Stable knots with no self-contact

Derek Moulton (Math Oxford UK)
Paul Grandgeorge (Flexlab EPFL Switzerland)
Sebastien Neukirch (d’alembert UPMC Paris France)
Knots are everywhere

Long enough polymers are (almost) certainly knotted

750 knotted proteins in the ProteinDataBank (1%)
catalyse enzymatic reactions (Lim+Jackson 2015)
stabilize protein structure (Wagner et al 2005)

knots in DNA
ejection from capsides (Marenduzzo 2013)
replication / transcription - cell death (Deibler 2007)

Olavarrieta JMB 2002
Tensile strength of a wire

fishing line

10 kg
Tensile strength of a wire

fishing line with knot

6 kg

Pieranski EPJE (2001)

Elastic knots

self-contact

Circular cross-section
Bending and twist

Clauvelin J MPS 2009
Applying torsion

numerical simulations: M. Bergou (SIGGRAPH) 2008
role of friction: Jawed (PRL) 2015
unstable !
do stable open trefoil knotted configurations exist?

Closed configurations (Elastic Rings)

Global Bifurcation Diagram
Dichmann (1996)

Kirchhoff equations for elastic rods

kinematics

\[
\begin{align*}
x' &= d_{3x} \\
y' &= d_{3y} \\
z' &= d_{3z} \\
d'_{3x} &= u_2 d_{1x} - u_1 d_{2x} \\
d'_{3y} &= u_2 d_{1y} - u_1 d_{2y} \\
d'_{3z} &= u_2 d_{1z} - u_1 d_{2z} \\
d'_{1x} &= u_3 d_{2x} - u_2 d_{3x} \\
d'_{1y} &= u_3 d_{2y} - u_2 d_{3y} \\
d'_{1z} &= u_3 d_{2z} - u_2 d_{3z} \\
d'_{2x} &= u_1 d_{3x} - u_3 d_{1x} \\
d'_{2y} &= u_1 d_{3y} - u_3 d_{1y} \\
d'_{2z} &= u_1 d_{3z} - u_3 d_{1z}
\end{align*}
\]

dynamics

\[
\begin{align*}
n'_1 &= n_2 u_3 - n_3 u_2 - f_1 + \rho A (\ddot{x} d_{1x} + \ddot{y} d_{1y} + \ddot{z} d_{1z}) \\
n'_2 &= n_3 u_1 - n_1 u_3 - f_2 + \rho A (\ddot{x} d_{2x} + \ddot{y} d_{2y} + \ddot{z} d_{2z}) \\
n'_3 &= n_1 u_2 - n_2 u_1 - f_3 + \rho A (\ddot{x} d_{3x} + \ddot{y} d_{3y} + \ddot{z} d_{3z}) \\
m'_1 &= m_2 u_3 - m_3 u_2 + n_2 \\
m'_2 &= m_3 u_1 - m_1 u_3 - n_1 \\
m'_3 &= m_1 u_2 - m_2 u_1
\end{align*}
\]

constitutive relations

\[
m_1 = K_1 u_1 , \quad m_2 = K_2 u_2 , \quad m_3 = K_3 u_3
\]

21 non linear PDE (arclength & time)
equilibrium & stability
BVP (collocation)
umerical path following
Obtaining a good knot

\[
\begin{aligned}
\text{fixed} & \left\{ \begin{array}{c}
z^* = 0.115 \\
\delta = 0.05
\end{array} \right.
\end{aligned}
\]
Obtaining a good knot

\[
\text{fixed } \begin{cases}
 z^* &= 0.115 \\
 \delta &= 0.05
\end{cases}
\]
Obtaining a good knot

\[
\text{fixed} \left\{ \begin{array}{c}
\dot{z}^* = 0.115 \\
\delta = 0.05
\end{array} \right.
\]
Obtaining a good knot

\[
\begin{align*}
\text{fixed} \left\{ \begin{array}{c}
z^* &= 0.115 \\
\delta &= 0.05
\end{array} \right.
\end{align*}
\]
Obtaining a good knot

\[
\begin{aligned}
\text{fixed } & \left\{ \begin{array}{c}
\dot{z}^* = 0.115 \\
\delta = 0.05
\end{array} \right.
\end{aligned}
\]
'All' the good knots

fixed $\delta = 0.05$
All the good knots

elastic strip model

- good (w=0)
- unknotted
- unwalled
Equations for elastic strips

kinematics

\[
x' = d_{3x}
\]
\[
y' = d_{3y}
\]
\[
z' = d_{3z}
\]
\[
d'_{3x} = u_2 d_{1x} - u_1 d_{2x}
\]
\[
d'_{3y} = u_2 d_{1y} - u_1 d_{2y}
\]
\[
d'_{3z} = u_2 d_{1z} - u_1 d_{2z}
\]
\[
d'_{1x} = u_3 d_{2x} - u_2 d_{3x}
\]
\[
d'_{1y} = u_3 d_{2y} - u_2 d_{3y}
\]
\[
d'_{1z} = u_3 d_{2z} - u_2 d_{3z}
\]
\[
d'_{2x} = u_1 d_{3x} - u_3 d_{1x}
\]
\[
d'_{2y} = u_1 d_{3y} - u_3 d_{1y}
\]
\[
d'_{2z} = u_1 d_{3z} - u_3 d_{1z}.
\]

dynamics

\[
n'_1 = n_2 u_3 - n_3 u_2 - f_1 + \rho A (\ddot{x} d_{1x} + \dot{y} d_{1y} + \ddot{z} d_{1z})
\]
\[
n'_2 = n_3 u_1 - n_1 u_3 - f_2 + \rho A (\ddot{x} d_{2x} + \dot{y} d_{2y} + \ddot{z} d_{2z})
\]
\[
n'_3 = n_1 u_2 - n_2 u_1 - f_3 + \rho A (\ddot{x} d_{3x} + \dot{y} d_{3y} + \ddot{z} d_{3z})
\]
\[
m'_1 = m_2 u_3 - m_3 u_2 + n_2
\]
\[
m'_2 = m_3 u_1 - m_1 u_3 - n_1
\]
\[
m'_3 = m_1 u_2 - m_2 u_1
\]

nonlinear constitutive relations

\[
m_1 = K \left(1 - \frac{u_3^4}{u_1^4} \right) u_1
\]
\[
u_2 = 0
\]
\[
m_3 = 2K \left(1 + \frac{u_3^2}{u_1^2} \right) u_3
\]

Dias & Audoly (JMPS) 2014
Experiments with $\delta = 0.10$

PVC 3GPa
$h = 200$ microns
$L = 26.3$ cm
$w = 1.5$ cm ($w/h=75$)

$z^* = 0.17$

$\varphi = 0.78$

gravity:
$\Gamma = \frac{Mg}{EI/L^2} \approx 25$
Conclusions

Importance of the w/h ratio experiments: h = 200 microns and w from 0.6 cm to 1.5 cm

- Elastic rod behavior (jump to contact)
- Match with Dias model
- No jump

Stable closed knots with no self-contact?
- Natural curvature?
- Varying stiffness?