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Twining plants achieve vertical growth by revolving around supports of different sizes on which they
exert a pressure. This observation raises many intriguing questions that are addressed within the frame-
work of elastic filamentary structures by modeling the stem close to the apex as a growing elastic rod. The
analysis shows that vertical growth is achieved thanks to discrete contact points and regions with
continuous contact, that the contact pressure creates tension in the stem as observed experimentally,
and that there is a maximal radius of the pole around which a twiner can climb.
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Climbing plants have developed a fascinating array of
mechanical strategies to achieve vertical growth without
being able to support themselves. Hookers, leaners, wea-
vers, rooters, stickers, clingers, tendril bearers, or twiners
are just a few realizations of the 30 different ways vines
manage to grow by taking advantage of their surrounding
[1]. Twiners, such as garden peas, climbing jasmines, and
morning glories, are perhaps the most studied of all vines
[2]. The growing tip waves around in a circular motion
known as circumnutation until it finds an appropriate up-
right support and then start wrapping around it to extend
upward. The tip of the vine keeps nutating and the vine
pursues its climbing process by forming a spiral around the
support. The growth process of twining plants raises many
interesting mechanical questions already noted by 19th
century botanists and further studied by Silk, Holbrook,
and co-workers [3–7].

Can a given twining plant climb around supports of
different sizes? This question was first raised by Darwin
in his book The Movements and Habits of Climbing Plants
[8]. In the book he comments: ‘‘Most twining plants are
adapted to ascend supports of moderate though of different
thicknesses. Our English twiners, as far as I have seen,
never twine round trees . . .’’. As an example, Darwin noted
that Solanum dulcamara can twine around supports of
3 mm but not on supports of 5 or 6 mm (see many other
examples in [9]). The natural question is then to determine
the critical cylinder radius above which a plant is no longer
able to twine. In the process of establishing themselves on
a pole, twining plants rely on friction [2,7]. As noted by
von Sachs [10], the vines may slide off ‘‘. . . if the surface of
their vertical support is too smooth to furnish a strong
mutual friction’’. What is the effect of friction in the vine
ability to grasp the pole? Similarly, what is the pressure
generated by a plant on the pole? How does it change with
its intrinsic properties and shape? Whereas most plants
such as trees or flowers stems are in compression, a pecu-
liar feature of twining plants is that their stem is in tension

[4]. How is this tension generated? There is no applied load
at the tip of the growing plant, gravity only increases
compression and, although the stem can build compressive
and tensile domains through differential growth, the net
effect vanishes when averaged over the cross section.
Therefore, a vine in continuous contact with a pole cannot
generate tension. As we will see, tension is actually pro-
duced when the plant establishes discrete points of contacts
which create anchorage points. The purpose of this Letter
is to identify through simple mechanical arguments how
twining vines establish themselves, develop discrete and
continuous contacts, and to answer Darwin’s question on
the critical pole radius.

Most authors have studied the helical shape of the twin-
ing vine around the pole. By contrast, we focus on the
formation of these helices by looking at the way the tip of
the vine manages to grasp the pole. The vine before lig-
nification is a long, thin, elastic filament subject to twisting
and bending. Because of the small linear density of the vine
and the large stresses developed through self-contact, the
gravitational load on the vine has been found experimen-
tally to be negligible by comparison to other forces in-
volved in the problem (for instance the linear weight in
Pharbitis nil is about 0:4 mN cm�1 but, it can exert a
contact force of 300 mN cm�1 [4]). Therefore, it will be
omitted in the analysis of the grasping problem. During the
circumnutation process, the vine at the apex develops
intrinsic curvature and torsion. We assume these curvatures
to be constant and uniform. This assumption is consistent
with the vertical and lateral oscillation of the vine tip
observed during growth.

It is therefore reasonable to model the vine as a uniform
inextensible and unshearable elastic rod with circular cross
section, constant intrinsic curvature and twist, in possible
contact with a cylindrical support. Since growth is slow
with respect to other time scales in the problem, the attach-
ment problem consists in finding possible equilibria of the
rod on the cylinder with appropriate boundary conditions.
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An inextensible and unshearable rod of length L may be
represented by its center line r�s�, where s is the arclength
(0 � s � L), and an orthonormal basis formed by the
tangent vector d3�s� � r0, and two vectors d1�s�, d2�s�
representing the orientation of material cross sections. A
complete kinetic description is given by: d0i � u� di, i �
1, 2, 3 where ��0 denotes the derivative with respect to s and
u is the strain vector. The two first components of u are

related to the Frenet curvature � �
�����������������
u2

1 � u
2
2

q
and u3 is the

twist which comprises both material twisting and Frenet
torsion �. The stresses in a cross section at s can be
averaged to yield a resultant force n�s� and resultant mo-
ment m�s� acting at r�s�. The balance of linear and angular
momenta yields [11]

 n 0 � f � 0; m0 � r0 � n � 0; (1)

where f�s� is the body force per unit length applied on the
cross section at s (body couples are ignored here). The
body force is used to model the effect of contact with the
support. To close the system, we assume the linear con-
stitutive relations m � Bu1d1 � B�u2 � û2�d2 � C�u3 �
û3�d3, where û2 and û3 are, respectively, the intrinsic
curvature and twist of the rod, and B and C are the bending
and twist rigidities. To gain some insight on the problem,
we first consider a simple two-dimensional version where
the vine, rather than twining around a pole, is restricted in
the plane. In this case û2 � 1=R̂ and û3 � 0. The filament
is assumed to be clamped at its base (s � 0), that is r�0� �
�R; 0�, d3�0� � �0; 1�. The natural radius of the vine, R̂,
corresponds to the radius of the vine when taken away from
its support (see [4] for the experimental procedure that
provides the value of R̂). The clamp models the constraint
applied by the lower part of the plant on the shoot apex.
The tip at s � L lies on the disc and no moment is applied
to it so that its curvature is equal to the intrinsic curvature
u2�L� � û2. We also require the external force at L to be
radial (see Fig. 1). For each length L and ratio of radii � �
R=R̂, these boundary conditions ensure the existence of a
discrete set of solutions. Therefore solutions can be ob-
tained numerically by traditional shooting methods for
boundary-value problems: starting with the initial values
at s � 0 [r�0� � �R; 0�, d3�0� � �0; 1�, m�0�, and n�0� to
be given by an initial guess], Eq. (1) is integrated with a
Runge-Kutta alogrithm, up to s � L where we check the
end conditions. If they are not satisfied, we adjust the
values for m�0� and n�0� until the computed solution
satisfies the boundary conditions. Once a solution is
known, the process of growth on the disk is carried out
by finding solutions with increasing length, using parame-
ter continuation. For each solution, we track the angle �
that the tip makes with the tangent to the disk (see Fig. 1).
We refer to the portion of the filament off disk as the
anchor. For small �, a typical bifurcation diagram with
distinct equilibria branches is shown in Fig. 2. On the first

branch (continuous line) and for small enough L, we find
stable solutions which can be continued up to a (fold) point
where they first penetrate the disk. This is a bifurcation
point where we identify another branch (the vertical line in
Fig. 2) corresponding to solutions having a segment in
continuous contact with the disk in addition to the anchor
part. The length of the continuous part can be extended
arbitrarily while the anchor does not change shape. The
remaining upper part of the first branch (dotted curve)

FIG. 1. (a) Blue bindweed (Ipomoea purpurea), a typical twin-
ing plant (illustration from von Sachs’ physiology of plants
[10]). The shoot apex spans from a to b. (b) Diagram of the
apex region of a climbing twiner.
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FIG. 2 (color online). Below the critical curvature ratio, 3 �
� < �c, the filament can grow by first changing its inclination at
the tip then by adding a continuous segment (in red) of arbitrary
size. Dotted and dash-dotted curves represent configurations that
are either unstable (do not remain attached on the pole) or
unphysical (where the vine enters the disk). They are, however,
useful to understand the bifurcation.
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corresponds to unphysical configurations penetrating the
disk. All solutions on the branch corresponding to large
values of � (dash-dotted curve) are either unphysical or
dynamically unstable (as determined by computing the
linearized dynamics around the configuration [12]). For
larger values of � there are also two branches of equilibria.
On the lower branch, there exist stable configurations for
0<L< Lmax. At Lmax a fold point is reached with a loss of
stability and a dynamical jump occurs to configurations
where the filament rolls on itself and leaves the disk (see
Fig. 3). This rolled-up solutions can have arbitrary length
(see vertical line in Fig. 3). These solutions are not viable
for a twining plants since they do not allow the vine to grow
around the pole by increasing its length. The bifurcation
between these two behaviors defines the maximal radius on
which a vine can grow and is found to occur at the unique
value �c ’ 3:3, where the two branches of equilibria cross.
That is, in the plane a vine cannot grow on disks that are
more than 3.3 times larger than its natural radius. In the
section of the filament in continuous contact with the disk
the radial component of the force vanishes. From Eq. (1),
we see that the tension n3 � n � d3 balances the contact
force p � f � er so that n3 � Rp. Since the support can
only provide repulsive contact force (p > 0), the previous
relation implies that the filament must be in tension (n3 >
0�. This tension is provided by the pointwise contact force
at the end s � L of the filament and transmitted by the
anchor to the part of the filament in continuous contact
with the disk. Further use of the moment balance and of the
constitutive relation yields

 p �
B

R2

�
1

R̂
�

1

R

�
; (2)

from which we see that the condition � > 1 must be
satisfied for p to be positive.

The analysis so far has been restricted to the frictionless
case. However, it has been emphasized by different authors

[2,7] that friction plays an important role in the ability of a
climbing plant to support its weight. Here friction is mod-
eled by a tangential component of the disk reaction force
on the tip of the anchor. To understand its effect, we first
consider an equilibrium configuration obtained in the ab-
sence of friction. We then change the length of the filament
without moving the tip. This is made possible by introduc-
ing a tangential component in the reaction force along e� at
s � L due to friction. As L keeps increasing (decreasing),
the tangential force component reaches a critical value
equal to �p where �< 0 (�> 0) is the friction coeffi-
cient. Past this value the tip slips incrementally on the disk
to find a new nearby equilibrium configuration where the
tangential component equals the critical tangential value.
Therefore, to identify the equilibrium configurations with
friction we increase the length and find configurations
where the tangential force equals �p. For each friction
coefficient � we compute, as detailed above, the critical
value �c � �c��� defining the bifurcation between fila-
ments that can grow around the disk and filaments that
leave the disk. The results in Fig. 4 show that friction can
have a crucial effect on the ability of a plant to remain on a
large disk. Note that in the case of a twining plant, once the
tip is in contact with the pole, friction prevents the plant
from sliding back, which corresponds to positive values of
�. Intuitively, one can understand Darwin’s problem as
follows: for thin supports the vine tip and the tangent of the
support are almost parallel and the vine follows the support
without curling back on itself. For thicker supports, in
order to maintain its grip, the tip needs to touch the support
surface at a larger angle �. If the support becomes too
large, so will the angle � and the vine will curl back on
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FIG. 3 (color online). Above the critical curvature ratio 3:5 �
� > �c, filaments attachment on the disk are limited in length.
Past a certain Lmax value, the filament rolls up on itself and does
not manage further growth to keep growing around the pole.

ρ

µ

FIG. 4. Change of critical radii ratio as a function of friction.
Positive friction coefficient � acts when the tangential force
prevents the filament from sliding back, whereas negative fric-
tion coefficients correspond to a situation where friction prevents
the tip from slipping forward. The range of � values are
consistent with experimental data in Ref. [7]. The prediction
of an upper bound of �c around 8 is consistent with the
observation of Bell [13].
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itself. For increasing friction the contact angle needed for
this to happen will be higher and consequently the plant
can wind on thicker supports.

We now turn our attention to the three-dimensional case.
The main properties found in the two-dimensional case
still hold, namely, discrete points of contacts exist between
plant and support, tension is generated by these contact
points, and attachment is possible only by difference be-
tween intrinsic curvature and twist and geometry of sup-
port. However, there are new subtle difficulties associated
with growing a filament on a cylinder. The base of the apex
where the filament is clamped can now have an arbitrary
orientation. In our model, this orientation is closely related
to the pitch of the plant helixlike shape on the pole (it was
experimentally observed that the plant adopts an almost
uniform helical shape provided that the number of gyres is
large enough and the support is uniform [13]). Therefore,
we investigate the mechanical origin of the helical shape
on the pole and find that for given intrinsic curvature û2 and
twist û3, there exists a single helical equilibrium on a
cylinder of radius R with pitch angle �. Solving Eq. (1)
in cylindrical geometry yields the trigonometric equation

 C�u2 � û2� sin2� � B�u3 � û3� cos2�; (3)

where u2 �
sin2�
R and u3 �

sin� cos�
R are the curvature and

torsion of the helix. As before, this continuous solution
lying on the cylinder can only be maintained by the tensile
force provided by the anchor. The problem is then to find
an anchor starting with the correct pitch angle and tension.
In general no such solution can be found. We then return to
a three-dimensional version of the boundary-value prob-
lem: the filament is clamped at s � 0 and is simply sup-
ported by a radial force at its the tip s � L, where it
contacts the pole. Not surprisingly, the bifurcation diagram
becomes quite complex to study (with multiple solutions

with discrete and continuous contacts). Rather than provid-
ing an exhaustive description, we look for solutions close
to helices with varying pitch angles, in continuous contact
with the cylinder. The solutions ends with an anchor (see
Fig. 5). We can now define a �max as the largest value of
� � R=R̂ such that the continuous part of the segment can
be extended. Extensive numerical studies show that the
value of �max obtained in the planar case provides a good
estimate for the three-dimensional case.

The present analysis shows that a mechanical model for
anchoring and attachment based on rod theory can provide
a simple explanation for the limitation of twining plants to
wind around thick supports and for the role of friction to
boost the plant ability to achieve vertical growth. The
model also explains how tension is generated and shows
that both continuous and discrete contact points between
stem and pole exist. However, the present model does not
address the fact that the stem, after it establishes itself on
the pole, may adapt its intrinsic curvature due to stress and
contact. We believe this remodeling might be important to
obtain an accurate picture of the stem shape on the pole,
but this theoretical treatment must be left for future work.
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FIG. 5 (color online). A sequence of three-dimensional solu-
tions to the attachment problem. Note the continuous, almost
helical, solution followed by the anchor that provides tension in
the filament.
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