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ABSTRACT—We give the results of large deflection experi-
ments involving the bending and twisting of 1 mm diameter
nickel–titanium alloy rods, up to 2 m in length. These results
are compared to calculations based on the Cosserat theory
of rods. We present details of this theory, formulated as a
boundary value problem. The mathematical boundary condi-
tions model the experimental setup. The rods are clamped
in aligned chucks and the experiments are carried out under
rigid loading conditions. An experiment proceeds by either
twisting the ends of the rod by a certain amount and then ad-
justing the slack, or fixing the slack and varying the amount
of twist. In this way, commonly encountered phenomena are
investigated, such as snap buckling, the formation of loops,
and buckling into and out of planar configurations. The effect
of gravity is discussed.

KEY WORDS—Twisted rods, rod experiments, snap buckling,
loop formation, snarling, hockling, welded boundary condi-
tions, nitinol, bifurcation

Introduction

The distinctive feature of a thin rod is that it buckles rather
than breaks when subjected to end forces and end moments.
For example, experience tells us that a compressed rod can
buckle in any lateral direction. It is also well known that if
a bending moment is applied at the ends of the compressed
rod while in its buckled state, it may undergo a sudden large
movement and “snap” into a configuration which is a mirror
image of the buckled state. The symmetry associated with
these buckling phenomena is a recurring theme in rod the-
ory and is reflected in the mathematics where these types of
phenomena are described by “pitchfork bifurcation”.

Perhaps not so well known in rod mechanics is the exis-
tence of certain “secondary bifurcations”. These can be en-
countered by continuing to load the rod after it has buckled.
They arise in a variety of industrial and biological applica-
tions. Amongst these we can mention “hockling”, the for-
mation of loops during pipeline and cable laying operations.
Hockling occurs when a twisted rod is slackened off and a
section of it flips into a loop.1−5 Other applications include
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“snarling”, a term used in the textile industry6 to describe
the onset of highly twisted helical plies. More recently, the
mechanics of twisted rings as they jump in and out of various
figure-of-eight configurations has been analyzed,7,8 a prob-
lem of specific relevance to the writhing of DNA filaments.9

Many of these phenomena can easily be observed by twist-
ing and bending a rubber rod with one’s fingers, as shown
in Fig. 1. Experience teaches us that the response of a rod
depends on the material it is made of, the geometry of its
cross-section, the manner in which it is held at its ends, the
type of loading, and the loading sequence. Over recent years,
a plethora of literature exploring, describing, and explain-
ing these effects has emerged, but very little in the way of
experiments. This paper aims to help fill that gap.

The most straightforward experimental procedure for rod
experiments is “rigid” loading. In this arrangement, the dis-
placements are controlled and the corresponding forces and
moments remain passive. The two pertinent control parame-
ters are, first, the displacement of the ends of the rod towards
each other (the “slack”D) and, secondly, the rotation of one
end of the rod with respect to the other end (the “end rotation”
R). It is throughD andR that the axial forceT (positive when
tensile) and axial twisting momentM do work, respectively.
Thus, the natural arenas for the analysis of experimental re-
sults areTD andMRdiagrams.

In his Ph.D. thesis, Born10 carried out some elegant large
deflection bending experiments by hanging weights on the
end of a rod (i.e., dead loading). Of the sparse experimental
work carried out since, we can point to Liu2 andYabuta.5 Us-
ing jacketed optical fibers, Yabuta5 carried out experiments
in a rig with facilitation for measuringR, D, M, andT , and
investigated both hockling and “pop-out” whereby the loop is
removed by pulling it out (reversingD). However, the precise
manner by which the rods are fixed at their ends is not spec-
ified. Consequently, the mathematical model is not formu-
lated as a boundary value problem. Instead, using an energy
method, he assumes an initial helical deformation (which is
Love’s solution11) and obtained the Greenhill12 formula for
the onset of looping, which in fact describes the primary bi-
furcation for a rod with zero bending moments at its ends.
Modeling the loop as a circle, he also derived a formula for
the point at which it reopens (i.e., pop-out), which he com-
pared with his experimental results.

Thompson and Champneys13 took up the problem of loop-
ing using modern geometric concepts of nonlinear dynami-
cal systems theory. They reported on some qualitative ex-
periments using silicone rubber rods, which showed that
if a highly twisted rod is slackened off it undergoes a lo-
calization process prior to loop formation. In considering
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Fig. 1—Slackening off a twisted rod (i.e., input of D) can
cause it to throw a loop (hockling). If the initial twist is high
enough, then further D leads to snarling (i.e., the formation
of a ply)

infinitely long rods, they identified the localized solutions as
homoclinic orbits in the phase space of the underlying system
of equations.

Miyazaki and Kondo14 undertook theoretical investiga-
tions of finite rods. By choosing a Euler angle as the indepen-
dent variable rather than arc length, they presented analytical
solutions in a rather unwieldy integral form. Concentrating
on two different rigid loading sequences (controlledD with
fixedR and controlledR with fixedD), they give results for
the onset of a number of secondary bifurcations, such as the
formation of loops, snap buckling, and bifurcations in and
out of planar configurations.

However, the work most closely associated with our ex-
periments is that of Van der Heijden et al.15 (which includes
some of our experimental results), and this should be referred
to for the more analytical aspects of these investigations. This
work additionally deals with rods with isolated points of self-
contact, which we also briefly touch on in the experiments
reported below.

This paper is set out as follows. In the next section we
outline the mathematical model with which we compare our
results.We also give details of the experimental determination
of the constitutive relations for the nitinol rods used in our
experiments. In the third and fourth sections we discuss and
present results of experiments in which eitherD orR is fixed
whilst the other is varied. In the final section we present a
discussion of our results including the effect of gravity.

Outline of the Mathematical Model

Constitutive Relations

Large deflection rod experiments have been hampered by
the sometimes conflicting requirements that the rod possesses
high flexibility, but that its statics is not dominated by sag-
ging effects due to gravity, and that the loads are measurable.
For one of these reasons or another, materials such as rubber,
steel, and nylon are not always convenient for experiments.
However, the highly flexible nickel titanium alloy, nitinol
(which stands for Nickel Titanium Naval Ordnance Labo-
ratory where it was first discovered by William Buehler in
195916), is a suitable material for a wide range of such exper-
iments. Nitinol has the property that it undergoes a phase tran-
sition from the relatively ordered austenite solid-state phase
to the more disordered martensite phase, either caused by
varying (lowering) the temperature or stress-induced. The
critical temperature can be varied from 100◦C to well below
−200◦C, by changing the precise composition of the alloy.

Nitinol’s high flexibility has been used in, for instance,
spectacle frames, telecommunication antennae, and actuator
valves.17 This flexibility together with its biocompatibility18

is currently being exploited in a number of medical appli-
cations including surgical instruments, orthopaedic devices,
and orthodontic arches (see Kusy19 for a recent review).

Nitinol rods of circular cross-section with radiusr =
0.5 mm and lengthsL varying from 300 to 2000 mm were
selected. We assume, with good justification, that the speci-
mens are isotropic and possess identical material properties at
all points along their length (i.e., uniformity and homogene-
ity) and that their natural state is straight. We also assume
that in our experiments they suffer no appreciable extension
or transverse shear. It follows that we need only to establish
the material’s characteristic response to a lateral end force
and a twisting moment: specifically, the bending rigidityB
and the torsional rigidityC. Since suppliers advise that these
properties vary with manufacturing history (especially heat
treatment), we established them directly by means of simple
experiments. From a cantilever experiment, the value ofB
was determined using the engineer’s formula (see Gere and
Timoshenko20, p. 369)

δ = PL3

3B
, (1)

whereδ is the deflection measured at the free end of the
rod due to the application of a known applied loadP . As a
consequence of isotropy, this experiment will give the same
result in any lateral direction.To establishC, the rod was fixed
at both ends and the torque measured for increments of end
rotationR. The data from these measurements are shown in
Fig. 2. The straight-line relationships between the loads and
deflections indicate linear constitutive relations of the form

M1 = Bκ1, M2 = Bκ2, M = Cτ, (2)

whereM1 andM2 are the bending moments about two (or-
thogonal) principal axes of the cross-section (the reason for
referring to principal axes will become clear in the next sec-
tion), κ1 andκ2 are the respective curvatures,M is the ax-
ial twisting moment, andτ is the twist per unit length. The
slopes of the graphs in Fig. 2 giveB = 0.0028 Nm2 and
C = 0.0020 Nm2.
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Fig. 2—Best-fitting line to experimental data for the determi-
nation of the flexural and torsional rigidities

Using B = EI , where E is the modulus of elastic-
ity and I = (πr4)/4 the second moment of area, we find
E = 57 GNm−2. This result is consistent with a separate
tensile test carried out on a Tensometer 20 Universal Testing
Machine. QuotedE values for nitinol alloys usually range
from 28 to 44 GNm−2 for the martensitic state and from
80 to 110 GNm−2 for the austenitic state.21 However, our
value correlates well with the range 32–60 GNm−2 reported
in Rucker and Kusy21 for heavily drawn wire.

UsingC = GJ , whereG is the shear modulus andJ =
(πr4)/2 the polar moment of area, we findG = 20 GNm−2.
There is a scarcity of reportedG values in the literature.
The only value ofG we could find is that extracted from
experimental data reported in Drake et al.,22 which yields
G = 21 GNm−2. Our values imply a Poisson ratioν =
(E/2G) − 1 ≈ 0.4.

Note that all measurements of forces and moments re-
ported in this paper are in the range from−0.5 to 1 N,
and ±0.2 Nm, respectively. The transducers used to mea-
sure the forces and torques have a sensitivity of 0.0001 N
and 0.0001 Nm, respectively.

The constitutive relations (2) link the kinematics of a de-
formed rod to the equilibrium equations. These we treat in the
following two sections. Together they establish the basis of
the special Cosserat theory of rods,23 a geometrically exact
one-dimensional theory, which we use to compare with our
experimental results.

Kinematics

Cosserat theory treats the rod as a set of material points
forming a curve in space which we can think of as the cen-
terline of the rod. The curve is parametrized by arc length
s ∈ [0, L] whereL is the length of the rod in its natural
unstressed state, called the “reference state”. A distinctive
feature of Cosserat theory is that it endows each material
point with a unit vectord1(s), called a “director”. The direc-
tor is normal to the curve and aligned with a principal axis.
The position of each point along the rod with respect to a
fixed coordinate system (which is taken here to be coinci-
dent with the experimental rig; see Fig. 3) is given by the

vectorr(s) = (x(s), y(s), z(s)) with basis(i j k). The origin
r(0) = (0, 0, 0) is taken to be at one end of the experimental
rig, where the rod ats = 0 is attached. For an unshearable,
inextensible rod, we can defined3 as the tangent vector:

d3 := dr
ds

. (3)

We can then defined2 as follows

d2 := d3 × d1 = (d3yd1z − d3zd1y)i − (d3xd1z − d3zd1x)j

+ (d3xd1y − d3yd1x)k, (4)

where the second suffix in each term of eq (4) refers to com-
ponents in the fixed frame. The triad(d1, d2, d3) constitutes
a moving orthonormal frame attached to the rod. We assume
that in its unstressed state the rod is straight and untwisted.We
choose the directors in this reference state to be everywhere
aligned with the rig axes (i.e.,d1 = i, d2 = j, d3 = k). It
follows thatr = ks. Due to the orthonormality of the director
frame, the spatial evolution of the directors is given as

ddi

ds
= u × di (i = 1, 2, 3), (5)

whereu denotes the curvature vector

u = κ1d1 + κ2d2 + τd3. (6)

Here,κ1 is the curvature aboutd1, κ2 is the curvature about
d2, andτ is the twist aboutd3.

Equilibrium Equations

The laws of Newton and Euler state that for statical equilib-
rium the resultant of the contact forces and contact moments
must be zero.23 Therefore, ignoring body forces, we have

dN
ds

= 0, (7)

whereN = N1d1+N2d2+N3d3,N1 andN2 are shear forces,
andN3 is the axial force (tension positive and compression
negative). For the balance of moments, we have

dr
ds

× N + dM
ds

= 0, (8)

whereM = M1d1 + M2d2 + M3d3, M1 andM2 are the
bending moments, andM3 is the twisting moment.

The derivatives d/ds on the left-hand sides of eqs (7) and
(8) can be expressed as the derivative with respect to arc
length in the moving coordinate frame, plus terms which de-
scribe the derivative of the directors themselves. For example

dN
ds

= d

ds
(N1d1 + N2d2 + N3d3)

=
(

dN1

ds
d1 + dN2

ds
d2 + dN3

ds
d3

)

+
(

N1
dd1

ds
+ N2

dd2

ds
+ N3

dd3

ds

)
. (9)
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Consequently, using eq (5) and the constitutive relations (2),
we can express eqs (7) and (8) in component form:

dN1

ds
= N2M3

C
− N3M2

B
,

dN2

ds
= N3M1

B
− N1M3

C
,

dN3

ds
= N1M2

B
− N2M1

B
,

dM1

ds
= M2M3

B

(
1 − B

C

)
+ N2,

dM2

ds
= M1M3

B

(
1 − B

C

)
− N1,

dM3

ds
= 0.

(10)

An important property of the weightless isotropic rod is
the existence of the following three independent constants:

|N|2 = N2
1 + N2

2 + N2
3 = constant,

N · M = N1M1 + N2M2 + N3M3 = constant,

M · d3 = M3 = constant.

(11)

The first two equations of eq (11) exist in the more general
case of an anisotropic rod and correspond to the conservation
of force and conservation of torque about the force vector.The
line of action of this force vector is called the wrench axis. It is
rotated and displaced with respect to the rig loading axis (see
Van der Heijden et al.15 for further details). The third constant
is a consequence of isotropy and expresses conservation of
twist about the rod’s axis. Together, the integrals in eq (11)
render a fully integrable mathematical system of equations
(see Kehrbaum and Maddocks24) with solutions expressed in
terms of elliptic integrals and elliptic functions. Whilst work-
ing with these integrals and functions has no benefit in the
context of this experimental study (we use numerical meth-
ods), it is worth pointing out that the intrinsic symmetry in the
mathematics manifests itself in the actual configuration of the

rod: odd symmetry exists in thezx plane, and even symme-
try in thezyplane. Photographs taken during the experiments
have tried to capture this symmetry. Note, though, that strictly
speaking the symmetry is with respect to the wrench axis, not
the rig axis (see Van der Heijden et al.15).

Boundary Conditions and Experimental Procedure

Because the rig is a rigid loading device, we seek mathe-
matical boundary conditions depicting the kinematics rather
than the loads. First of all, we specify the position vector at
each end of the rod where it is attached to the rig

r(0) = (0, 0, 0), r(L) = (0, 0, L − D), (12)

whereD denotes the distance by which the ends = L is
displaced towardss = 0 in a straight line along thez-axis
(i.e., the slack). With respect to the tangentd3, the rig grips
the ends of the rod in chucks in exactly the same way as a
drill bit is gripped in a drill (see Fig. 3). Consequently, the
slope at the ends is also fixed, and thus

d3(0) = (0, 0, 1), d3(L) = (0, 0, 1). (13)

Note that eqs (12) and (13) correspond to Antman’s
welded boundary conditions.23 Experiments may also in-
volve inputting end rotation. When the rod is straight but
twisted, the rotationR (modulo 2π) of one end with re-
spect to the other end is given byd1(0) · d1(L) = cosR
and d2(0) · d1(L) = sinR. Thus, we have the following
boundary conditions ford1:

d1(0) = (1, 0, 0), d1(L) = (cosR, sinR, 0). (14)

We now have a system of 15 first-order ordinary differ-
ential equations: three in eq (3) for the position vector, six
for the directorsd1 andd3 in eq (5), and six in eq (10) for
the forces and moments. Together with all nine boundary
conditions stipulated ats = 0 in eqs (12), (13), and (14),
plus three ats = L in eq (12) and the conditions ond3x(L)
andd3y(L) in eq (13) andd1x(L) in eq (14) these constitute
a well-posed boundary value problem. This was solved by a
single-parameter continuation of solutions using MATLAB’s
boundary value solver bvp4c. This is a finite difference code
that implements a collocation formula, details of which can
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Fig. 4—The theoretical TD diagram and associated MD diagram for rigid loading under control of slack

be found in Shampine et al.25 Solution paths were traced out
by gradually incrementingD or R. We remark here that it
is not always easy to find starting solutions in this continua-
tion procedure and the program is slow when it is set at high
accuracy.

Two different rigid loading experiments were carried out.

• FixedR loading: inputR and controlD. These experi-
ments are discussed in the experimental results section
for R fixed,D varied.

• FixedD loading: inputD and controlR. These experi-
ments are discussed in the experimental results section
for D fixed,R varied.

In each set of these rigid loading experiments, the rig force
T and rig twisting momentM are passive and are measured
by the corresponding transducers at either end of the rod (see
Fig. 3). Because of the welded boundary conditions in which
d3(0) and d3(L) are aligned with the rig, the transducers
measure the axial loads and thereforeN3 = T andM3 = M.
Each data point in theTD andMR diagrams to be presented
represents the mean of at least three separate experiments
taken at three separate times. Most experiments involved rods
with lengths less than 1/2 m.

Experimental Results: R Fixed, D Varied

It has already been mentioned that under fixedR condi-
tions theTD diagram is the natural arena for the study of
experimental results. Some insight into the global character-
istics of theTD diagram can be gained from consideration of
the “planar elastica”, the two-dimensional theory describing
the planar configurations of a rod loaded only by an end force.
This is a classical case in rod theory which Euler completely
solved in 1744.26 The planar elastica solutions comprise two
loading paths in theTD diagram, as shown in Fig. 4. These
two paths, the inflectional and noninflectional, represent a

good guide to the upper and lower bounds of all other spatial
loading paths forD/L < 1.

In an experiment, a rod loaded only by an end force (i.e.,
R = 0) buckles from the reference state atT L2/4π2B = −1
(Euler buckling). Under continued inputs of slackD the rod
bends in the plane and its loading path is initially identical to
that of the inflectional planar elastica. However, at a certain
load a secondary bifurcation occurs. In the case of a nitinol
rod, this happens atD/L = ∆1 := 0.5590....15 In theMD
diagram this event is depicted by the appearance of non-zero
twisting moments (see Fig. 4). Thus, this bifurcation involves
a transfer of bending energy into twisting energy, causing the
rod to twist out of the plane and depart from the inflectional
planar elastica loading path. With further inputs ofD, the rod
gradually folds back upon itself until atD/L = 1 it again
adopts a (noninflectional) planar state in the form of a twisted
ring, having gained 2π radians of twist.

Whilst our rig does not facilitate experiments in the vicin-
ity of D/L = 1, we can nevertheless conceive of a hypo-
thetical experiment starting from a planar twist-free ring. We
can proceed in one of two directions: either increasing or de-
creasingD. By increasingD, we open out the ring and follow
the noninflectional planar elastica, which remains stable for
D/L > 1. Experimental data for this case were obtained for
1.5 ≤ D/L ≤ 1.8 and involve turning the rig ends around
(see photograph in Fig. 5).

By decreasingD from the ring, the ends of the rod are
pulled across each other to form a loop. Whilst in this case
the rod is strictly not planar (separated as it is by its cross-
sectional thickness) the loading path follows very closely that
of the upper “self-intersecting” branch of the noninflectional
planar elastica(0 < D/L < 1); see Fig. 5. In this case an-
other secondary bifurcation arises (D/L = ∆2 := 0.6772...
for nitinol15) in which the rod twists out of the planar loop
and buckles spatially. If the experiment is then continued all
the way to the straight state atD = 0, we find that the rod has
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again gained a twist of 2π radians. We can also perceive this
experiment in reverse: start atD = 0 with R = 2π and input
slack until the rod bifurcates into the plane at∆2. Further
slack then retrieves the ring atD/L = 1 with all the twist
having been removed.

For R �= 0, buckling is directly from a twisted straight
state into a spatial configuration, mathematically described
as a pitchfork bifurcation. The critical condition can be found
from a linear eigenvalue analysis and is given in Van der

Heijden et al.15:

2πn3

λ
sinπλ = cosπλ − cosπm3. (15)

Here,λ =
√

m2
3 − 4n3 with m3 = (C R)/2πB) andn3 =

(T L2/4π2B). As more slack is input into the rod, it releases
twisting energy and transfers it to bending energy, adopting
a three-dimensional (3D) configuration. A characteristic of
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loading paths forR < 2π is that they all lead to the planar
ring atD/L = 1, a state of zero tension (but non-zero twist).

For R > 2π, qualitatively different behavior arises. A
point is reached when the loading path develops a vertical
tangency and changes direction (the knee of the curve in
Fig. 6). At this point, the rod jumps off the path and flips
into a self-contacting loop during which nearly 2π radians
of twist is released. Loop formation (hockling) is therefore
described by a fold bifurcation and involves a transfer of
twisting energy to bending energy. High initial end rotations
are accompanied by correspondingly large jumps and occur
at less slack.

Inspection of theTDdiagram in Fig. 6 shows that hockling
involves a jump towards the self-intersecting planar elastica
loading path. If, after hockling, the slack is subsequently re-

versed back towardsD = 0, then the loop is under tension
and pulled tight, causing an increase in curvature, and there-
fore the bending moment, around the loop.A point is reached
when this configuration becomes unstable and the loop pops
out. In theTDdiagram, pop-out corresponds to the rod falling
back on to its original loading path, thereby creating a hystere-
sis cycle. Note that the path to pop-out may be accompanied
by plastic deformation resulting in a permanently damaged
kinked rod. This occurs when the loop dimensions decrease
to the point that the curvature becomes so large as to push the
rod outside its linearly elastic regime.

On the other hand, increasingD after loop formation can
cause the rod to “snarl” (i.e., form a ply), as shown in Fig. 6,
which may also damage the rod. The onset of snarling is only
evident beyond a critical value ofR. For nitinol, this was
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Fig. 7—The theoretical MR loading diagram, for a range
of fixed D values. Note that the maximum twisting moment
occurs in the D/L = 1 case. For D/L >1, the moment reduces
again

found experimentally to be atR ≈ 4.5π radians, a result
consistent with the theoretical amount of end rotation that
can be input into a ring before it buckles spatially, given in
Zajac27

Rcrit = 2π
√

3(1 + ν), (16)

which for nitinol givesR = 4.85π radians. ForR less than
this value, the loop remains intact and is converted into a
twisted ring atD/L = 1.

Experimental Results: D Fixed, R Varied

In this section we discuss experiments on rods that are
loaded by twisting the ends relative to each other whilstD is
fixed. Five qualitatively different regions of behavior are iden-
tified, and their demarcation depends upon the critical values
∆1 and∆2 at which the secondary bifurcations arise. Nu-
merical data for loading paths within each region are shown
in Fig. 7. We now discuss our experimental results, treating
each of these regions in turn.

• D/L < ∆1

The two distinctive characteristics of this region are as
follows. First, becauseD/L < ∆1, the planar elas-
tica is stable and consequently the rod can be rotated
throughR = 0 smoothly. Secondly, a jump into a loop
occurs onceR > 2π, corresponding to hockling. The
loop can be removed by unwindingR to induce pop-
out. The paths between hockling and pop-out form a
hysteresis cycle, as shown in Fig. 8. Note that the the-
oretical path through the self-contact data betweenB
andC in this figure is provided by the (friction-free)
point contact theory in Van der Heijden et al.15

• ∆1 < D/L < ∆2

OnceD/L exceeds the value∆1, the planar state is no
longer stable and the rod jumps throughR = 0, a phe-
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Fig. 8—Results of an experiment conducted under control
of R, with slack fixed at D/L = 0.5. The rod passes smoothly
through R = 0 but becomes unstable at A and jumps into a
loop (to B). Reversing R causes the rod to pop out of the loop
(C) and return to the stable branch at D (without self-contact).
The circuit ABCD forms a hysteresis cycle, also encountered
in negative R. We observe that the fit is better in positive R
than in negative R, but we can offer no explanation for this
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Fig. 9—Experimental and theoretical MR results for D/L
= 0.62, showing snap buckling, looping, pop-out, and the
hysteresis cycles

nomenon known as snap buckling, which is described
mathematically as a pitchfork bifurcation. Under fur-
ther input ofR, the rod will jump into a loop (hock-
ling), which can be removed by unwindingR (pop-
out). These phenomena are shown in Fig. 9 where it can
be seen that both snap buckling and hockling involve
hysteresis cycles. Whilst the amplitude of the jump as-
sociated with snap buckling rises under increasingD,
there is an accompanying decrease in the magnitude of
the jump into and out of self-contact during hockling
(see Fig. 10).
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the jump associated with snap buckling (which occurs in the vicinity of R = 0) is more pronounced whilst the jump associated
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D/L > ∆2, loop formation occurs smoothly and does not involve a jump (see lower figure with D/L = 0.8), but the magnitude of
the snap buckling jump continues to increase

• ∆2 < D/L < 1

WhenD/L exceeds the value∆2, the jump to self-
contact and its attending hysteresis loop disappear and
are replaced by a smooth path (see Fig. 10). However,
the magnitude of the snap buckling jump continues to
increase.

• D/L ≈ 1

At D/L = 1, a rod forms a closed ring.A small but dis-
tinctive region of ring-like behavior exists in its vicin-
ity. Figure 11 plots the theory forD/L = 1 and exper-
imental results forD/L = 0.98 (with the rod attached
directly to the torque transducer).

In the experiment, the amount of twist that the ring
absorbs before it becomes unstable is consistent with

eq (16). The rod then jumps from its twisted planar
state into a “pinched” figure of eight (see Fig. 11).
Swigon’s analysis7 predicts that the ply forming the
central part of this configuration has two points of
self-contact, implying the existence of a gap in be-
tween. However, no gap was discernible in the experi-
ment (see lower photograph in Fig. 11). UnwindingR
brings about another state: atM ≈ 0, the rod jumps into
a figure of eight with one crossover point (consistent
with Swigon7). After further reduction ofR, the rod
jumps back to a twisted ring, again whenM ≈ 0.

• D/L > 1.2

Experiments forD/L > 1 were conducted with the
clamps turned around. WhenR is input into the rod
whilst lying in a plane withD/L ≈ 1.2, a section
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Fig. 11—MR diagram for an experiment in which end rotation
is input into the rod with D/L = 0.98, where it is in the form
of a ring. The twisted ring remains stable until the loading
path reaches B at which point it jumps into a “pinched” figure
of eight. Subsequent reduction of R induces a jump (D −→
E) into a figure of eight with a single point of self-contact.
Further unwinding induces another jump (F −→ G), this time
back on to the original loading path where it remains until R
is reduced to zero and we retrieve the twist-free ring at A

towards the end of it is seen to rotate out of the plane,
but not to a condition of self-contact. Note however
that this does not imply the non-existence of stable
self-contacted solutions forD/L > 1 (see figure 10 of
Van der Heijden et al.15).

It is worthwhile to include in our investigation mixed load-
ing sequences, in which bothD andR are varied. Under spe-
cial circumstances, it is possible to encounter unexpected in-
stabilities. Figure 12 gives the results of an experiment which
initially proceeds under control of slack withR = π/2. The
experiment is momentarily stopped at a point when the slack
exceeds∆2, and therefore the planar elastica is unstable. The
experiment is continued under control ofR. AdjustingR in-
duces snap buckling, which lands the rod on a new path that
is situated in a region of theTD diagram beyond theR = 0
path, a region which is not accessible under sole control of
D. It reveals an interval ofD/L values with more than one
stable solution, a phenomenon which arises as a consequence
of the nonlinearity of our system; the reader should refer to
Van der Heijden et al.15 for a more thorough investigation
of the multiplicity of solutions for the elastic rod equations.
With R wound back toπ/2 and the experiment resumed un-
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Fig. 12—Mixed loading experiment. The experimental (*****)
and theoretical (− · −·) TD loading paths for R = π/2. The
experiment is initiated from A under control of slack until
point B (which lies beyond the secondary bifurcation at ∆1).
The experiment is then paused and placed under control of
R with D fixed (see MR diagram in the inset). Snap buckling
(B1 −→ B2) causes the rod to jump across the R = 0 curve
(B −→ C in the TD diagram). After winding R back to its
original value of π/2 (B2 −→ C in the MR diagram), the
experiment is resumed under control of slack C −→ D −→
E, at which point the loading path encounters a fold, and the
rod spontaneously jumps back across the R = 0 path to F.
Further reduction of slack takes the rod on a smooth path all
the way back to A

der control ofD, the rod undergoes another bifurcation (by
encountering a fold on the new path) and snap buckles back
across theR = 0 path to its original path.

Discussion

The focus of our numerical study is the statics of an
inextensible, unshearable, uniformly isotropic, weightless
Cosserat rod. Here we can be assured by its quintessence.
However, in treating the Cosserat rod as a reference point for
the study of the behavior of real rods as observed through ex-
periment, we need to pay special attention to the experimental
setup. As far as is practically possible, we strive to identify
and eliminate those physical imperfections which may cause
an experiment to deviate from the mathematical model. For
example, we require rods with linear elasticity and we avoid
heavy rods. Our experiments indicate that deviation between
experiment and Cosserat theory is likely to arise in situations
where the strains are high and where friction may arise, such
as in states with high twist and self-contact. We note here
that in an attempt to keep the twist per unit length such that
the rod remains in a linearly elastic regime, long rods were
used for high twist experiments. We also note the sensitivity
of experimental results to boundary conditions.

A noticeable qualitative discrepancy between our fixedR
experimental results and the theory is a rounding off of the
primary bifurcation, given by eq (15). This is only evident
in theTD diagrams, particularly in Fig. 6, and indicates the
presence of an imperfection which does not affect the twist-
ing moment. An obvious source of this error is therefore the
rod’s self-weight. We also remark that a heavy rod would be
expected to buckle at a higher tension than a light rod.
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The effect of self-weight was investigated by performing
experiments on a 600 mm long rod with a flat cross-section
(i.e., a tape). Tapes can be easily induced to bend in the plane
perpendicular to their flat side, whether this is up (hogging),
down (sagging) or sideways. Experimental data correspond-
ing to these three different modes are shown in Fig. 13, where
it can be seen that a tape, initially held under tension, which
buckles by hogging delays the primary bifurcation, whilst
sagging hastens it. A difference of 4 mm between the max-
imum x deflection in these two modes was recorded. Force
diagrams, which include weight, imply that as the angle of
deflectionθ increases (due to inputs ofD), a tape which sags
is under higher tension than a tape which hogs, but the dif-
ference declines as slack increases.

Weight can be incorporated into the mathematical model
by replacing eq (7) by

dN
ds

= m(s)gk,

wherem is the mass per unit length, which from measure-
ments is 0.0048 kg m−1. Preliminary numerical results show
that the inclusion of the rod’s weight leads to a rounding off
of the primary bifurcation, as observed in our experimental
data. However, the inclusion of weight in the mathematical
model does not completely account for the discrepancy be-
tween experimental and theoretical data. This discrepancy
is particularly evident for cases involving high fixedR (see
Fig. 6). It is likely that our assumptions of linear constitutive
relations and non-shearability break down asR increases.
We note here that experiments were particularly sensitive to
errors in the boundary conditions (13).

This work shows that if a loop forms in a rod, then unwind-
ing the twist may instigate a dynamic jump as the rod pops
out of self-contact. Therefore, to ensure smooth removal of
loops, the slack should be increased beyond the out-of-plane

bifurcation before reversingR. Note that trying to pull the
loop out by reversing the slack may damage the rod.
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