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Abstract

In this paper, we study a Liénard system of the form & = y—F(z) , y = —z, where F'(x) is
an odd polynomial. We introduce a method that gives a sequence of algebraic approximations
to the equation of each limit cycle of the system. This sequence seems to converge to the
exact equation of each limit cycle.

We obtain also a sequence of polynomials R, (z) whose roots of odd multiplicity are related

to the number and location of the limit cycles of the system.
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A two-dimensional autonomous dynamical system is defined by two coupled first

order differential equations of the form :

&= Plx,y) , v=0Q(@y) (1)

where P and @) are two functions of the variables z and y and the overdots denote a
time derivative.

Such a type of dynamical system appears very often within several branches of sci-
ence, such as biology, chemistry, astrophysics, mechanics, electronics, fluid mechanics,
etc [1, 2, 3, 4, 5, 6].

One of the most difficult problems connected with the study of system (1) is the
question of the number of limit cycles. A limit cycle is an isolated closed trajectory. Iso-
lated means that the neighboring trajectories are not closed; they spiral either toward
or away from the limit cycle. If all neighboring trajectories aproach the limit cycle, we
say that the limit cycle is stable or attracting. Otherwise the limit cycle is unstable or,
in exeptional cases, half-stable. Stable limit cycles are very important in science. They
model systems that exhibit self-sustained oscillations. In other words, these systems
oscillate even in the absence of external periodic forcing. Of the countless examples
that could be given, we mention only a few : the beating of a heart, chemical reactions
that oscillate spontaneously, self-excited vibrations in bridges and airplane wings, etc.
In each case, there is a standard oscillation of some preferred period, waveform and
amplitude. If the system is slightly perturbated, it always returns to the standard
cycle. Limit cycles are an inherently nonlinear phenomena; they cannot occur in linear
systems [7, 8,9, 10, 11, 12].

The first physical model to appear in the literature which can be transformed to

a system of type (1) containing a limit cycle is due to Rayleigh [13]. The following

d?y 1.dy., dy
—_ — —_—— p— 2
dt2+6<3(dt) >+y ()

equation :

that originated in connection with a theory of the oscillation of a violin string, was
derived by Rayleigh in 1877.
In 1927, the dutch scientist van der Pol [14] described self-excited oscillations in

an electrical circuit with a triode tube with resistive properties that change with the



current. The equation derived by van der Pol reads :

d*z 9 dx
did B Y
+¢e(z )dt

75 +2=0 (3)

Equations (2) and (3) are equivalent, as can be seen by differentiating (2) with respect
. dy
to t and putting % = x.

In 1928, the french engineer A. Liénard [15] gave a criterion for the uniqueness of
periodic solutions for a general class of equations, for which the van der Pol equation
is a special case :

d*x dz

ﬁwa(x)Ejo:O (4)

Liénard tranformed (4) to a first order system by setting ‘;—f = 2z, yielding

d d
d—f:z : d—jz—x—f(x)z (5)

In fact, in his proof, Liénard used a form equivalent to (5), obtaining through the

change of variable z = y — F/(z), where F(z) = [; f(r)dr :

dz I @_

E:y_ (33) ’ dt__x (6)

Equation (4) is referred to as Liénard equation and both system (5) and (6) are called
Liénard systems. They are a particular case of (1).

In 1942, Levinson and Smith [16] suggested the following generalization of system

(6) :

dx dy

e y—F LA

C—y-F@) . =@ (7
or equivalently :

dx dz

a z a —g(z) — f(z)z (8)

Sytems (7) and (8) are equivalent to :

d*x dx

e+ 1)+ () =0 Q

which is sometimes referred to as the generalized Liénard equation.

In this paper, we will consider the case g(x) = z and F'(x) given by an arbitrary
odd polynomial of degree m. The fundamental problem for this type of system is the
determination of the number of limit cycles for a given polynomial F'(x) [17, 18, 19,

20, 21, 22, 23, 24, 25, 26] . For m = 3, i.e. for F(z) = a;x + azz?, it has been shown in



[17] that the system has a unique limit cycle if a;a3 < 0 and no limit cycle if ajaz > 0.
For m =5 it has been shown in [27] that the maximum number of limit cycles is two.
For m > 5, there are no general results about the number of limit cycles of (6).

In this paper, we present a new method that gives information about the number
of limit cycles of (6) and their location in phase space, for a given odd polynomial
F(x). This method gives also a sequence of algebraic approximations to the cartesian
equation of the limit cycles.

We will explain our method through the analysis of a very well known case, the

van der Pol equation. In this case, we have :

F(z) = e(z®/3 — ) (10)

We propose a function hy(x,y) = y? + g12(2)y + goo(x), where gy »(z) and go»(z) are

arbitrary functions of x. Here, the second subindex makes reference to the degree of the

Ohy _

polynomial hy with respect to the y variable. Then we calculate hy = (y— F(x)) 52

ohy

‘T@y

. This quantity is a second degree polynomial in the variable y. We will choose
g12(x) and gpo(x) in such a way that the coefficients of y? and y in hs are zero. From
these conditions , we obtain g; o(z) = k; and gp2(z) = 22 + ko, where kg and k; are
arbitrary constants. As F'(x) is an odd polynomial, if (z,y) is a point of the limit
cycle of (6), then the point (—z, —y) also belongs to this limit cycle. The equation of
a limit cycle of (6) must be invariant by the transformation (z,y) — (—z,—y). We
want the function hy(z,y) to have this symmetry too. Thus we take k; = 0. We then
have hy = Ry(z) = —22F(x) = —2ex*(2®/3 — 1). The polynomial Ry(x) is even and it
has exactly one positive root of odd multiplicity, i.e. z = /3.

If we integrate the function hs along the limit cycle, we have : fOT ho(2(t), y(t))dt =
Iy Ro(x(t))dt , where T is the period; but [} hy(x(t),y(t))dt = ho(z(T),y(T)) —
ha(x(0),y(0)) = 0. Consequently, we find : fOT Ry(x(t))dt = 0. This last equality
tells us that there cannot be any limit cycle in a region of the phase plane where Ry (z)
is of constant sign. For the van der Pol system, Ry(z) has a root of odd multiplicity
at © = v/3 , hence the maximum value of = for the limit cycle must be greater than
V3. The curves defined by hy(x,y) = > + y*> + ko = 0 are closed for ky < 0.

As the next step of our procedure, we propose a fourth degree polynomial in y
for the function hy(x,y), i.e. ha(x,y) = v* + g3.4(2)y> + g24(2)y* + g1.4(2)y + goa()
(polynomials h,,(z,y) with n odd do not give useful information about the limit cycles

of the system since the level curves h,(x,y) are open and the polynomials R, (z) have
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always a single root of odd multiplicity at x = 0) . By imposing the condition that hy
must be a function of only z, we find hy = Ry(x), where Ry(z) is an even polynomial
of tenth degree. The roots of R,(z) depend of €, hence in the following, we will take
e = 1. For this case, R,(x) has only one positive root of odd multiplicity, given by
x ~ 1.824. This root is greater than the root of Ry(z). Obviously, the maximum value
of x for the limit cycle must be greater than this value.

We have in this way a new lower bound for the maximum value of x on the limit
cycle. Moreover the number of positive roots of odd multiplicity is equal to the number
of limit cycles of the system. The condition that h, must be a function only of z imposes
a first order trivial differential equation for each function g;,(z). These equations can
be solved by direct integration and we obtain in this way all the functions g;,(z). We
take all the integration constants, that appear when we solve these equations, equal to
zero. In this way, the level curves hy(x,y) = K are all closed for positive values of K
and even values of n. Moreover, the function hy(x,y) is a polynomial in z and y.

We have found the same results for greater values of n even. We have calcultated
hy(z,y) and R,(z) up to order 20. In all cases, the polynomials R, (z) have only
one positive root of odd multiplicity. Let r, be the number of such roots. For the
van der Pol equation, it seems that r, = 1 Vn even. These roots approach in a
monotonous fashion the maximum value of = on the limit cycle. The functions h,(z, y)
are polynomials in = and y for all n. The level curves h,(x,y) = K are all closed
for positive values of K. By imposing the condition that the maximum value of x on
the curve h,(z,y) = K > 0 must be equal to the root of R,(x), we find a particular
value of K for each n even. Let us call this value K. The level curve h,(z,y) = K}
represents an algebraic approximation to the limit cycle.

In fig. 1 and 2 we show this curve for the values n = 6 and n = 18, respectively. In
table 1 we give the values of the roots of R, (z) and the values of K for 2 < n < 20.
The numerical value of the maximum of x on the limit cycle, determined from a nu-
merical integration of (6), with F'(x) defined by (10), iS &4, =~ 2.01 (e = 1). It is clear
that the roots of R, (x) seem to converge to x,,q, and the curves f,(z,y) = K} seem

to converge to the limit cycle.

We have also studiedn the case :

4
F(z) =0.87 — 5:1:3 +0.322° (11)



This system has exactly two limit cycles [18]. We have calculated the polynomials
hy(z,y) and R,(x) up to n = 16. The polynomials R, (x) have exactly two positive
roots of odd multiplicity. We conjecture that r, = 2 Vn even. For each value of
n, we determine two values K* and K*,. The closed curves h,(x,y) = K}, and
hn(x,y) = K¥, provide algebraic approximations to each cycle for each value of n
even.

In fig. 3 and 4 we show these curves for n = 6 and n = 14, respectively. We also
show the limit cycles obtained by numerical integration. In table 2, we give the values
of the roots of R,(x) and the values of K* and K}, for 2 < n < 16. These roots
seem to converge to the maximum values of x for each cycle (the numerical values
of the maximum of x on each limit cycle are 4,1 >~ 1.0034 and 4,2 ~ 1.9992
respectively). The curves h,(x,y) = K*¥ and h,(x,y) = K}, seem to converge to each

one of the limit cycles of the system.

For all the cases that we have studied, we have found that the values of the constants
K} go to zero or infinity when n — oo. In fact, it is easy to see from table 1 and table

2 that the asymptotic behaviour of K¥ with n (for a given limit cycle), is given by

K ~ a(Zpee)" (12)

n

where a is a constant which depends on the cycle (see fig. 5).

We have also considered system (6) with :
F(z) =2 —pa® +x (13)

where g is an arbitrary parameter. It has been proved in [27] that this system has
exactly two limit cycles for p > 2.5. It is clear that this system has no limit cycle
for p < 2 because 15 = 0 in that case. Hence, between p = 2 and p = 2.5 there is
a bifurcation value p* such that for p < p* the system has no limit cycles and for
[ > p* the system has exactly two limit cycles. When p = p* the system undergoes a
saddle-node bifurcation.

By applying our method, we can obtain lower bounds for the value of p*. For each
even value of n we calculate the maximum value of p for which r,, is zero. This value
of p represents a lower bound for p*. The results of these calculations are given in

table 3. The values of 1} seem to converge very quickly, in a monotonous way, when
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n — oo. Numerical integrations of system (6) with F'(x) given by (13) seem to confirm
that lim, oo ), = p*.

Let us point out that it is the first time, in our knowledge, that a bifurcation value
of this type can be estimated in such a way, that is by employing an analytical method

instead of a numerical integration of the system.

We have also analysed system (6) with F'(z) given by :
F(z) = z(2* — 1.6%) (2% — 4) (2% — 9) (14)

For this case we have ry = ry = 3. However, the second positive root of Ry(x) is
smaller than the second positive root of Ry(z). Indeed for n = 6 we find r¢ = 1. An
annihilation of two roots has occured and this phenomenon has been annonced by the
lowering of the value of one of the roots of R, (x). We conjecture that r, =1 Vn even,
greater than 4. The numerical analysis of this system seems to indicate that it has

exactly one limit cycle.

For all the cases that we have studied, we have found that two types of behaviour

of r, are possible :
i r, = r], for arbitrary even values of n and n'. In this case the number of limit
cycles of the system is given by this common value of the number of positive

roots of odd multiplicity of R, (z).

ii the values of r, changes with n; in this case the values of r, decreases with n;
moreover we have r, — !, = 2p for n’ > n and p € N. The roots of R, () seem

to disappear by pairs, when n increases.

Guided by the particular cases that we have analysed, we establish the following con-
jecture :

Conjecture : Let be | the number of limit cycles of (6). Let be r, the number of
positive roots of R, (x) (with n even) of odd multiplicity. Then we have :

i1 1 <r,Vn even
ii if n’ >n then r, —r, = 2p with p € N.

We have also analysed the roots of the polynomials g;,, with 0 < 7 <mn — 1. For

odd values of j, the roots of these polynomials are also related to the number and
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location of the limit cycles of the system. For instance, for the van der Pol equation,
the polynomials g;, () with j odd have exactly one positive root of odd multiplicity.
These roots are an upper bound to x,,,,;. For a given odd value of j, the sequence of
roots of g;,(z) decreases monotonously with n and seems to converge to the value of
Tmag- The best upper bounds are given by the roots of g; ,(x), as can be seen in table
4. The reasons of such a behaviour of the roots of the polynomials g;, () with j odd

are not clear to us.

We have shown in this paper that the polynomials h,(z,y) = y" + gn_1a(z)y" * +
n—22(T)Y" 2+ ...+ g1a(2)y + gon(x) give a lot of information about the number and
location of the limit cycles of (6), in the case where F'(x) is an odd polynomial (for
the case where F(x) is not an odd polynomial, the limit cycles are not invariant under
the transformation (z,y) — (—x, —y) and the results are not conclusive). The curves
hy(z,y) = K¥ give algebraic approximations to each limit cycle . These algebraic
approximations seem to converge to the limit cycles of the system. The positive roots
of odd multiplicity of the polynomials R, (x) = hy(z,y) are related to the number of
limit cycles of (6) and they give lower bounds for the values of x,,,, of each limit cycle.
Moreover, the roots of g;,(z), with odd values of j, are also related to the number of
limit cycles and they give upper bounds to the value of x,,,, for each limit cycle.

All the relevant information about the limit cycles of (6) seems to be contained
in the polynomials h,(z,y). These polynomials are very easy to calculate with an

algebraic manipulator program.
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n 2 4 6 8 10 12 14 16 18 20
root || 1.732 | 1.824 | 1.869 | 1.896 | 1.914 | 1.927 | 1.937 | 1.944 1.950 1.955
K 3 12.3 | 54.5 | 247.6 | 1141 | 5305 | 24773 | 116050 | 544800 | ~ 2 - 10°

Table 1: For each value of n we give the value of the root of R,(x) and the value of
K for the van der Pol equation.

n | root one | Ky, |roottwo | K7,

2 0.852 | 0.726 | 1.854 3.439
4 | 0905 |0.711| 1.885 14.5
6 | 0.931 |0.739| 1.905 67.59
8 | 0.945 |0.784 | 1.920 334
10 | 0.955 | 0.840 | 1.931 1712
12| 0.962 | 0.903 | 1.938 8973
14| 0.967 | 0974 | 1.945 47741
16 | 0.971 | 1.052 | 1.950 | 254400

Table 2: For each value of n, we give the two roots of R, (z) and the values of K},
and K, for equations (6), with F'(z) given by (11)
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n |2 4 6 8 10 12 14 16 18 20
wr |l 2| 2.057 | 2.079 | 2.090 | 2.096 | 2.100 | 2.103 | 2.105 | 2.106 | 2.107

Table 3: We give in this table, for each even value of n between 2 and 20, a lower
bound % for the value of p*. This sequence seems to converge rapidly toward p*.

n | Root of R, | Root of gi, | Root of g3,
2 1.7321 — —
4 1.8248 2.2361 —

6 1.8697 2.1924 2.2361
8 1.8965 2.1658 2.2063
10 1.9144 2.1475 2.1854
12 1.9273 2.1341 2.1697
14 1.937 2.1236 2.1574
16 1.9446 2.1152 2.1474
18 1.9507 2.1083 2.1391
20 1.9558 2.1025 2.1321

Table 4: For each even value of n, between 2 and 20, we give the roots of the polynomials
R, g1, and g3, respectively, for the van der Pol equation.
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Figure 1: The limit cycle of the van der Pol equation (exterior curve) and the algebraic
approximation hg(z,y) = K§.

Figure 2: The limit cycle of the van der Pol equation (exterior curve) and the algebraic
approximation hig(x,y) = Ky -
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Figure 3: The limit cycles of equation (6) with F'(z) given by (11) (rough curves) and
their algebraic approximations (smooth curves) : hg(z,y) = K§, and hg(z,y) = K,
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Figure 4: The limit cycles of equation (6) with F'(z) given by (11) (rough curves) and
their algebraic approximations (smooth curves) : hyy(z,y) = K7y, and hyy(x,y) =
Ky
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Figure 5: We show, for the van der Pol equation, the curve Log;o(K}) in function of n
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