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Shape of attractors for three-dimensional dissipative dynamical systems
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We introduce a method to bound attractors of dissipative dynamical systems in phase and parameter spaces.
The method is based on the determination of families of transversal surfaces~surfaces crossed by the flow in
only one direction!. This technique yields very restrictive geometric bounds in phase space for the attractors.
It also gives ranges of parameters of the system for which no chaotic behavior is possible. We illustrate our
method on different three-dimensional dissipative systems.

PACS number~s!: 05.45.Ac, 02.30.Hq
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I. INTRODUCTION

We shall consider ordinary differential equations defini
time evolution of three-dimensional~3D! dissipative dy-
namical systems:

ẋ5P~x,y,z!, ẏ5Q~x,y,z!, ż5R~x,y,z!, ~1!

with ]P/]x1]Q/]y1]R/]z,0;(x,y,z). Usually the func-
tions P, Q, and R are simple polynomials. These types
systems are dissipative: volumes in phase space contrac
der the flow because the divergence of the vector fi
(P,Q,R) is always negative. Hence, the attractor of the s
tem is necessarily of dimension less than three~it may be an
equilibrium point, a limit cycle, or a chaotic attractor!. In this
paper we are interested in the approximate location in ph
space of the global attractor of the system, which contains
the dynamics evolving from all initial conditions. The glob
attractor is the set of points in phase space that can
reached from some initial condition set at an arbitrary lo
time in the past. The two fundamental properties of a glo
attractor are

~i! it is invariant under evolution;
~ii ! the distance of any solution from it vanishes

t→1`.

This last property may simply be interpreted thus: if t
solution starts outside the global attractor, then it is attrac
into it as t→1` and once inside it cannot escape. Where
if the solution starts inside the global attractor, then it sta
inside. The global attractor contains all the asymptotic m
tion for the dynamical system. It is common to talk of mu
tiple attractors for a dynamical system and each of them m
in its own right be considered as the attractor for initial co
ditions within its own basin of attraction. The notion of glo
bal attractor corresponds to the union of all such dynamic
invariant attracting sets possible. In particular, it contains
possible structures such as equilibrium points, limit cycl
etc. The global attractor is sometimes contained in an
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sorbing ball in phase space and we want to obtain anal
estimates about its geometric shape. Moreover, this wo
enable us to find an upper bound for its Lyapunov dimens
@2,3#.

Until very recently, approximated locations of attracto
in phase space have been obtained by the method
Lyapunov functions. The latter is a smooth positive defin
function that decreases along trajectories. This type of fu
tion is a generalization of the energy function for mechani
systems: in the presence of friction or other dissipation,
energy decreases monotonically and the system stabilize
an equilibrium state where the energy is minimal.

Let us consider, as an example, the Lorenz system@5#
defined by:

ẋ5s~y2x!, ẏ5rx2y2xz, ż5xy2bz, ~2!

wheres,r ,b are positive parameters. Forr ,1 ands andb
arbitrary, every trajectory approaches the origin ast→1`:
the origin is globally stable. Hence there can be no lim
cycle nor chaos forr ,1. The proof of this important resul
can be obtained by constructing an adequate Lyapunov fu
tion. There is no systematic way to construct these Lyapu
functions, but often it is wise to try expressions involvin
sums of squares. Here we considerV(x,y,z)51/sx21y2

1z2. The surfaces of constantV are concentric ellipsoids
about the origin. The idea is to show that ifr ,1 and
(x,y,z)Þ(0,0,0), then V̇,0 along all trajectories. This
would imply that each trajectory keeps moving to lowerV
and hence penetrates smaller and smaller ellipsoids ast→
1`. But V(x,y,z) is bounded below by 0, so
V„x(t),y(t),z(t)…→0 and hence„x(t),y(t),z(t)…→0, as de-
sired. Now we calculate

V̇52S 1

s
xẋ1yẏ1zżD

52~r 11!xy22x222y222bz2

522H S x2
r 11

2
yD 2

1F12S r 11

2 D 2Gy21bz2J .

~3!
5098 ©2000 The American Physical Society
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PRE 61 5099SHAPE OF ATTRACTORS FOR THREE-DIMENSIONAL . . .
This last quantity is strictly negative ifr ,1 and (x,y,z)
Þ(0,0,0). It is easy to see that the conditionV̇(x,y,z)50
implies (x,y,z)5(0,0,0). Therefore the origin is globall
stable forr ,1.

The powerful aspect of this method is that one does
need to integrate the equations to determine the qualita
behavior of the trajectories. On the other hand, the diffic
feature of this technique is that there is no general way
find adequate expressions forV(x,y,z), as said above. No
general ansatz is known for this function.

More than proving the stability of the equilibrium poin
this method also provides us with its basin of attraction. B
when the system exhibits another type of attractor~limit
cycle or chaotic attractor! the situation becomes more com
plicated. First, the position of the attractor cannot be de
mined as easily as in the case of an equilibrium point~where
we only had to solveP5Q5R50). We would like to use a
method similar to the Lyapunov theorem to determine~at
least roughly! the location of the attractor in phase space. L
us callA the set of points defining the global attractor. Th
attractor has an extension in phase space@A is bigger than
the origin O(0,0,0) which was the attractor in the form
example#. In the general case, it will not be possible to find
function V(x,y,z) such that V̇(x,y,z),0 for (x,y,z)
PR3\A. In fact V̇ is going to change sign and there will b
a set of points for whichV̇(x,y,z)>0. A first ~naive! as-
sumption is to say that the attractor is included in the reg
whereV̇(x,y,z)>0 sinceV decreases outside. As mention
in @4# and as we shall see below, this argument is not corr
To fully understand what happens here, one has to see th
geometrically, defining regions in phase space that are
bally attracting.

II. GEOMETRIC POINT OF VIEW

Let us consider the level surfaces of the functi
V(x,y,z) defined byV(x,y,z)5K in phase space. The quan
tity V̇ defined by

V̇5
]V

]x
P1

]V

]y
Q1

]V

]z
R ~4!

is the scalar product between the vector (P,Q,R) tangent to
the trajectory at the point (x,y,z) and the vector
(]V/]x,]V/]y,]V/]z) normal to the surface at this poin
Hence, in the region whereV̇ is of constant sign, the leve
surfaces ofV(x,y,z) are crossed by the flow in only on
direction. If V̇ is of constant sign on the whole surfac
V(x,y,z)5K, we call this surface a tranversal or a semip
meable surface.

Let us consider, as an example, the case of a t
dimensional dynamical system. Here we must study the le
curvesV(x,y)5K, associated to a given functionV(x,y).
Suppose that the level curves ofV are all closed and that th
value ofV is increasing with the distance from the origin~in
other words,V is a sink centered on the origin!. Suppose now
that V̇ is negative for points far from the origin and positiv
for points near the origin. The level curvesV5K with large
K are crossed inwards by the flow. If we reduce the value
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K, these curves will still be crossed inwards by the flow
long as each one lies entirely in the region whereV̇,0. In
Fig. 1 we have drawn the set of points whereV̇50. The
smallest curve to be entirely crossed inwards is the cu
tangent to this set,V5K1. Symmetricaly, we have drawn th
biggest level curve to be entirely crossed outwards by
flow, the curveV5K2 which is also tangent to the setV̇
50.

The time evolution of theV„x(t),y(t)… function for an
initial condition far from the origin is shown in Fig. 2. Th
global attractor of the system is included in the region
phase space defined byK1,V(x,y),K2. And if this region
has no equilibrium point we know from the Bendixon
Poincare´ theorem@1# that this attractor is a limit cycle. An
analogous region for a three-dimensional~3D! system may
contain limit cycles and/or chaotic attractors.

The region defined byK1,V(x,y),K2 is an overestima-
tion of the global attractor of the system. The method tells
where the attractor is but not what the attractor is. T
means that the regionK1,V(x,y),K2 contains points that
lie on the attractor but also points that are not on the attr
tor. If we were more clever~or equivalently if the attractor
was not so complicated! we would find a betterV function
fitting the attractor more tightly. These considerations will
developed in Sec. VI.

In order to find the last entering curveV(x,y)5K1 that
will be the upper bound for the attractor, authors usually

FIG. 1. Two level curves of a functionV(x,y) in a two-
dimensional~2D! phase space.V(x,y)5K1 is the lowest curve that
is crossed by the flow inwards.V(x,y)5K2 is the upper curve tha
is crossed by the flow outwards. The global attractor of the sys
lies between these two curves.

FIG. 2. The time evolution of the functionV„x(t),y(t)… consid-
ered in Fig.~1!. For some initial condition far from the origin, V~t!
is decreasing at least untilV(x,y)5K1. Then V remains in the
regionK1,V(x,y),K2.
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5100 PRE 61S. NEUKIRCH AND H. GIACOMINI
to find K1 with the help of Lagrange multipliers@2,6#: they
find the extrema ofV on V̇50 by introducing the function
V2kV̇ (k is the Lagrange multiplier!. This boils down to
finding the points in phase space where the gradients oV

andV̇ are colinear. This method only works when the pro
lem is simple because there are cases where tangency
not mean one way crossing. The level curve~or surface in
3D systems! may be tangent at some point but may cross
curve V̇50 at some other point~s!, see Fig. 3.

Besides, for 3D systems, this method is more difficult
apply because it is then necessary to study the sign of
function V̇(x,y,z), which depends on three variables. It
relatively easy to find subsets of positive and negative s
for the V̇ function, but it is rather difficult to find the leve
curves ofV that are entirely included in each subset, sin
the parameters of the vector field are included inV̇, together
with the parameters of the functionV. Hence, even if
V(x,y,z) is a polynomial, the problem is quite difficult.

III. SEMIPERMEABLE SURFACES METHOD

If we exploit further the geometric aspect of the proble
we notice that it is necessary for the functionV̇(x,y,z) to be
of constant sign only on the level setV(x,y,z)5K and not in
an entire space subset. It means that we have to studyV̇uV5K

instead ofV̇ in the entire phase space. Thanks to the equa
V5K, which permits us to replace one of the variables
the others, this new function will have only two variables.
course, we restrict our studies to problems where this
placement is possible.1 Then the analysis is much easier: w
only have to study the sign of a two variable function wh
the variables vary on the entire surface~which means gener
ally that we study the sign in allR2).

The semipermeable surfaces introduced in this con
must have the two following properties.

Each surface~or, if it is not connected, each piece of th
surface! must divide the phase space in two disconnec
regionsD1 andD2; either the surface is closed and then w

1For quadraticV functions, it has been shown in@7# that the study

of V̇uV5K was equivalent to the study ofV̇ in the entire phase space

FIG. 3. The method of colinear gradients may sometimes
misleading. Here the two level curvesV5K1 and V5K2 are tan-

gent to the curveV̇50, but only the first one is semipermeabl
Hence, tangency does not mean one-way crossing.
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can define an interior (D1) and an exterior (D2), or the sur-
face is infinite, i.e., it separates also two regionsD1 andD2
in phase space.

Each surface must be oriented; this means that the gr
ent must point toward the same region (D1 or D2) on the
whole surface.

Following is an example that illustrates the superiority
the semipermeable surfaces method over the Lyapunov f
tion method. Let us consider again the Lorenz system~2!. In
@2# the following surface is introduced:

2
r

s
x21y21z250, ~5!

which represents a certain bound~a double cone! for the
attractor and is calculated by means of the Lyapunov fu
tion method. In@8#, the following family of surfaces is intro-
duced:

ax21y21z25R with R<0,a,0. ~6!

For

22sr 2~s21!22A~s21!414sr ~s21!2

2s2
<a

<
22sr 2~s21!21A~s21!414sr ~s21!2

2s2
, ~7!

the surfaces~6! are semipermeable and they define a be
bound than surfaces~5! for the attractor of~2!.

IV. METHODS TO OBTAIN SEMIPERMEABLE
SURFACES

As said in Sec. III, it is easier to check whether a surfa
is semipermeable or not than to insure that a function p
sesses the Lyapunov property. But there is no gen
method to obtain these surfaces. In@8# we have determined
several families of semipermeable surfaces for the Lor
system guided by the time-dependent integrals of motion
exist for special values of the parameters of the system.
us give an example of the application of this method:
Lorenz system~2! has the first integralI (x,y,z,t)5(x2

22sz)e2st whenb52s ands and r are arbitrary~an easy
calculation shows thatdI/dt[0). Let us now consider the
family of surfaces

V~x,z!5x222sz5K, ~8!

whereK is an arbitrary constant. It is easy to show thatV̇
52bK. Hence, each surface of the family is transvers
The direction of crossing depends on the sign of the cons
K. A particular surface of the family is obtained forK50,
and is invariant: an initial condition on this surface dete
mines a trajectory that remains on the surface for all tim
Besides, all the trajectories of the system are attracted by
invariant surface, as can be seen in Fig. 4. It is clear that
existence of these families of surfaces gives a lot of inf
mation about the dynamics of the system. The behavio
trajectories is extremely simple in all the phase space w
the exception of the invariant surfacex252sz. This surface

e
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PRE 61 5101SHAPE OF ATTRACTORS FOR THREE-DIMENSIONAL . . .
contains the global attractor of the system for the casb
52s.

The family of surfaces~8! obtained above enables us
characterize in a simple way this global attractor. The de
mination of this family of surfaces follows immediately from
the existence of the integral of motion whenb52s.

Now the natural question is whenbÞ2s, is it still pos-
sible to find similar families of surfaces that the flow cross
in only one direction? In this case we shall no longer have
our disposal an integral of motion, and these semiperme
surfaces will not fill the phase space because in the gen
case the global attractor is not contained in a tw
dimensional set. In order to find semipermeable surface
the general case, whenbÞ2s, we proceed as follows. We
first propose a surface of the same mathematical form as
integral of motion, but with arbitrary coefficients, i.e.,

V~x,z!5a1x21a2z1a3 . ~9!

Then we calculateV̇ on the surface and obtainV̇uV50
5(2a1s1a2)xy1a1(b22s)x21ba3. We now have an ex-
pression that depends only on two variablesx and y. We
must determine the coefficientsa1 , a2, anda3 in such a way
that this expression has the same sign for arbitrary value
x andy. We must hence seta2522sa1, which yields

V̇uV505a1~b22s!x21ba3 . ~10!

As a1 must be nonzero we can takea151 without loss of
generality. If we considerb.2s, we must seta3.0 to get a
first family of semipermeable surfaces and if we consideb
,2s, we must seta3,0 to get a second family of semipe
meable surfaces. We show the latter family as well as so
trajectories of the system in Fig. 5.

As we can see from Fig. 5, in the region filled by th
surfaces the dynamics of the system is very simple. T
complex behavior can only occur in the region of pha
space that is not occupied by these surfaces. The globa
tractor of the system must be located in the regionz
.2sx2.

FIG. 4. The dashed curves represent semi-permeable sur
~8! in the caseb52s for system~2!. The bold curve is the invarian
surface defined by Eq.~8! with K50. We also show some trajec
tories of the system.
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Using the method explained above, we have determin
from the other known integrals of motion of the Lorenz sy
tem, several other families of semipermeable surfaces@8#. In
the chaotic regime, only a bounded region of the phase sp
is not filled by these surfaces and the global attractor of
system must be contained in this region. In this way, we h
obtained some information on the shape and location of
global attractor. These results are more restrictive than s
lar previous bounds that have been found by other auth
due to the method of Lyapunov functions@2#.

The integrals of motion give us a hint that is of fund
mental importance for obtaining semipermeable surfaces
fact, when looking for these types of surfaces without hav
a previous idea of their mathematical expression we
faced with high algebraic difficulties. Nevertheless, so
systems do not have integrals of motion, or at least, su
ciently simple integrals of motion to be found with the sta
dard methods. In this paper we present an alternative me
for determining semipermeables surfaces. This method
variation of a technique introduced in@12# for finding inte-
grals of motion. It can be applied to polynomial systems, i
systems whereP,Q,R are polynomials in the three variable
x,y,z.

We shall introduce the new method by analyzing a co
crete example: the Lorenz system. We shall obtain again
semipermeable surfaces determined above from the alte
tive method. As the Lorenz system is linear with respect
each one of the three variablesx,y,z, we propose a function
V(x,y,z) linear in z,

V5h1~x,y!z1h0~x,y!, ~11!

whereh0(x,y) andh1(x,y) are arbitrary functions ofx and
y. We define a functionM (x,y,z) as follows:

M ~x,y,z!5V̇1L~x,y,z!V, ~12!

where L(x,y,z) is a polynomial of degreen21 (n is the
maximum degree of the polynomialsP,Q,R). Since for the
Lorenz system n52, L(x,y,z) will be of the form

ces FIG. 5. Semipermeable surfaces~9! with a3,0, b,2s, a2

522sa1 , a151 for the system~2! together with its chaotic at-
tractor.
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5102 PRE 61S. NEUKIRCH AND H. GIACOMINI
L(x,y,z)5a01a1x1a2y1a3z, where thea i are arbitrary
parameters. The sign ofV̇uV50 is given by the sign ofM uV50.
In order to simplify the study of the sign ofM in phase
space, we shall impose conditions on the functionsh0(x,y),
h1(x,y) and on the parametersa i . We shall obtain these
conditions by imposing thatM must be a function of only
one variable, for instance, the variablex. The explicit expres-
sion of M (x,y,z) is

M ~x,y,z!5S a3h1~x,y!2x
]h1

]y D z2

1S a3h0~x,y!1~a02b1a1x1a2y!h1~x,y!

2x
]h0

]y
1~rx2y!

]h1

]y
1s~y2x!

]h1

]x D z

1~a01a1x1a2y!h0~x,y!

1xyh1~x,y!1~rx2y!
]h0

]y
1s~y2x!

]h0

]x
.

~13!

As the coefficient ofz2 must be zero we obtain the followin
expression forh1(x,y): h1(x,y)5g1(x)exp(a3y/x), where
g1(x) is an arbitrary function ofx. Because we want to ob
tain a functionV defined in all phase space, we takea350.
The coefficient ofz in the expression~13! must also be zero
This condition leads to the following equation: (a02b
1a1x1a2y)g1(x)1s(y2x)g18(x)5x]h0 /]y. The general
solution of this equation is h0(x,y)51/2x@2xg0(x)
1y(22b12a012a1x1a2y)g1(x)1sy(22x1y)g18(x)#,
whereg0(x) is an arbitrary function ofx. Now the resulting
expression ofM is a function ofx andy. We do not want to
obtain the more general semipermeable surface of the f
~11!. Our aim is to give an example of the method explaini
the differents steps of the algorithm. Hence, it is sufficien
considerg1(x)[1, which yields

M ~x,y!5
a2

2x2
~a2x2s!y31$2bs22a0s1@22a2~b11!

13a0a21a2s#x13a1a2x2%
1

2x2
y2

1$b2a02ba01a0
22bs1a0s

1@a1~2a02b21!1a2r #x

1~11a1
2!x21a2xg0~x!1sxg08~x!%

y

x

1a0r 2br1a1rx1a0g0~x!1a1xg0~x!

2sxg08~x!. ~14!

We want to obtain a function only of the variablex, so we
take a05b, a250, and g0(x)52a1 /s(b21)x2(1
1a1

2)x2/2s1K0, whereK0 is an arbitrary constant. The re
sulting expression forM is
m

o

M ~x!5K0b1a1F ~b21!S 12
b

s D1k01r Gx
1S 11a1

22
b

2s
1

a1
2

s
2

3ba1
2

2s D x22
a1

2s
~11a1

2!x3.

~15!

For our purposesM (x) must be of definite sign for arbitrary
values ofx, so we must takea150 andM (x) becomes

M ~x!5bk01S 12
b

2s D x2. ~16!

The resulting expression for the functionV is V(x,z)5K0
2x2/2s1z. The family of surfacesV50 is semipermeable
for K0.0 if b,2s and forK0,0 if b.2s. If b52s, for
K050 we obtain the known invariant surface. In this way w
arrive again at the results obtained with the help of an in
gral of motion of the Lorenz system. In Sec. IV we sh
make use of both methods to find semipermeable surfa
The first method has already been succesfully employe
@3,8,9# for the study of the Rabinovich, Lorenz, and Rikitak
systems. For systems where we do not know any integra
motion, we shall use the alternative method. Both meth
will yield bounds for the attractors in phase space, range
values of the parameters for which no chaotic behavio
possible, and make out part of the basin of attraction of
equilibrium points.

V. RESULTS ON PARTICULAR SYSTEMS

We shall first consider the system:

ẋ52s~x1y!, ẏ52y2sxz, ż5v1sxy, ~17!

wheres andv are positive parameters. This system has b
introduced in the context of the qualitative study of the L
renz attractor@10#. The divergence of the vector field i
]P/]x1]Q/]y1]R/]z52s21,0. Hence, this system
contracts volumes in all phase space. No integral of mot
is known in the literature for this model. By appling th
Painlevémethod@11#, we find that the quantity

I ~x,y,z,t !5~x418xy24y214x2z!e4/3t ~18!

is an integral of motion for the cases5 1
3 and v50. Using

the method described in Sec. IV for the Lorenz model,
propose a family of surfaces of the form

V5d1cx41by21axy1ex2z50. ~19!

The expression ofV̇ on the surfaceV50 is given by

V̇uV5052x@ds~a12e!x1ve2x31cs~a22e!x5

12ds~b1e!y1a~2e1as1es!x2y

1s~2bc22ce1e2!x4y

1~22be13abs1aes12bes!xy2

12bs~b1e!y3#. ~20!

Owing to the factorx in the above expression, we have to s
b52e in order to obtain a function that does not chan
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sign. After that,V̇uV50 contains a common factorx2 multi-
plied by a second degree polynomial iny2. The discriminant
of this polynomial is a polynomial of degree 6 inx which
must be negative for allx. Since the coefficient (e24c)2s2

of x6 is positive, we must takec5e/4. After that, the dis-
criminant is given by

D5~as1es2e!@eds~a12e!1~2a2e1a3s1a2es

18e3v !x212e2s~a22e!x4#. ~21!

If we sete50 this expression cannot be negative. Therefo
without loss of generality we can sete521. So, the family
of surfaces becomes

V5d2
x4

4
1axy1y22x2z50. ~22!

Moreover,V̇uV50 is given by

V̇uV505x2S 2@s~12a!21#y21a@s~12a!21#xy

1s~a12!
x4

4
2vx21ds~22a! D ~23!

and the discriminantD is

D52@s~12a!21#„2s~a12!x4

2$8v1a2@s~12a!21#%x218ds~22a!…. ~24!

SinceD must be negative for allx, the coefficient22@s(1
2a)21#s(a12) of x4 must be negative, which is satisfie
in each of the three following cases

~i! 22,a,1 ands.1/12a.0,
~ii ! a,22 and 0,s,1/12a,
~iii ! 22,a and 1/12a,s,0.
After that, we must impose thatD has no real root, which

is satisfied in each one of the two following cases:
~iv! d(a224)s21$v1 1

8 a2@s(12a)21#%2,0,
~v! d(42a2).0 and s(a12)$v1 1

8 a2@s(12a)21#%
,0.

Therefore, in order to haveD negative for allx, we may
combine any one of the three cases~i!, ~ii !, ~iii ! with anyone
of the two cases~iv!, ~v!. We then have six different cases
consider. Two cases are particulary interesting:~i!, ~iv! and
~ii !, ~v!. In the case~i!, ~iv! the chaotic attractor is bounde
by the semi-permeable surfaces~22! as shown in Fig. 6. In
the case~ii !, ~v!, the semipermeable surfaces are crossed
the flow in the upper direction. If we setd50 then the sur-
faces divide the phase space in three disconnected reg
and the two equilibrium points~which are attracting here! are
separated by these surfaces. This means that, for valuess
and v that satisfy~ii !, ~v!, we know a part of the basin o
attraction of each one of the two points. This also means
trajectories cannot wander from one equilibrium point to a
other and hence there is no chaos for these values of
parameters~see Fig. 7!.

Continuing the study of system~17!, we have looked for
new integrals of motion but we have not been able to fi
any. In consequence, we have applied the alternative me
,

y

ns

f

at
-
he

d
od

introduced in Sec. IV. We have obtained the following fam
ily of surfaces with this method:

V5a1x21y21~z1a1!22a450. ~25!

The scalar product on the surface is given by

V̇uV505~s21!y21sz21z~v12sa1!1a1
2s1a1v2a4s

~26!

and it is of definite sign when the following conditions a
satisfied:

s.1, 4a4s21v2<0, a1,0. ~27!

We have a family ofx-axis hyperboloid of revolution and
each surface consists of two separated pieces. In Fig. 8
see the chaotic attractor of system~17! and one of the semi-
permeable surfaces. For each negative value ofa1, the opti-

FIG. 6. Chaotic attractor of system~17! with v55/2, s53. The
attractor is bounded by surface~22! with a521 andd51 ~condi-
tion ~i!, ~iv!!.

FIG. 7. System~17! with v51, s51/4. The surface~22! with
d50, a525/2 reveals part of the basin of attraction of each one
the equilibrium points. No chaotic behavior is possible in this ca
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mal surface is obtained fora452v2/4s2. For this value of
a4, varyinga1 within negative values, we have a monopa
metric family of semipermeable surfaces. The optimal s
face is the envolvent of the family, defined by

V50,
]V

]a1
50, ~28!

i.e.,

v2

4s2
2

x4

4
1y22x2z50. ~29!

It is remarkable that this last surface is a particular case
the family ~22! with a50 andd5v2/4s2, satisfying condi-
tions ~i!, ~iv!.

We now consider the system

ẋ5y, ẏ5z, ż52Az1y22x, ~30!

whereA is a constant parameter. This system has been
cently introduced@13# as the simplest system~since it has
only one nonlinear quadratic term in the vector field! exhib-
iting chaotic behavior~for A.2). By applying different
methods, we have not been able to find integrals of mo
for this system. As the system is linear with respect to thz
variable, we propose for the family of surfaces a functionV
linear in z, of the form

V5g1~x,y!z1g0~x,y!, ~31!

whereg0(x,y) andg1(x,y) are arbitrary functions ofx and
y. Following the method introduced in Sec. IV for the Lore
system, we find that the following family of surfaces

V5z2ax1S A1
1

aD y2d50, ~32!

with the scalar product on the surface given by

FIG. 8. Chaotic attractor of system~17! with v55/2 ands53
and a semipermeable surface~25! with a1521 anda452v2/4s2.
-
r-

of

e-

n

V̇uV505a2y22y~11aA1a3!1ad ~33!

is semipermeable if

D5~11aA1a3!224a3d,0. ~34!

This condition yields two different cases.

A<2( 27
4 )1/3.21.88. Here there exist values ofa for

which (11aA1a3)50 and for these values there are sem
permeable planes;d. The z axis is surrounded by thes
planes. The chaotic attractor, when it exists, turns around
axis. Now, the semipermeable planes prevent this situa
from occuring, so the chaotic attractor cannot exist in t
case.

A.2( 27
4 )1/3. The chaotic attractor may exist in this ca

and when it exists, it is stuck in between two families
semipermeable planes, one above it (d.0) and one below
(d,0) ~see Fig. 9!.

Now we consider once again the classical Lorenz sys
~2! for which several families of semipermeable surfac
have been found in@8#. By using the alternative method, w
have found an interesting family of surfaces that gives i
portant information about the behavior of the orbits on t
chaotic attractor. We propose the following form for the fam
ily of surfaces:

V~x,y,z!5g1~x,z!y1g0~x,z!50, ~35!

whereg1(x,z) andg0(x,z) are arbitrary functions ofx andz.
Following the method employed above, we find

g1~x,z![1 and g0~x,z!5a1x322a1sxz1a2x,
~36!

which yields

FIG. 9. The chaotic attractor of system~30! with A52.04 con-
tained in between planes (a51 andd.4.08) and (a52

1
2 and d

,20.04). Note that the chaotic attractor is winding around thz
axis.
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V~x,y,z!5y1a1x322a1sxz1a2x. ~37!

If we write these surfaces as

z5
1

2a1s S a1x21a22
y

xD , ~38!

the scalar product in this case could be of constant sign,
the surfaces~which are disconnected! are not oriented: the
gradient vector does not point toward the same space su
for x.0 and for x,0 ~this is due to the2y/x term!.
Whereas if we writeV as

y52x~a1x222a1sz1a2!, ~39!

the surfaces are connected and oriented and the scalar
uct on the surfaces is

V̇uV505x@24a1
2s3z21z f~x!1g~x!#, ~40!

where

f ~x!52122a1s12a1bs12a1s214a1a2s214a1
2s2x2,

g~x!5a21r 2a2s2a2
2s1~a123a1s22a1a2s!x2

2a1
2sx4. ~41!

We see that~40! changes sign atx50. Therefore this family
of surfaces is not strictly semipermeable. Nevertheless,
shall obtain some important information from it. Hence, w
shall study the cases in which the function24a1

2s3z2

1z f(x)1g(x) holds the same sign;(x,z)PR2. This hap-
pens when the two following conditions are satisfied:

2a1s~2s2b!11>0, ~42!

FIG. 10. Two surfaces ~37! with (a1521/500; a2

521109/498) and (a151/500; a25292/201) represented fo
negativex. The wing of the attractor around the equilibrium poi
C2 is restricted in the region between the two surfaces. The tra
tories that cross the above surface (a1 anda3 positive! from right to
left are the trajectories that go to the other wing~in x.0).
ut

set

od-

e

114a1s~12b2s!18a1a2s2~2ba1s21!

14a1
2s2@~b21!21s~4r 221s12b!#,0.

~43!

When x,0 the surfaces~37! are crossed by trajectories i
one way and whenx.0 they are crossed by trajectories
the opposite way. Hence, these surfaces do not represe
external bound for the chaotic attractor when it exists.

We recall that the Lorenz attractor is formed by the ad
tion of two wings, each wing lying around the equilibrium
points C1 and C2, respectively. Therefore each surface
the family separates the attractor in two winding regio
One region is contained inx.0 and the other one is con
tained inx,0 ~see Fig. 10!.

Let us study the behavior of a trajectory around the ‘‘po
tive’’ wing ~around the equilibrium pointC1). The trajec-
tory wanders aroundC1 until it ‘‘decides’’ to cross thex

c-

FIG. 11. Chaotic attractor of system~44! with a5
2
5 , b52, c

54, and thez.0 sheet of the semipermeable surface~45! with
k1.23.5 andk2.1.

FIG. 12. Semipermeable surfaces in thez,0 half-space (k1

P@212.7;10#, k251) and in the z.0 half-space (k1P@210;
23.5#, k2.21) together with a projection of the chaotic attract
(a5

2
5 , b52, c54) on the planex5y. We see that all the trajec

tories initially in the z,0 half-space eventually cross thez50
plane. Hence, the asymptotic behavior takes place in thez.0 half-
plane.
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50 plane and goes wandering around the other equilibr
point. All the essence of complexity in the system com
from the fact that we do not know when the trajectory ‘‘d
cides’’ to jump to the other side of the planex50. Here is
the interesting feature of this family of surfaces~37!. The x
.0 side of this surface is placed between thex50 plane and
the ‘‘positive’’ wing of the attractor. Because~37! is semi-
permeable in thex.0 half-space, once the trajectory h
crossed this surface, it cannot go on wandering around
point C1 and it is compelled to go winding around the oth
equilibrium pointC2. We may consider such surfaces as
separation between the two wings of the attractor. Besi
surfaces~37! give a bound in phase space for the period-o
limit cycles around each equilibrium point.

The last example we shall consider is the classical Ro¨ssler
system:

ẋ52y2z, ẏ5x1ay, ż5b1z~x2c!, ~44!

wherea,b,c are positive parameters. For certain values
these parameters, this system has a chaotic attractor~Fig.
11!. Moreover, it has two equilibrium points whenc2

>4ab. One of the points (Pin) is nested inside the chaoti
attractor and the other one (Pout) is outside the chaotic re
gion. This system has a nonconstant divergence and ther
no known integrals of motion for it. Nevertheless, using t
new method, we find the following family of semipermeab
surfaces:
c

s
ue

us
r-
e

tr
e
a
to
ac
m
s
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s,
e

f

are

V5y1k11~a1k2!x2~11ak21k2
2!lnuzu50. ~45!

Each one of these surfaces consists of two disconne
sheets. One sheet lies entirely inz.0 and the other one in
z,0. The two sheets are obtained from the expression

z56expS y1k11~a1k2!x

11ak21k2
2 D . ~46!

The scalar product on the surface is given by

V̇uV5052b~11ak21k2
2!

1

z
1@k1k21c~11ak21k2

2!#

2~a1k2!z2k2~11ak21k2
2!lnuzu

5def f ~z!.

The function f (z) must be of constant sign on each she
~46!, i.e., forz.0 and forz,0, respectively. From the stud
of this one variable function, we find that the necessary a
sufficient conditions for each sheet to be semipermeable

f ~zi
!!zi

!~a1k2!,0 with i 51,2,

b~11ak21k2
2!~a1k2!.0, ~47!

with
z1
!52

k2~11ak21k2
2!2Ak2

2~11ak21k2
2!214b~11ak21k2

2!~a1k2!

2~a1k2!
, ~48!

z2
!52

k2~11ak21k2
2!1Ak2

2~11ak21k2
2!214b~11ak21k2

2!~a1k2!

2~a1k2!
. ~49!
n of
c-
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These conditions can be satisfied when the chaotic attra
exists ~for example, whena5 2

5 ,c54,b52). In fact thez
,0 half-space is filled by semipermeable surfaces cros
by the flow upward. Hence, this proves that for such val
of the parameters, the asymptotic (t→1`) behavior takes
place in thez.0 half-space, where the chaotic attractor m
lie entirely ~see Fig. 12!. Moreover, there are also semipe
meable surfaces lying in thez.0 half-space, bounding th
chaotic attractor quite more tightly~see Fig. 11!.

VI. GETTING CLOSER TO THE ATTRACTOR

So far we have introduced a method to get geome
bounds on the attractors of dissipative systems. Th
bounds are sometimes tight and sometimes loose. The n
ral question that arises is, can we get closer to the attrac

If we consider each point on a semipermeable surf
surrounding an attractor as an initial condition (t50) and
integrate numerically, the set of points att.0 will define
another semipermeable surface~with a different shape!. As
t→1`, the surface will merge with the attractor~for a
tor

ed
s

t

ic
se
tu-
r?
e

simple example see@14#, p. 42!.
Some authors define entering regions as a combinatio

different functions@15#. The surface surrounding the attra
tor is then defined by multiple equations, each one valid
a precise region in phase space. This is a way to tackle
complexity of the attractor. As regards our method, wh
more than one surrounding surface is known, one has
consider the composition of the different surfaces. T
yields a tighter bound for the attractor. It is likely that b
considering many more equations of surfaces, we could
even nearer to the attractor. To stick to the attractor~chaotic
or limit cycle!, we should consider an infinite combination
surfaces.

If we want to bound the attractor with only one type
equation and we want this bound to get tighter and tigh
we shall have to refine the equation of the surface at e
step. This is what is done in@16,17# for the van der Pol
system, where the attractor is a limit cycle~which equation is
given by an unknown transcendental function!. At each step
of the procedure, the curve bounding the limit cycle is d
fined by a particular level curve of a polynomial function
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two variables, of increasing degree. This curve~which is
semipermeable! is getting closer and closer to the limit cycl
Taking the limit, the curve~defined by an infinite series in
two variables! seems to merge with the limit cycle.

VII. CONCLUSIONS

We have shown that the method introduced in@8# for the
Lorenz system works for other 3D chaotic dynamical s
tems. We have also introduced an alternative method to
semipermeable surfaces and applied it to several chaotic
-
d
y-

namical systems, showing that semipermeable surfaces
able us to bound the chaotic attractor in phase space or re
ranges of parameters’ values for which no chaotic beha
is possible in these dissipative systems. This last aspec
the method represents an important theoretical progres
the study of 3D dissipative dynamical systems.
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