆Lk (resp. ∆Tw) is the difference between the
actual link (resp. twist) and the intrinsic link (resp.
twist) of the double helix. The writhe Wr is the av-
erage number of crossings of the centre line one sees
when looking at the molecule from all possible view-
points. Mechanical balance of the ply imposes a relation
between the twist rate and the helical angle θ[11]:

τ = (−ε)K0 (tan 2θ − sin 2θ) /(2ρ K3) , (9)

where ε = ±1 stands for the chirality of the ply [18].
Since the twist rate is constant along the rod, we have
∆Tw = τ L/(2π). Generally writhe is not additive but
using Fuller’s theorem [19] with a carefully chosen ref-
erence curve we may write : Wr = Wrloop + Wrtails +
Wrply (we neglect Wrloop and Wrtails). Directly com-
puting the writhe from the double integral yields [16]:

Wrply = (−ε)Lply sin 2θ/(4π ρ) . (10)

The total contour length L of the DNA molecule is given
and we write: Lply = L−Lloop−Ltails. We neglect Lloop

and we set Ltails/Z(σ) = L/Z(0) in order to account
for thermal fluctuations in the non supercoiled region.
Positive supercoiling (n > 0) yields a left handed ply
(ε = −1) and from (8), (9), and (10) we have:

∆Lk

L
=

sin 2θ

4πρ

[

K0

K3

(

1

cos 2θ
− 1

)

+ 1 −
Z

Z(0)

]

. (11)

The intrinsic twist of the DNA double helix is Lk0 =
L/H , where H = 3.57 nm is its pitch. We introduce the
supercoiling ratio σ = ∆Lk/Lk0 = n H/L and invert
equation (11) to arrive at an approximation of the linear
part of the response curve in the (σ, z) plane :

z

z(0)
= 1 +

K0

K3

(

1

cos 2θ
− 1

)

−
4πρ

H sin 2θ
σ . (12)

Given that experiments are carried at given (fixed) F

F (pN) θ (rad) ρ (nm) K3/K0 K3/kBT (nm)
0.25 0.427 6.85 1.88 97
0.33 0.449 6.60 1.87 96
0.44 0.467 6.17 1.92 99
0.57 0.469 5.47 1.84 95
0.74 0.504 5.55 2.01 103
1.1 0.488 4.26 1.86 95
1.31 0.471 3.64 1.58 81
2.2 0.503 3.21 1.65 85
2.95 0.507 2.81 1.62 83

TABLE I: Results for the 48 kbp DNA molecule in a 10 mM
phosphate buffer. Fitting data at σ = 0, as in [4], yields
K0 = (51 ± 2) nm kB T .

and that K0 is obtained from (1) with K0 = A kBT , to
extract information from experimental data, we need,
for each curve in the (σ, z) plane: (i) the relative ex-
tension at σ = 0, which we denote by z(0), (ii) the
slope, which we denote by α, (iii) and the ordinate at
the origin, which we denote by zβ , of the straight line
fitting the linear part of the response curve. Using (7)
and (12) we obtain an equation for θ :

α H sin 2θ = −4π z(0)
√

K0 φ(θ)/F . (13)

With θ known, we obtain the effective supercoiling ra-
dius from (7) and the effective stiffness ratio from (12):

K3/K0 = (1 − 1/ cos 2θ) / (1 − zβ/z(0)) . (14)

In order to check the consistency of our method, we have
performed numerical simulations of supercoiled config-
urations using ρ and K3/K0 values from table II. The
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FIG. 4: Experimental data (G. Charvin, unpublished) taken
with a 11 kbp DNA molecule in a 150 mM phosphate and 5
mM magnesium (Mg2+) buffer. Forces are, from bottom to
top, 0.45, 1.45, and 4.3 pN. The curves are numerical results
of simulations of an elastic rod with contact with the values
of ρ and K3/K0 of table II.

resulting curves (each one starting at its b4 point) are
plotted in fig. 4. From the results shown in table I
and II, we see that the effective supercoiling radius de-
creases with the intensity of the pulling force, and with
the strength of the salt buffer and can go down to values
barely larger than the DNA cristallographic radius, sup-
porting the tight supercoiling hypothesis [20]. Present
values are fairly smaller than values coming from anal-

ysis of equilibrium distributions of supercoiled plasmids
[21]. Our values of K3 can be compared to results of [22]

F (pN) θ (rad) ρ (nm) K3/K0 K3/kBT (nm)
0.45 0.307 2.79 1.09 62.5
1.45 0.319 1.67 1.00 57.3
4.3 0.348 1.15 0.99 56.5

TABLE II: Results for the 11 kbp DNA molecule in a 150
mM phosphate and 5 mM magnesium (Mg2+) buffer. Fit-
ting data at σ = 0, as in [4], yields K0 = (57 ± 3) nm kB T .

where another micro-technique was used and a value of
K3 ' 100 nmkB T (in a 100 mM NaCl + 40 mM Tris-
HCl buffer) was found. Previous measurements of K3

based on different biochemical techniques (e.g. fluores-
cence depolarization [23]) yield values ranging from 50
to 100 nm kBT [24]. Also Monte Carlo and other statis-
tical physics methods applied to the data in [2] yield K3

values from 75 to 120 nm kBT (see [5] and [22] for de-
tailed discussions). The present result seems to indicate
that the divalent magnesium ions have an important ef-
fect on the twist rigidity of DNA (or at least an effect
clearly different from that of monovalent ions).
It is a pleasure to thank G. Charvin and V. Croquette
for supplying the experimental data, and J. H. Mad-
docks and D. Bensimon for discussions.
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