Comment on “Liénard systems, limit cycles, and Melnikov theory”

Hector Giacomini* and Sébastien Neukirch†

Laboratoire de Mathématiques et Physique Théorique, CNRS UPRES A6083, Faculté des Sciences et Techniques, Université de Tours, F-37200 Tours, France

(Received 28 January 1998)

In papers by Sanjuán [Phys. Rev. E 57, 340 (1998)] and Giacomini and Neukirch [Phys. Rev. E 56, 3809 (1997)] Liénard systems of the form \(\dot{x} = y - \varepsilon F(x, \mu) \), \(\dot{y} = -x \) are studied. Sanjuán compares the results given by Melnikov theory with the results given by the \(R_n \) polynomials in the paper by Giacomini and Neukirch and conjectures that the roots of the \(R_n \) polynomials tend toward the roots of the Melnikov polynomial when \(n \to \infty \), for arbitrary values of \(\varepsilon \). We show here that this is true only when \(\varepsilon = 0 \) and that this fact strengthens the conjecture proposed by Giacomini and Neukirch. [S1063-651X(98)13112-4]

PACS number(s): 05.45.–a

For Liénard systems,

\[
\dot{x} = y - \varepsilon F(x, \mu), \tag{1}
\]

\[
\dot{y} = -x,
\]

the Melnikov function depends only on \(\mu \) while the \(R_n(x) \) polynomials depend on \(\mu \) and \(\varepsilon \). As pointed out in [1], Melnikov theory, as well as the \(R_n \) polynomials for Liénard systems, enables one to handle a global bifurcation problem by reducing it to an algebraic problem, that is, counting the number of roots of polynomials. In [1], the author conjectures that for a given Liénard system, there are associated a Melnikov polynomial \(P(r^2) \) and two sequences of polynomials \(R_n(x) \) and \(g_{1,n}(x) \). For a fixed value of \(n \), each positive root of \(P(r^2) \) (\(\alpha \)) is associated to a root of \(R_n(x) \) (\(\alpha_n \)) and to a root of \(g_{1,n}(x) \) (\(\beta_n \)) such that \(\alpha_n < \alpha < \beta_n \), and with the property that as \(n \) increases \(\alpha_n \to \alpha \) and \(\beta_n \to \alpha \).

Nevertheless, there is one major difference between the Melnikov method and the \(R_n \) method: the Melnikov method only works for \(\varepsilon \to 0 \) while the \(R_n \) method is valid for all \(\varepsilon \). In other words, the Melnikov theory is perturbative while the \(R_n \) method is not.

Hence, the conjecture presented at the end of [1] can only be true in the \(\varepsilon \to 0 \) limit: one should find the same results with the \(R_n \) polynomials as with the Melnikov method, provided that \(\varepsilon = 0 \).

We give here two examples to illustrate this.

First we consider the van der Pol equation, that corresponds to system (1) with \(F(x) = x^3/3 - x \). Here, for all \(\varepsilon \), the Melnikov polynomial \(P(r^2) \) has \(\alpha = 2 \) as root. If we take \(\varepsilon = 3 \), we find that for small \(n \) the root of the \(R_n \) polynomial (\(\alpha_n \)) is increasing with \(n \) and is smaller than 2. But, calculating \(R_{100}(x) \) and \(R_{120}(x) \), we find \(\alpha_{100} = 2.006 \ldots \) and \(\alpha_{120} = 2.008 \ldots \) (with \(R_{100}(\varepsilon_{300}) < 10^{-14} \) and \(R_{120}(\varepsilon_{120}) < 10^{-21} \)). Hence it is not true that \(\alpha_n < \alpha \) for all \(n \) and it is not true that \(\alpha_n \to \alpha \): \(\alpha_n \) seems to tend toward 2.023 \ldots, which is the real maximum \(x \) value for the van der Pol limit cycle with \(\varepsilon = 3 \) (obtained from numerical integration).

Next we consider system (1) with \(F(x) = x^5 - \mu x^3 + x \).

For small \(\varepsilon \), Melnikov theory tells us that for \(\mu > \sqrt{\frac{44}{7}} \), there are two (circlelike) limit cycles of radii \(\sqrt{\frac{7}{4} \mu^{2/3} - 40} \).

For example, let us take \(\varepsilon = \frac{1}{15} \) and \(\mu = \sqrt{\frac{44}{7}} \). The Melnikov method predicts two (circlelike) limit cycles of radii: \(r_1 = 1.039 \) and \(r_1 = 1.216 \). The \(R_n \) polynomials have two positive roots of odd multiplicity. We see in Table I that for small \(\varepsilon \) the roots of the \(R_n \) polynomials tend to values very near those of the roots of the Melnikov function, as pointed out in [1].

However, if one takes \(\varepsilon = 8 \) and \(\mu = \sqrt{\frac{44}{7}} \), Melnikov theory still predicts two (circlelike) limit cycles of the same

<table>
<thead>
<tr>
<th>TABLE I. Values of the two roots of (R_n(x)) for (\varepsilon = \frac{1}{15}) and (\mu = \sqrt{\frac{44}{7}}).</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
</tr>
<tr>
<td>Root 1</td>
</tr>
<tr>
<td>Root 2</td>
</tr>
</tbody>
</table>

*Electronic address: giacomini@univ-tours.fr

\†Electronic address: seb@celfi.phys.univ-tours.fr

TABLE II. Values of the two roots of \(R_n(x) \) for \(\varepsilon = 8 \) and \(\mu = \sqrt{\frac{44}{7}} \). For \(n \geq 14 \), there is no root any longer.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
</tr>
<tr>
<td>Root 1</td>
</tr>
<tr>
<td>Root 2</td>
</tr>
</tbody>
</table>
radii (the Melnikov function does not depend on ϵ), while the R_n polynomials have no real root of odd multiplicity after $n = 12$ (see Table II). The fact that the two real roots disappear indicates that there is no longer a limit cycle for $\epsilon = 8$.

Numerical integration shows that there is no limit cycle for $\epsilon = 8$ and $\mu = \sqrt{\frac{31}{3}}$.

Although Melnikov theory is not effective at large ϵ, the R_n polynomials still give the right result.