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Improving a method for the study of limit cycles of the Liénard equation

Hector Giacomini* and Se´bastien Neukirch†

Laboratoire de Mathe´matiques et Physique The´orique, CNRS UPRES A6083, Faculte´ des Sciences et Techniques, Universite´ de Tours,
F-37200 Tours, France

~Received 2 October 1997!

In recent papers we have introduced a method for the study of limit cycles of the Lie´nard system,ẋ5y

2F(x), ẏ52x, whereF(x) is an odd polynomial. The method gives a sequence of polynomialsRn(x), whose
roots are related to the number and location of the limit cycles, and a sequence of algebraic approximations to
the bifurcation set of the system. In this paper, we present a variant of the method that gives very important
qualitative and quantitative improvements.@S1063-651X~98!00506-6#

PACS number~s!: 05.45.1b, 02.30.Hq, 02.60.Lj, 03.20.1i
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In a previous paper@1#, we have introduced a method fo
studying the number and location of limit cycles of th
Liénard system:

dx

dt
5y2F~x!,

dy

dt
52x, ~1!

whereF(x) is an odd polynomial of arbitrary degree. Th
method is as follows: we consider a functionhn(x,y) given
by

hn~x,y!5yn1gn21,n~x!yn211gn22,n~x!yn221¯

1g1,n~x!y1g0,n~x!, ~2!

wheregj ,n(x), with j 50,1, . . . ,n21, are functions ofx only
andn is an even integer. It is always possible to choose
functionsgj ,n(x) such that

d

dt
hn~x,y![ḣn~x,y!5@y2F~x!#

]hn

]x
2x

]hn

]y
~3!

is a function of the variablex only ~see also Ref.@2#!. Hence
we have

ḣn~x,y!5Rn~x!. ~4!

The functionsgj ,n(x) and Rn(x) determined in this way
are polynomials. We have shown in Refs.@1# and@3# that the
polynomialshn(x,y) and Rn(x) give a lot of information
about the number and location of the limit cycles of Eq.~1!.
In particular, we have established in Ref.@1# the following
conjecture: LetL be the number of limit cycles of Eq.~1!.
Let r n be the number of positive roots ofRn ~with n even! of
odd multiplicity. Then we have~i! L<r n , ~ii ! if m.n then
r m2r n52p with pPN.

Moreover, we have also shown in Refs.@1# and @3# that
the polynomialshn(x,y) and Rn(x) allow us to construct
algebraic approximations to each limit cycle and to the
furcation curves of Eq.~1!. For the bifurcation set, thes
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algebraic approximations are exact lower bounds and s
to converge in a monotonous way to the exact bifurcation
of the system. The fundamental aspect of this method is
it is not perturbative in nature. It is not necessary to hav
small or a large parameter in order to apply it.

In the present paper, we want to improve the results p
sented in Refs.@1# and @3#. Let us consider, as a first ex
ample, the van der Pol system:

ẋ5y2e~x3/32x!,
~5!

ẏ52x.

In this case we haveF(x)5e(x3/32x) and the polynomials
Rn(x,e) have only one positive root of odd multiplicity fo
each even value ofn and for arbitrary values of the param
etere @we have indicated here the explicit dependence ofRn
in e by writing Rn(x,e)]. We call theamplitudeof the limit
cycle the maximum value of the coordinatex on the limit
cycle and we will refer to it asxmax. For the van der Pol
equation, this amplitude is a function ofe and we will write
xmax(e).

In Table I, we give the roots of the polynomialRn(x,e)
for n between 2 and 20 and fore53. These sequences o
roots seems to converge in a monotonous way to the am
tude of the limit cyclexmax(e).2.023, which is obtained by a
numerical integration of the system.

As explained in Ref.@1#, the integral of each polynomia
Rn(x,e) along the limit cycle must be zero for all even va
ues ofn:

E
0

T

Rn„x~ t !,e…dt50, ~6!

whereT is the period of the limit cycle.
Let us now describe for this example the improv

method that represents the new contribution of this pap
We employ an idea utilized in the averaging method@4#: we
replacex(t) by a cos(t) in Eq. ~6!, wherea is an unknown
constant, and we replace the periodT by 2p. After integra-
tion, we obtain a polynomial ina that we denoteR̂n(a,e):
6573 © 1998 The American Physical Society
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TABLE I. Values of the roots ofRn(x,e) for system~5! with e53.

n 2 4 6 8 10 12 14 16 18 20 Num.

Root 1.732 1.819 1.863 1.890 1.909 1.923 1.934 1.943 1.950 1.955 2
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R̂n~a,e!5E
0

2p

Rn„a cos~ t !,e…dt. ~7!

Surprisingly enough, the polynomialsR̂n(a,e) have the same
qualitative properties as the polynomialsRn(x,e). Each of
them has only one positive root of odd multiplicity for arb
trary values ofe. The values of these roots forn between 2
and 20 are given in Table II for the casee53. We can verify
that each one of these roots represents a lower bound
xmax(e53). This sequence of roots seems to converge
xmax(e53) much more rapidly than the sequence of roots
the polynomialsRn(x,e) and they represent excellent a
proximations to the value of the amplitude of the limit cyc

This behavior of the roots of the polynomialsR̂n(a,e) is
merely anexperimentalfact. At present, we have no rigorou
arguments to explain these results. We have observed
behavior of the roots of the polynomialsR̂n(a) for other
Liénard systems of type~1! and the conjecture established
@1# ~and given also above! about the roots of the polynomial
Rn(x) seems to be valid also for the roots of the ‘‘average
polynomialsR̂n(a).

For a given value ofn, we can obtain the approximatio
of the amplitudexmax(e) as a function ofe by considering
the curve given by the equationRn(x,e)50. However, a
better approximation is found by consideringR̂n(a,e)50
instead. In Fig. 1~respectively, Fig. 2!, we give the curve
Rn(x,e)50 @respectively,R̂n(a,e)50# for several values of
n and the numerical curvexmax(e) obtained from a numeri-
cal integration of the system. As we can see from these
ures, the improvement obtained with the new method is v
important and has two different qualitative aspects:~i! the
curvesR̂n(a,e)50 are nearer to the numerical curve than t
curve Rn(x,e)50; ~ii ! the asymptotic behavior~when e

→` or e→0) of the curvesR̂n(x,e)50 is the correct one
~even for smalln).

The amplitudexmax(e) of the limit cycle of the van der
Pol equation tend to the value 2 whene→` or e→0:

lim
e→`

xmax~e!5 lim
e→0

xmax~e!52.

This asymptotic behavior is correctly given by the curv
R̂n(a,e)50 for all even values ofn.

Despite the fact that the curvesRn(x,e)50 do not have
the correct asymptotic behavior, each one represents an e
lower bound to the functionxmax(e) and is closer to it than its
for
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predecessor. Moreover, for a given value ofe, if we taken
sufficiently large , the root ofRn(x,e)50 will be as near as
we want toxmax(e). For other recent results about the lim
cycle of the van der Pol equation see Refs.@5# and @6#.

Let us consider a second example:

ẋ5y2e~x52Aax31x!,
~8!

ẏ52x,

wheree anda are arbitrary positive parameters. This syste
has been carefully studied by Rychkov@7# and can have a
most two limit cycles. Since there are two parameters,
bifurcation set is given by a curve in the parameter pla
(e,a).

In Ref. @3#, we have shown that the method presented
Ref. @1# allows us to obtain a sequence of exact algebr
lower bounds to the bifurcation set of systems like Eq.~8!.
Here, we will show that by using the polynomialsR̂n(a)
instead of the polynomialsRn(x), we can considerably im-
prove the results presented in Ref.@3#.

In the first quadrant of the plane (e,a) there exists a
bifurcation curveB(e,a)50. On this curve, the system un
dergoes a saddle-node bifurcation~see Ref.@3# for a descrip-
tion of this type of bifurcation!. Obviously, this function
B(e,a)50 is not known and no analytical method for o
taining it for arbitrary values of the parameters exists.

We will obtain algebraic approximations to the curv
B(e,a)50 from the polynomialsRn(x,e,a) andR̂n(a,e,a).
We will call Bn(e,a)50 the algebraic approximations ob
tained from the polynomialsRn(x,e,a) andB̂n(e,a)50 the
curves obtained from the polynomialsR̂n(a,e,a). As ex-
plained in Ref.@3#, the functionBn(e,a) is obtained from
the conditions

Rn~x,e,a!50,
dRn

dx
~x,e,a!50. ~9!

In the same way, the functionB̂n(e,a) is obtained from the
conditions

R̂n~a,e,a!50,
dR̂n

dx
~a,e,a!50. ~10!
.

.023
TABLE II. Values of the roots ofR̂n(a,e) for system~5! with e53.

n 2 4 6 8 10 12 14 16 18 20 Num

Root 2 2 2.003 2.006 2.008 2.010 2.011 2.012 2.013 2.014 2
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The algebraic equations~9! @respectively,~10!# determine
the double root ofRn(x,e,a) @respectively,R̂n(a,e,a)] and
give a relation betweene and a, which we writeBn(e,a)
50 @respectively,B̂n(e,a)50]. The curvesBn(e,a)50 are
shown in Fig. 3 for several values ofn. The curveB(e,a)
50, calculated from numerical integration of the system
also given. In Fig. 4, we show the curvesB̂n(e,a)50 and
B(e,a). Again, the improvement obtained with the polyn
mials R̂n(a,e,a) is very important. The curvesB̂n(e,a)50
represent better approximations to the curveB(e,a)50 than
the curvesBn(e,a)50 do.

It can be proved by perturbation methods that
asymptotic behavior of the functionB(e,a) when e→` is
given by B(e,a);a25. The curvesBn(e,a)50 do not
have this asymptotic behavior whene→`. On the contrary,
the curvesB̂n(e,a)50 that we have studied (n between 2
and 20! have a correct asymptotic behavior@see Fig. 4#. In
this way, the curvesB̂n(e,a)50 have the right global shap

FIG. 1. Plots ofRn(x,e)50 for n52 to n516 for system~5!.
The dashed line is thexmax(e) calculated numerically.

FIG. 2. Plots ofR̂n(a,e)50 for n52 to n516 for system~5!.
The dashed line is thexmax(e) calculated numerically. Note tha
here, the horizontal axis isa52.
s

e

when compared to the numerical bifurcation curve. Bo
families of curvesBn(e,a)50 andB̂n(e,a)50 give lower
bounds to the unknown exact bifurcation curveB(e,a)50.
For the curvesBn(e,a)50, this result has been establishe
in @3#. But for the curvesB̂n(e,a)50 it is an experimental
fact that cannot be proved in a simple way.

Let us point out that, despite the fact that the curv
Bn(e,a)50 have not the correct asymptotic behavior, for
given value ofa the value ofe obtained from the equation
Bn(e,a)50 can be as near as we want to the exact value
the bifurcation curve provided that we taken sufficiently
large.

In summary, the curvesB̂n(e,a)50 represent a sequenc
of algebraic approximations to the bifurcation cur
B(e,a)50. These approximations are very good, even
small values ofn. They are better than the approximatio
given by the exact lower boundsBn(e,a)50. The improve-

FIG. 3. Plots ofBn(a,e)50 for n52, 6 and 10 for system~8!.
The dashed line isB(a,e)50 calculated numerically.

FIG. 4. Plots ofB̂n(a,e)50 for n52, 6 and 10 for system~8!.
The dashed line isB(a,e)50 calculated numerically.
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ment obtained from the polynomialsR̂n(a,e,a) is very sur-
prising because it seems that it is a general fact, valid
arbitrary odd polynomialsF(x). The mathematical justifica
tion of this method@more specifically the passage from th
polynomialsRn(x,e,a) to the averaged polynomials
l

r
R̂n(a,e,a)] represent an interesting open problem.

In the meantime, the method presented in this paper g
a very effective way of obtaining information about the num
ber of limit cycles, their amplitudes, and their bifurcatio
for the Liénard systems.
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