Comment on "Liénard systems, limit cycles, and Melnikov theory"

Hector Giacomini^{*} and Sébastien Neukirch[†]

Laboratoire de Mathématiques et Physique Théorique, CNRS UPRES A6083, Faculté des Sciences et Techniques, Université de Tours,

F-37200 Tours, France

(Received 28 January 1998)

In papers by Sanjuán [Phys. Rev. E 57, 340 (1998)] and Giacomini and Neukirch [Phys Rev. E 56, 3809 (1997)] Liénard systems of the form $\dot{x} = y - \epsilon F(x, \mu)$, $\dot{y} = -x$ are studied. Sanjuán compares the results given by Melnikov theory with the results given by the R_n polynomials in the paper by Giacomini and Neukirch and conjectures that the roots of the R_n polynomials tend toward the roots of the Melnikov polynomial when $n \rightarrow \infty$, for arbitrary values of ϵ . We show here that this is true only when $\epsilon \rightarrow 0$ and that this fact strengthens the conjecture proposed by Giacomini and Neukirch. [S1063-651X(98)13112-4]

PACS number(s): 05.45.-a

For Liénard systems,

$$\dot{x} = y - \epsilon F(x, \mu),$$

$$\dot{y} = -x,$$
(1)

the Melnikov function depends only on μ while the $R_n(x)$ polynomials depend on μ and ϵ . As pointed out in [1], Melnikov theory, as well as the R_n polynomials for Liénard systems, enables one to handle a global bifurcation problem by reducing it to an algebraic problem, that is, counting the number of roots of polynomials. In [1], the author conjectures that for a given Liénard system, there are associated a Melnikov polynomial $P(r^2)$ and two sequences of polynomials $R_n(x)$ and $g_{1,n}(x)$. For a fixed value of n, each positive root of $P(r^2)$ (α) is associated to a root of $R_n(x)$ (α_n) and to a root of $g_{1,n}(x)$ (β_n) such that $\alpha_n < \alpha < \beta_n$, and with the property that as n increases $\alpha_n \rightarrow \alpha$ and $\beta_n \rightarrow \alpha$.

Nevertheless, there is one major difference between the Melnikov method and the R_n method: the Melnikov method only works for $\epsilon \rightarrow 0$ while the R_n method is valid for all ϵ . In other words, the Melnikov theory is perturbative while the R_n method is not.

Hence, the conjecture presented at the end of [1] can only be true in the $\epsilon \rightarrow 0$ limit: one should find the same results

TABLE I. Values of the two roots of $R_n(x)$ for $\epsilon = \frac{1}{10}$ and $\mu = \sqrt{\frac{41}{9}}$.

n	2	4	6	8	10	20	30
Root 1	0.833	0.907	0.944	0.966	0.980	1.010	1.021
Root 2	1.199	1.191	1.189	1.189	1.191	1.197	1.202

*Electronic address: giacomini@univ-tours.fr

[†]Electronic address: seb@celfi.phys.univ-tours.fr

with the R_n polynomials as with the Melnikov method, provided that $\epsilon \rightarrow 0$.

We give here two examples to illustrate this.

First we consider the van der Pol equation, that corresponds to system (1) with $F(x) = x^3/3 - x$. Here, for all ϵ , the Melnikov polynomial $P(r^2)$ has $\alpha = 2$ as root. If we take $\epsilon = 3$, we find that for small *n* the root of the R_n polynomial (α_n) is increasing with *n* and is smaller than 2. But, calculating $R_{100}(x)$ and $R_{120}(x)$, we find $\alpha_{100} = 2.006 \dots$ and $\alpha_{120} = 2.008 \dots$ (with $R_{100}(\alpha_{100}) < 10^{-14}$ and $R_{120}(\alpha_{120}) < 10^{-21}$). Hence it is not true that $\alpha_n < \alpha$ for all *n* and it is not true that $\alpha_n \rightarrow \alpha$: α_n seems to tend toward 2.023..., which is the real maximum *x* value for the van der Pol limit cycle with $\epsilon = 3$ (obtained from numerical integration).

Next we consider system (1) with $F(x) = x^5 - \mu x^3 + x$. For small ϵ , Melnikov theory tells us that for $\mu > \sqrt{\frac{40}{9}}$, there are two (circlelike) limit cycles of radii $\sqrt{\frac{3}{5}\mu \pm \frac{1}{5}\sqrt{9\mu^2 - 40}}$.

For example, let us take $\epsilon = \frac{1}{10}$ and $\mu = \sqrt{\frac{41}{9}}$. The Melnikov method predicts two (circlelike) limit cycles of radii: $r_1 = 1.039$ and $r_1 = 1.216$. The R_n polynomials have two positive roots of odd multiplicity. We see in Table I that for small ϵ the roots of the R_n polynomials tend to values very near those of the roots of the Melnikov function, as pointed out in [1].

However, if one takes $\epsilon = 8$ and $\mu = \sqrt{\frac{41}{9}}$, Melnikov theory still predicts two (circlelike) limit cycles of the same

TABLE II. Values of the two roots of $R_n(x)$ for $\epsilon = 8$ and $\mu = \sqrt{\frac{41}{9}}$. For $n \ge 14$, there is no root any longer.

n	2	4	6	8	10	12	14	16
Root 1	0.83	0.89	0.94	0.97	1.01	1.05		
Root 2	1.19	1.19	1.17	1.15	1.13	1.09		

2483

radii (the Melnikov function does not depend on ϵ), while the R_n polynomials have no real root of odd multiplicity after n=12 (see Table II). The fact that the two real roots disappear indicates that there is no longer a limit cycle for $\epsilon = 8$. Numerical integration shows that there is *no* limit cycle for $\epsilon = 8$ and $\mu = \sqrt{\frac{41}{9}}$.

Although Melnikov theory is not effective at large ϵ , the R_n polynomials still give the right result.

[1] M. A. F. Sanjuán, Phys. Rev. E 57, 340 (1998).