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A B S T R A C T

We consider the classical problem of the buckling of a planar elastica inside a rectangular cavity. We
compute the equilibrium solutions analytically in the (von Kármán) small deflection approximation. We list
the different equilibrium states and their domain of validity in terms of the imposed horizontal 𝛥 and vertical
𝐻 displacements. We compute the horizontal 𝑃 and the vertical 𝐹 applied forces and show how they increase
and scale when the compaction ratio

√

𝛥∕𝐻 is increased. Finally, we introduce an approximate response state,
where the system adopts a periodic configuration with a noninteger number of repeated folds. This solution
represents an average response of the structure and brings information on its global behavior.
1. Introduction

The buckling of elastic beams is a classical subject, especially
in the planar case (Euler, 1744), (Thomson and Tait, 1883, section
611, p. 148), (Goss, 2009), (Levien, 2009, Chap. 5). Analytical solu-
tions are known for simple (Love, 1944; Bigoni, 2012) and less sim-
ple (Djondjorov et al., 2011) cases. The global buckling behavior is nev-
ertheless often studied numerically, and the goal is to achieve a thor-
ough understanding of the phase diagram of the problem (Domokos,
1994) which in some cases may be cluttered (Holmes et al., 1999,
Fig. 7), (Domokos and Healey, 2005, Fig. 3), (Henderson and Neukirch,
2004, Fig. 16), (Coleman and Swigon, 2004, Fig. 4). The equilibrium
solutions may be computed either by direct resolution of the equi-
librium equations (boundary value problem – strong form approach),
finite element method (weak form approach), or minimization of the
elastic energy (Charrondière et al., 2024).

The writhing and coiling of elastic rods in cavities has numerous
applications. Examples comprise the helical buckling of tubings in the
drilling industry (Lubinski and Althouse, 1962; Miller et al., 2015), the
interaction of endoscopes and arteries in vascular surgery, the stuff
box crimpling in the textile industry (Hearle, 2014), DNA viral cap-
sids (Vetter et al., 2014), spider threads in liquid drops (Elettro et al.,
2016); see other examples in Judah and Givli (2024). However, the
buckling of elastic beams in cavities brings the complication of inequal-
ity constraints (Villaggio, 1979) (arising from the contact condition)
and their non-classical features in the bifurcation diagram (for example,
corner points (Schulz and Pellegrino, 2000)). Their numerical treatment
involves more sophisticated approaches, among which are linear and
nonlinear complementary problems (Daviet et al., 2011), interior point
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methods (Wachter and Biegler, 2006), or barrier potentials (Manning
and Bulman, 2005).

The present study considers the simpler case of a planar beam
buckled in a rectangular cavity. To our knowledge, this problem was
first addressed by Chateau and Nguyen (1991), then Adan et al.
(1994) considered the case where the constraining surface has im-
perfections, Domokos et al. (1997) studied pinned-pinned boundary
conditions, and Pocheau and Roman (2004) unveiled the presence
of multiple solutions and their self-similar aspect, as well as tilted
solutions (Roman and Pocheau, 1999, 2002). The effect of the thick-
ness of the beam was studied by Chai (1998), while Tzokova (2020)
combined Abaqus FEM and experiments on beams and plates, and Katz
and Givli (2015) considered the case of springy walls, see also Judah
and Givli (2024). Finally, the influence of shear deformations in the
section of the beam has been studied by Bosten et al. (2023) where this
contact problem is used as a benchmark scenario to test finite element
simulations.

Here we use what is generally called the von Kármán approxima-
tion (Woinowsky-Krieger, 1950; Eringen, 1952; Thomas, 2025). In this
approximation, the moment balance is linearized, and a von Kármán-
type flexural strain measure, first introduced for the buckling of elastic
plates (von Kármán, 1907; Eisley, 1964), is used. This model has been
widely used in the literature and has shown its efficiency in computing
approximate solutions for the equilibrium (Bazant and Cedolin, 2010,
Section 1.9), (Neukirch et al., 2021) and dynamics (Lacarbonara and
Yabuno, 2006; Pandey et al., 2014; Thomas et al., 2016) of elastic rods
in the weakly nonlinear regime. It turns out that Kirchhoff himself in-
troduced this approximated model in his book, see Kirchhoff (1876, Eq.
(16), p. 441). We show in this paper that constrained Euler buckling can
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be studied and partially understood with this von-Kármán kinematics
approximation; see also (Chai, 1998; Judah and Givli, 2024).

Paper contributions

In the case of small vertical (𝐻) and horizontal (𝛥) displacements:

• We present an analytical study of the Euler buckling problem with
contact constraints.

• We give closed-form formulas for the vertical 𝐹 and horizontal
𝑃 forces and the number of folds as functions of 𝐻 and 𝛥, and
identify the scaling 𝐹 𝐻 ∼ 𝑃 𝛥.

• We show that a reduced kinematic loading parameter
√

𝛥∕𝐻 can
be used to rationalize the bifurcation curves.

• We introduce a cellular model, where the number of folds is a
noninteger, that provides an all-in-one view of the response of
the system.

2. Problem setup

2.1. The planar elastica

We consider an inextensible, unshearable, elastic beam buckled in-
ide a planar, rectangular cavity. The beam has total length 𝐿, bending
igidity 𝑌 𝐼 , and is horizontally clamped at both ends. The shape of the
eam is studied parametrically as (𝑥(𝑠), 𝑦(𝑠)), where 𝑠 is the arc length

along the beam. We introduce the angle 𝜃(𝑠) between the tangent to the
beam and the horizontal axis 𝒆𝒙, see Fig. 1. As the beam is considered
inextensible and unshearable, we have

𝑥′(𝑠) = cos 𝜃(𝑠) , 𝑦′(𝑠) = sin 𝜃(𝑠) (1)

where (⋅)′ = 𝑑(⋅)∕𝑑 𝑠. We consider clamped boundary conditions

𝑥(0) = 0 𝑦(0) = 0 𝜃(0) = 0 (2a)

(𝐿) = 𝐿(1 − 𝛥) 𝑦(𝐿) = 0 𝜃(𝐿) = 0 (2b)

where 𝛥 is the (dimensionless) end-shortening, ranging from 𝛥 = 0 at
uckling to 𝛥 = 1 when the two ends meet and the elastica adopts

a Lemniscate-like shape (Goss, 2009). Additionally, as the beam is
constrained to stay in a cavity of height 𝐻 , we have the inequality
constraint

∀𝑠, 0 ≤ 𝑦(𝑠) ≤ 𝐻 (3)

The elastic deformation energy only involves the curvature 𝜅(𝑠):

𝐸𝜅 = ∫

𝐿

0

1
2
𝑌 𝐼 𝜅2(𝑠) d𝑠 where 𝜅(𝑠) = 𝜃′(𝑠) (4)

This quadratic deformation energy is associated with the linear consti-
tutive relation relating the internal moment 𝑚(𝑠) and the curvature

𝑚(𝑠) = 𝑌 𝐼 𝜅(𝑠) (5)

We look for equilibrium solutions of the system, that is stationary
points of this energy under constraints (2) and (3). The equilibrium
ondition on the internal moment reads

𝑚′(𝑠) = 𝑛𝑥(𝑠) sin 𝜃(𝑠) − 𝑛𝑦(𝑠) cos 𝜃(𝑠) (6)

As we study the frictionless case, the horizontal component 𝑛𝑥(𝑠) of the
internal force is uniform across the beam and we note 𝑃 = −𝑛𝑥(𝑠). The
ertical component 𝑛𝑦(𝑠) is uniform in each free rod section and jumps
very time the rod contacts the lower or the upper wall. Please also note
hat the moment 𝑚(𝑠) and hence the curvature 𝜅(𝑠) do not experience

any jump at contact points and hence are continuous along the entire
od (Bigoni, 2012). We will note 𝐹 the total (vertical) force applied by

the upper wall down to the rod, see Fig. 1. In this frictionless-contact
case, the Hamiltonian invariant (Dichmann et al., 1996; Kehrbaum and

addocks, 1997)

𝐼nv = 1
2
𝑌 𝐼 𝜅2(𝑠) − 𝑃 cos 𝜃(𝑠) + 𝑛𝑦(𝑠) sin 𝜃(𝑠) (7)

takes the same value in the entire system.
2 
2.2. The von Kármán approximation

In the limit where the rod is only slightly bent, the deflection 𝜃(𝑠)
stays small and we use the first terms in the Taylor expansion of the
in and cos functions. The equilibrium Eqs. (1), (5) and (6) simplify to

𝑥′(𝑠) = 1 − (1∕2) 𝜃2(𝑠) (8a)

𝑦′(𝑠) = 𝜃(𝑠) (8b)

 𝐼 𝜃′′(𝑠) = −𝑃 𝜃(𝑠) − 𝑛𝑦(𝑠) (8c)

Note that the only nonlinear remaining term is in (8a), as keeping
a nonlinear 𝜃2(𝑠) term in (8c) would hinder the analytical approach
and prevent us from expressing the solutions in terms of elementary
functions. Conversely, removing the nonlinear term in (8a) would com-
pletely linearize the set of equations which would only then describe
buckling modes. For more details on the von Kármán approxima-
tion and how it is obtained from dimensional reduction, please refer
to Thomas et al. (2016) and Thomas (2025).

2.3. Non-dimensionalization

In this equilibrium problem, we introduce non-dimensionalized
uantities

̂ = 𝑠∕𝐿 , �̂� = 𝑥∕𝐿 , �̂� = 𝑦∕𝐿 , �̂� = 𝐻∕𝐿 , �̂� = 𝜃 (9a)

𝑃 = 𝑃 𝐿2

𝑌 𝐼 , 𝐹 = 𝐹 𝐿2

𝑌 𝐼 , �̂� = 𝑚𝐿
𝑌 𝐼 , �̂� = 𝜅 𝐿 (9b)

Note that it boils down to choosing 𝐿 as length unit and 𝑌 𝐼∕𝐿2 as
unit force, as can be done in most equilibrium problems of elastic rods.
Please also note the non-dimensionalized version of the equations can
be readily obtained by formally setting 𝐿 = 1 and 𝑌 𝐼 = 1 in the
equations of Sections 2.1 and 2.2.

Anticipating the results of Section 4, we plot in Fig. 2 a typical
ifurcation diagram where the vertical force 𝐹 = 𝐹 𝐿2

𝑌 𝐼 is plotted as a
function of the height �̂� = 𝐻∕𝐿 of the cavity. We see that even if
on-dimensionalized quantities have been used to draw the diagram,
he different curves still depend on both the Atlas number 𝑛 (to be
efined in Section 4) and the end shortening 𝛥. See also Fig. 3 for the

dual experiment where the end-shortening 𝛥 is varied while keeping
the height �̂� fixed. In this experiment, we find a dependence of the
curves on both 𝑛 and �̂� . One of the goal of the present paper is to
introduce rescaled quantities on the axes that induce partial collapses of
the curves of Figs. 2 and 3. Moreover, we will show that the important
loading measure is

√

𝛥∕�̂� .
To keep notations simple, we will drop the hats for the non-

imensionalized quantities in the remainder of the paper.

3. The arch solution

We will describe the different solution types in Section 4. They are
all based on the following fundamental equilibrium solution, which we
denote as the ‘Arch’ solution, see Fig. 4 and Chai (1998), Judah and
Givli (2024). This solution has boundary conditions (2a) at 𝑠 = 0. Its
ength is 𝓁 and the boundary conditions at 𝑠 = 𝓁 are

𝑦(𝓁) = 𝐻 and 𝜃(𝓁) = 0 (10)

Hence the boundary value problem to solve is system (8) with 𝑛𝑦(𝑠) ≡
−𝑓 together with (10) and (2a). The solution is

𝑚(𝑠) = 𝑓
√

𝑃

(

sin
√

𝑃 𝑠 − t an
√

𝑃𝓁
2

cos
√

𝑃 𝑠
)

(11a)

𝜃(𝑠) = 𝑓
𝑃

(

1 − cos
√

𝑃 𝑠 − t an
√

𝑃𝓁
2

sin
√

𝑃 𝑠
)

(11b)

𝑦(𝑠) = 𝑓
√

(

√

𝑃 𝑠 − sin
√

𝑃 𝑠 + t an
√

𝑃𝓁 [

cos
√

𝑃 𝑠 − 1
]

)

(11c)

𝑃 𝑃 2
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Fig. 1. Planar elastica bent in a cavity. The left end is horizontally clamped at the origin, while the right end is horizontally clamped on a block constrained to slide along the
horizontal axis. The elastica has a total length 𝐿, and the angle 𝜃 is defined between the tangent to the beam and the horizontal axis. An external force is applied to the beam
at 𝑠 = 𝐿, and we note its horizontal component −𝑃 . Different values of the Arch number 𝑛 and of the number of divisions 𝑘 are shown.
Fig. 2. The total vertical force 𝐹 applied on the rod from the upper wall as a function
of the height of the enclosing cavity. For 𝛥 = 0.02 and 0.03 and 𝑛 = 1 and 𝑛 = 2. Legend:
Point-Contact state (continuous line), Extended-Contact state (dashed line, only 𝑘 = 1),
and Hanging-Fold state (dotted line).

where 𝜋 ≤
√

𝑃𝓁 ≤ 2𝜋. In the following, we will need the two
geometrical quantities 𝐻 and 𝑥(𝓁), as well as the energy 𝐸𝑘, which are
here computed as

𝐻 = 𝑦(𝓁) = 𝑓

𝑃
√

𝑃

(

√

𝑃𝓁 − 2 t an
√

𝑃𝓁
2

)

(12a)

𝑥(𝓁) = ∫

𝓁

0
1 − (1∕2) 𝜃2(𝑠) d𝑠

= 𝓁 − 𝑓 2

√

𝑃𝓁
[

2 + cos
√

𝑃𝓁
]

− 3 sin
√

𝑃𝓁

2𝑃 2
√

𝑃 (cos
√

𝑃𝓁 + 1)
(12b)

𝐸𝜅 = 1
2 ∫

𝓁

0
𝑚2(𝑠) d𝑠 = 𝑓 2

2𝑃
√

𝑃

√

𝑃𝓁 − sin
√

𝑃𝓁

1 + cos
√

𝑃𝓁
(12c)

Please note that, by symmetry, the moment at 𝑠 = 0 and 𝑠 = 𝓁 have the
same magnitude and opposite sign

𝑚(𝓁) = −𝑚(0) = 𝑓
√

𝑃
t an

√

𝑃𝓁
2

(13)

We emphasize that the segment length 𝓁 is an unknown and has to be
solved for in each of the different states described in the next Section.
3 
Fig. 3. The total vertical force 𝐹 applied on the rod from the upper wall as a function
of the end-shortening 𝛥. For 𝐻 = 0.044 and 0.07 and 𝑛 = 1 and 𝑛 = 2. Legend: Point-
Contact state (continuous line), Extended-Contact state (dashed line, only 𝑘 = 1), and
Hanging-Fold state (dotted line).

Fig. 4. The arch solution is the building block with which we compute the Point-
Contact, Extended-Contact, and Hanging-Fold states presented in Section 4, as well as
the cellular model presented in Section 5. This solution is in contact with both the
lower and upper walls, has length 𝓁, and inner force 𝑛𝑥 = −𝑃 and 𝑛𝑦 = −𝑓 .

4. The different equilibrium states

In this section, we describe three different fundamental states the
beam visits as either 𝐻 is lowered or 𝛥 is increased. These states have
already been studied (Domokos et al., 1997; Roman and Pocheau, 2002;
Chai, 1998) and we give here analytical formulas that rationalize the
response of the structure and show how the horizontal and vertical
loads vary as the height 𝐻 and endshortening 𝛥 are varied. The
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Fig. 5. Vertical force 𝐹 plotted as a function of the compaction ratio 𝐻𝛥∕𝐻 . This
plot does not depend on the value of 𝛥. The threshold 𝐻𝛥 is defined in Eq. (14). The
lack line corresponds to the continuous 𝑛 model presented in Section 5. Legend: Point-

Contact state (continuous line), Extended-Contact state (dashed line), and Hanging-Fold
state (dotted line). We show Extended-Contact states where the flat region is divided
into 𝑘 pieces. For 𝑛 = 2, we show the limit points between the different states.

elastica buckles when the horizontal force 𝑃 reaches the threshold
= 4𝜋2 (Euler, 1744). Contact with the upper wall does not happen in

his first regime where, in the present von Kármán approximation, 𝑃
tays constant 𝑃 = 4𝜋2 while 𝐻 is lowered or 𝛥 increased. Eventually,
ontact first happens when 𝐻 and 𝛥 are such that Bigoni (2012) and

Neukirch et al. (2021)

𝐻𝛥 = 2
𝜋

√

𝛥 (14)

We define the Atlas number 𝑛 as half the number of rod segments
spreading out from 𝑦 = 0 to 𝑦 = 𝐻 (i.e. touching both walls), such as
the Arch of Section 3. In the following section, we first describe the
solution for 𝑛 = 1 and then generalize formulas for any 𝑛 value. This

tlas number has been called the number of folds in previous works.

4.1. Point-contact states

We first describe configurations in which the elastica contacts the
upper wall only at isolated point(s), see Fig. 1. We call these solutions
Point-Contact states.

When 𝑛 = 1, we have 𝓁 = 1∕2, the total force from the upper wall 𝐹
takes the value 𝐹 = 2𝑓 and the end shortening is 𝛥 = 1 − 2𝑥(𝓁). From
the Arch solution, Eqs. (12) and (13), we have

𝐻 = 𝐹

4𝑃
√

𝑃

(

√

𝑃 − 4 t an
√

𝑃
4

)

(15a)

𝛥 = 𝐹 2

√

𝑃
[

2 + cos(
√

𝑃∕2)
]

− 6 sin(
√

𝑃∕2)

8𝑃 2
√

𝑃 [cos(
√

𝑃∕2) + 1]
(15b)

(𝓁) = −𝑚(0) = 𝐹

2
√

𝑃
t an

√

𝑃
4

(15c)

This branch of solutions starts at point 𝐴1 (see Fig. 2) when 𝑃 = 4𝜋2,
= 0, 𝐻 = 𝐻𝛥 and ends with point 𝐵1 when 𝑃 = 16𝜋2, 𝐹 =

−1∕2 64𝜋2
√

𝛥, and 𝐻 = 3−1∕2
√

𝛥.
These formulas generalize directly to the case with 𝑛 ≥ 1 by setting

𝓁 = 1∕(2𝑛), 𝐹 = 2𝑛𝑓 , and 𝛥 = 1 − 2𝑛𝑥(𝓁). Using Eqs. (12) and (13) from
he Arch solution, we find

𝐻u =
𝐹u

4𝑃u
√

𝑃u

(

√

𝑃u − 4 t an
√

𝑃u
4

)

(16a)

𝛥 = 𝐹u
2

√

𝑃u

[

2 + cos(√𝑃u∕2)
]

− 6 sin(√𝑃u∕2)

2√ √
(16b)
8𝑃u 𝑃u [cos( 𝑃u∕2) + 1]

4 
Fig. 6. Horizontal force 𝑃 plotted as a function of the compaction ratio 𝐻𝛥∕𝐻 . This
plot does not depend on the value of 𝛥. The contact threshold 𝐻𝛥 is defined in
Eq. (14). The black line corresponds to the continuous 𝑛 model presented in Section 5.
Legend: Point-Contact state (continuous line), Extended-Contact state (dashed line), and
Hanging-Fold state (dotted line). We show Extended-Contact states where the flat region
is divided into 𝑘 pieces. For 𝑛 = 2, we show the limit points between the different states.
Gray dots correspond to experimental data from Figure 5 of Deboeuf et al. (2024).

𝑚(𝓁)
𝑛

= −𝑚(0)
𝑛

=
𝐹u

2
√

𝑃u
t an

√

𝑃u
4

(16c)

with 𝐻u = 𝑛 𝐻 , 𝑃u = 𝑃∕𝑛2, and 𝐹u = 𝐹∕𝑛3. These branches of solutions
each start at point 𝐴𝑛 when 𝑃u = 4𝜋2, 𝐹u = 0, 𝐻u = 𝐻𝛥 and end at point
𝐵𝑛 when 𝑃u = 16𝜋2, 𝐹u = 3−1∕2 64𝜋2

√

𝛥, and 𝐻u = 3−1∕2
√

𝛥. Using
(16a) et (16b), one can write a single equation for 𝑃u having the form
𝛥∕𝐻2

u = 𝜙(𝑃u). For 4𝜋2 ≤ 𝑃u ≤ 16𝜋2, the function 𝜙(⋅) is monotonously
ncreasing, taking values from (𝜋∕2)2 to 3, which means that, for all 𝑛,
here is always a unique Point-Contact solution.

For this point-contact state, the vertical force 𝐹 and the horizontal
orce 𝑃 are plotted in plain line against the height 𝐻 of the cavity
or different values of the end shortening 𝛥 in Figs. 5 and 6. We

remark that, contrary to Fig. 2, the rescaling with 𝐻𝛥 induces a collapse
of the bifurcation curves, which now do not depend on the value
of 𝛥. Furthermore, we show in Figs. 7 and 8 (continuous line) that,
using the Atlas number 𝑛, the Point-Contact branches all collapse on
 single curve, for any 𝛥 and any 𝑛. We also plot in Figs. 6 and 8

the experimental data from Figure 5 of Deboeuf et al. (2024), where
𝛥 < 0.16, 0.042 ≤ 𝐻 ≤ 0.085, and 1 ≤ 𝑛 ≤ 4. In these data, friction tends
to increase the measured horizontal force 𝑃 which otherwise is in good
agreement with the present theory.

As the first contact occurs, when 𝐻 = 𝐻𝛥, the vertical force 𝐹
increases from 𝐹 = 0. This is repeated for each 𝑛 as we have 𝐹 = 0
each time 𝑛𝐻 = 𝐻u = 𝐻𝛥. At this point, we compute the slope of the
function 𝐹 = 𝐹 (𝐻) by performing a Taylor expansion of Eqs. (16a) and
16b) for 𝐻u near 𝐻𝛥 and find

𝐹u = 16𝜋4

10 − 𝜋2

[

𝐻𝛥 −𝐻u
]

+⋯ (17)

The large value of the prefactor (nearly 1.2 ⋅104) shows that the vertical
force steeply increases as one compresses the structure vertically.

At 𝑃u = 16𝜋2, when the Point-Contact branch ends, the deflection
angle at the inflexion point 𝑠 = 𝓁∕2 takes the value

𝜃max =
𝐹u
𝑃u

= 4
√

3

√

𝛥 (18)

This maximum value yields an upper bound for 𝛥 if we require 𝜃max to
stay small, e.g. 𝜃max < 0.5 implies 𝛥 < 0.06.

4.2. Extented-contact states

In Fig. 2, as the vertical force 𝐹 is increased above point 𝐵, the
beam exhibits a region where the contact with the upper (or lower)
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Fig. 7. Vertical force 𝐹 plotted as a function of the rescaled quantity 𝐻𝛥∕(𝑛𝐻) − 1. For
he Point-Contact and Extended-Contact states the plot does not depend on the Atlas
umber 𝑛. The entire plot does not depend on the value of 𝛥. The single black point at
0.02, 130) corresponds to the response of the cellular model. Legend: Point-Contact state
continuous line), Extended-Contact state (dashed line, only 𝑘 = 1), and Hanging-Fold
tate (dotted line).

wall is flat; We call these solutions Extended-Contact states, see Fig. 1.
For these solutions, both the deflection angle 𝜃(𝑠) and the moment
𝑚(𝑠) at the start of the flat region vanishes, and consequently the
Hamiltonian invariant 𝐼nv = −𝑃 , see Eq. (7). Additionally, as the beam
is continuously flat 𝜃(𝑠) = 𝑚(𝑠) = 𝑚′(𝑠) = 0, the vertical component of
the internal force 𝑛𝑦(𝑠) has to be zero in the flat region, see Eq. (8c).
Consequently there is no distributed load 𝑛′𝑦(𝑠) = 0 coming for the wall
between the touch-down and lift-off points, see Fig. 1.

When 𝑛 = 1, we have 2𝓁 + 2𝓁′ = 1. The value of 𝓁 is fixed through
the condition 𝑚(𝓁) = 0 which yields 𝓁 = 2𝜋∕

√

𝑃 , see (13). Using the
Arch solution (12) with 𝐹 = 2𝑓 , we find

𝐻 = 𝜋 𝐹
𝑃
√

𝑃
(19a)

𝛥 = 1 − [2𝑥(𝓁) + 2𝓁′] = 3𝜋
4

𝐹 2

𝑃 2
√

𝑃
(19b)

(𝓁) = 𝑚(0) = 0 (19c)

This branch of solutions starts at point 𝐵1 (see Fig. 2) when 𝓁′ = 0,
𝑃 = 16𝜋2, 𝐹 = 3−1∕2 64𝜋2

√

𝛥, and 𝐻 = 3−1∕2
√

𝛥 and ends when a
lat segment of the beam buckles. It has been explained that the total

length 2𝓁′ of flat contact may be distributed within several sections of
the beam as this would not change its energy 𝐸𝜅 nor its equilibrium
onditions (Pocheau and Roman, 2004). We call 𝑘 the number of flat
ections, see Fig. 1. Buckling will happen when the horizontal force

reaches the clamp-clamp buckling threshold and one of the 𝑘 flat
sections buckles into a first mode shape. As each flat section has length
2𝓁′∕𝑘, the threshold is 𝑃 = 4𝜋2∕(2𝓁′∕𝑘)2. As we cannot predict the
value of 𝑘, we can only give lower and upper bounds on the end of
he branch, as follows. If the flat region stands in one piece, 𝑘 = 1, the
ranch ends at the lower bound, point 𝐶1, when 𝓁′ = 1∕6, 𝑃 = 36𝜋2,
= 72

√

2𝜋2
√

𝛥, and 𝐻 = (
√

2∕3)
√

𝛥. Alternatively, if the flat region is
divided into the largest possible number of section, 𝑘 = 3 in the present
𝑛 = 1 case, the branch ends at the upper bound where 𝓁′ = 3∕10,

= 100𝜋2, 𝐹 = 100√40∕3𝜋2
√

𝛥, and 𝐻 =
√

2∕15
√

𝛥.
When 𝑛 ≥ 1, we have 2𝑛𝓁 + 2𝓁′ = 1, 𝐹 = 2𝑛𝑓 , and the condition

𝑚(𝓁) = 0 still yields 𝓁 = 2𝜋∕
√

𝑃 . As in Section 4.1, formulas (19) are
irectly generalized to
𝐻u =

𝜋 𝐹u

𝑃u
√

𝑃u
(20a)

𝛥 = 1 − [2𝑛𝑥(𝓁) + 2𝓁′] = 3𝜋 𝐹u
2

2√
(20b)
4 𝑃u 𝑃u

5 
Fig. 8. Horizontal force 𝑃 plotted as a function of the rescaled compaction ratio 𝐻𝛥∕𝐻 .
For the Point-Contact and Extended-Contact states the plot does not depend on the Atlas
number 𝑛. The entire plot does not depend on the value of 𝛥. The single black point at
(0.02, 41) corresponds to the response of the cellular model. Legend: Point-Contact state
(continuous line), Extended-Contact state (dashed line, only 𝑘 = 1), and Hanging-Fold
state (dotted line). Gray dots correspond to experimental data from Figure 5 of Deboeuf
t al. (2024).

𝑚(𝓁) = 𝑚(0) = 0 (20c)

This rescaling of the Extended-Contact solution for any 𝑛 and any 𝛥
is illustrated in Figs. 7 and 8 (dashed line) where we see that all the
(𝑛 ≥ 1) Extended-Contact solution branches collapse. This branch of
solutions starts at point 𝐵𝑛 when 𝓁′ = 0, 𝑃u = 16𝜋2, 𝐹u = 3−1∕2 64𝜋2

√

𝛥,
and 𝐻u = 3−1∕2

√

𝛥 and ends when the flat region buckles. As the flat
region could be divided into 𝑘 pieces (with 𝑘 from 𝑘 = 1 to 𝑘 = 2𝑛+ 1),
he branch of solutions ends when one of the 𝑘 flat segment buckles,
hat is 𝑃 = 4𝜋2∕(2𝓁′∕𝑘)2 as explained above, and we have

𝓁′ = 𝑘∕(4𝑛 + 2𝑘) and 𝓁 = 1∕(2𝑛 + 𝑘) (21a)

𝑃u = 4𝜋2
( 2𝑛 + 𝑘

𝑛

)2
(21b)

𝐹u = 8𝜋2
√

𝛥
√

2∕3
( 2𝑛 + 𝑘

𝑛

)5∕2
(21c)

𝐻u =
√

𝛥
√

2∕3
√

𝑛
2𝑛 + 𝑘

(21d)

which means that for large 𝑛 and with a flat region divided into a
maximum number of pieces (𝑘 = 2𝑛 + 1) the vertical force can take
values up to 𝐹 ≃ 2000 𝑛3

√

𝛥 ≃ 140𝛥2∕𝐻3, and the horizontal force
values up to 𝑃 ≃ 600 𝑛2 ≃ 100𝛥∕𝐻2.

4.3. Hanging-fold states

Along the Extended-Contact solution branch, when the flat region is
in one piece, 𝑘 = 1, a new branch bifurcates as the compression force
𝑃 exceeds the buckling threshold given in (21b). A hanging fold is cre-
ted, replacing the flat region, see Fig. 1. We call these configurations
anging-Fold states. Please note that a configuration having a fold and

a flat region is not possible, as it would imply two different values of
the Hamiltonian invariant 𝐼nv: the invariant value for solutions with a
flat region is 𝐼nv = −𝑃 and the invariant value for solutions with a fold
is 𝐼nv = −𝑃 + (1∕2) 𝜅2(𝓁) > −𝑃 .

When 𝑛 = 1, we have 2𝓁 + 2𝓁′ = 1 where the value of 𝓁′ is fixed by
q. (A.1) in Appendix A. We have 𝐹 = 2𝑓 and 𝛥 = 1 − 2 [

𝑥(𝓁) + 𝑥(𝓁′)
]

here 𝑥(𝓁) is given by Eq. (12b) and 𝑥(𝓁′) by Eqs. (A.2) and (A.3) in
Appendix A. Further using (12a) for the height 𝐻 , we find

𝐻 = 𝐹
√

(

√

𝑃𝓁 − 2 t an
√

𝑃𝓁
)

(22a)

2𝑃 𝑃 2
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Fig. 9. In the cellular model, the system is the repetition of the Arch solution with
𝐿 = 2𝑛𝓁. As the Atlas number 𝑛 takes non-integer values, the boundary condition at
𝑠 = 𝐿 is unsatisfied. The importance of this defect decreases as 𝑛 gets large and is in
fact already minor for small 𝑛 values.

𝛥 = 𝐹 2

⎧

⎪

⎨

⎪

⎩

√

𝑃𝓁
[

2 + cos
√

𝑃𝓁
]

− 3 sin
√

𝑃𝓁

4𝑃 2
√

𝑃 (cos
√

𝑃𝓁 + 1)

+
1∕2 − 𝓁

8𝑃 2
1 − cos

√

𝑃𝓁

1 + cos
√

𝑃𝓁

}

(22b)

𝑃 =
(

𝜋
1∕2 − 𝓁

)2
(22c)

This branch starts at point 𝐶1 (see Fig. 2) when 𝓁 = 1∕3, 𝓁′ = 1∕6,
𝑃 = 36𝜋2, 𝐹 = 72

√

2𝜋2
√

𝛥, and 𝐻 = (
√

2∕3)
√

𝛥 and ends at point 𝐷1
when 𝓁 = 1∕4, 𝓁′ = 1∕4, 𝑃 = 16𝜋2, 𝐹 = 0, and 𝐻 = 𝐻𝛥∕2.

When 𝑛 ≥ 1, we have 2𝑛𝓁 + 2𝓁′ = 1 where the value of 𝓁′ is
still given by Eq. (A.1) in Appendix A. We have 𝐹 = 2𝑛𝑓 and 𝛥 =
1 − 2 [

𝑛𝑥(𝓁) + 𝑥(𝓁′)
]

where 𝑥(𝓁) is given by Eq. (12b) and 𝑥(𝓁′) by
Eqs. (A.2) and (A.3) in Appendix A. As in Sections 4.1 and 4.2, we
use 𝐻u = 𝑛 𝐻 , 𝑃u = 𝑃∕𝑛2, and 𝐹u = 𝐹∕𝑛3 to write the generalization of
Eqs. (22) to any 𝑛 ≥ 1 value

𝐻u =
𝐹u

2𝑃u
√

𝑃u

(

√

𝑃u𝓁u − 2 t an
√

𝑃u𝓁u
2

)

(23a)

𝛥 = 𝐹 2
u

⎧

⎪

⎨

⎪

⎩

√

𝑃u𝓁u

[

2 + cos√𝑃u𝓁u

]

− 3 sin√𝑃u𝓁u

4𝑃 2
u
√

𝑃u (cos
√

𝑃u𝓁u + 1)

+
1∕2 − 𝓁u

8𝑃 2
u

1 − cos√𝑃u𝓁u

1 + cos√𝑃u𝓁u

}

(23b)

𝑃u = 1
𝑛2

(

𝜋
1∕2 − 𝓁u

)2
(23c)

where we have introduced 𝓁u = 𝑛𝓁. The explicit presence of the
Atlas number 𝑛 in Eq. (23c) implies that, contrary to what was found
in Sections 4.1 and 4.2, there is no for-all-𝑛 collapse of the solution
branches for the Hanging-Fold states, as can be seen in Figs. 7 and 8.
The 𝑛 ≥ 1 branches start when 𝓁 = 1∕(1 + 2𝑛), 𝓁′ = 1∕(2 + 4𝑛), 𝑃 =
4𝜋2(1 + 2𝑛)2, 𝐹 = 8𝜋2

√

𝛥
√

2∕3 (1 + 2𝑛)5∕2 √𝑛, and 𝐻 =
√

2𝛥∕
√

3𝑛(1 + 2𝑛)
and ends when 𝓁 = 𝓁′ = 1∕(2 + 2𝑛), 𝑃 = 4𝜋2 (1 + 𝑛)2, 𝐹 = 0, and
𝐻 = 𝐻𝛥∕(1 + 𝑛).

We recall that the description of the sequence of the different states
we have made in this Section 4 holds both when 𝐻 is constant and
𝛥 increased or when 𝛥 is constant and 𝐻 decreased: The important
quantity defining the state of the system is the compaction ratio 𝐻𝛥∕𝐻 .

5. The continuous 𝒏 approximation: The cellular model

As the compaction ratio 𝐻𝛥∕𝐻 = 2
√

𝛥∕(𝜋 𝐻) is increased, the
beam repeatedly visits the Point-Contact state with an increasing Atlas
number 𝑛. When 𝑛 becomes large, the precise boundary conditions at
the rod extremities become less important, that is the integer character
of 𝑛 is no longer critical and one could approximate the system’s
response with a model where 𝑛 is a non-integer quantity, see Fig. 9.
We look for the equilibrium of such a cellular system by minimizing
the total potential energy
𝐸tot = 2𝑛𝐸𝜅 + 2𝑛𝑥(𝓁)𝑃 + 𝑦(𝓁)𝐹 (24)

6 
where we work in the dead loading case (i.e. for prescribed 𝑃 and
𝐹 ) as it yields simpler calculations than the (equivalent) rigid loading
case (i.e. for prescribed 𝛥 and 𝐻). We use Eqs. (12) with 2𝑛𝓁 = 1 and
𝐹 = 2𝑛𝑓 , and find

𝐸tot(𝑧) = 𝑃 + 𝐹 2

2𝑃 2
𝑧
[

𝜇𝜅 (𝑧) − 𝜇𝑥(𝑧) + 𝜇𝑦(𝑧)
]

(25a)

with 𝜇𝜅 (𝑧) = 𝑧 − sin 𝑧
1 + cos 𝑧 (25b)

𝜇𝑥(𝑧) =
𝑧 (2 + cos 𝑧) − 3 sin 𝑧

1 + cos 𝑧 (25c)

𝜇𝑦(𝑧) = 2𝑧 − 4 sin 𝑧
1 + cos 𝑧 (25d)

with 𝑧 =
√

𝑃 𝓁. The minimum is reached for 𝑧 = 𝑧𝑒 such that 𝑧𝑒 = t an 𝑧𝑒,
that is 𝑧𝑒 ≃ 4.5. For this solution, we have 𝜇𝑒 = 𝜇𝑥(𝑧𝑒) = 𝜇𝑦(𝑧𝑒) =
2𝜇𝜅 (𝑧𝑒) ≃ 14 and

𝑃 =
𝑧𝑒 𝜇𝑒
2

𝛥
𝐻2

≃ 31 𝛥
𝐻2

(26a)

𝐹 =
𝑧𝑒 𝜇𝑒
2

𝛥2

𝐻3
≃ 31 𝛥2

𝐻3
(26b)

𝑛 =
√

𝜇𝑒
8𝑧𝑒

√

𝛥
𝐻

≃ 0.62
√

𝛥
𝐻

(26c)

2𝑛𝐸𝜅 =
𝑧𝑒 𝜇𝑒
4

𝛥2

𝐻2
≃ 16 𝛥2

𝐻2
(26d)

Eq. (26c) is to be compared to Eq. (2.19) of Tzokova (2020) Phd
dissertation, which also introduced a continuous approach based on
the vertical force 𝐹 peaks. The total curvature energy of the cellular
system, 2𝑛𝐸𝜅 , is plotted in Fig. 10 and compared to the total curvature
energy of the different states introduced in Section 4. In this Fig. 10,
we see that the cellular model is approximately a convexification of the
energy of the ‘exact’ system: Non-integer 𝑛 values of the cellular model
appear as approximate phase transitions between the integer-𝑛 states of
the ‘exact’ system.

Using the scalings introduced in Section 4, we can rewrite these
quantities as

𝑃u = 𝑃
𝑛2

= 4𝑧2𝑒 ≃ 81 and 𝐹u = 𝐹
𝑛3

=
8
√

2 𝑧5∕2𝑒
√

𝜇𝑒

√

𝛥 ≃ 130
√

𝛥 (27)

(See Appendix B for the different other ways to express these quan-
tities). These quantities are plotted in Figs. 5, 6, 7, 8, and 10 as
black lines. Another important quantity is the maximum value of the
deflection angle 𝜃 which happens at the inflection point 𝑠 = 𝓁∕2. In this
continuous 𝑛 model, we have

𝜃max =
cos(𝑧𝑒∕2) − 1
cos(𝑧𝑒∕2)

𝐹u
𝑃u

≃ 1.3 𝐹u
𝑃u

≃ 2.1
√

𝛥 (28)

which near the value found for the Point-Contact state, see Eq. (18),
and therefore yields the same limit 𝛥 < 0.06 to stay in the small angle,
𝜃max < 0.5, regime.

In Fig. 11 we plot the vertical force 𝐹 as a function of the hori-
zontal force 𝑃 , with properly rescaled axes. As explained earlier, for
Point-Contact and Extended-Contact states this (𝑃 , 𝐹 ) diagram does not
depend on the values of 𝛥 or 𝑛. Moreover, we see that the relation is
almost linear, with a slope value approximately given by the cellular
model: 130

81−4𝜋2 ≃ 3.1. Additionally, we plot the numerical results of
the fully nonlinear system (1)–(6) for Point-Contact and Extended-
Contact solutions to measure how much the nonlinearities cause a
deviation from the virtually linear (𝑃 , 𝐹 ) relation, see gray dots in
Fig. 11 and Wang et al. (2025). This linear relation implies that

𝐹 𝐻 ∼ 𝑃 𝛥 (29)

which means that the work done by the horizontal and vertical loads
are comparable.
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Fig. 10. Curvature energy of the beam as a function of the compaction ratio 𝐻𝛥∕𝐻 .
Point-Contact states (continuous line), Extended-Contact states (dashed line, only
𝑘 = 1), and Hanging-Fold states (dotted line) are shown for 𝑛 = 1 to 𝑛 = 4. The
black line corresponds to the continuous-𝑛 model, Eq. (26d), and is approximately a
convexification of the energy of the system.

Fig. 11. Evolution of the horizontal 𝑃 and the vertical 𝐹 forces as 𝐻 is decreased or 𝛥
is increased. Point-Contact state (continuous line), Extended-Contact state (dashed line,
nly 𝑘 = 1), and Hanging-Fold state (dotted line). For the Point-Contact and Extended-
ontact states the plot does not depend on the Atlas number 𝑛. The single black point
t (41, 130) corresponds to the response of the cellular model. The black line, with
lope 3.3, is drawn as a guide to the eye to show the roughly linear behavior of the
oint-Contact and Extended-Contact states. Gray dots correspond to numerical solutions
f the nonlinear system (1)–(6) where only Point-Contact and Extended-Contact states

are shown, a total of 1298 points with 𝐻 ∈ (0.02, 0.15) and 𝛥 ∈ (0.006, 0.4).

6. Global phase diagram

In a typical experiment, one imposes the value of 𝛥 and 𝐻 and
bserves the state of the system. In Fig. 12, we plot the limit of the

ranges of the existence of the different states for 𝑛 = 1 and 𝑛 = 2
and see that a clear arrangement materializes, linked to the compaction
ratio 𝐻𝛥∕𝐻 (for simplicity reasons, we only consider Extended-Contact
states with their flat region in 𝑘 = 1 piece). Nevertheless, as shown in
Fig. 13, where 𝑛 𝐻 is plotted as a function of

√

𝛥, this arrangement
is not conserved as 𝑛 is increased: point 𝐴𝑛+1 (of slope 2

𝜋
𝑛

𝑛+1 ) moves

relatively to point 𝐶𝑛 (of slope
√

2𝑛
2𝑛+1∕

√

3) and crosses it as 𝑛 ≃ 7.1.
t a larger 𝑛 value (𝑛 ≃ 9.7), the same point 𝐴𝑛+1 even crosses point

𝐵𝑛 (of slope 1∕
√

3). And at 𝑛 ≃ 16.8 it is point 𝐴𝑛+2 that crosses 𝐶𝑛.
ventually, for any fixed integer 𝑗, when 𝑛 → ∞ the arrangement
s such that 𝐴𝑛+𝑗 is reached before 𝐵𝑛 (in terms of compaction ratio
𝛥∕𝐻 values). In contrast, the points 𝐵𝑛 and 𝐶𝑛 keep their relative

ositioning: 𝐵𝑛 > 𝐶𝑛 > 𝐵𝑛+1 > 𝐶𝑛+1 > ⋯ > 𝐵𝑛+𝑗 > 𝐶𝑛+𝑗 , for any 𝑛 and
. Overall, we conclude that for 𝑛 < 8 (and under the assumption 𝑘 = 1),
7 
Fig. 12. An attempt to draw a global bifurcation diagram for the Constrained Euler
Buckling problem. Here, we give the state of the system for given values of 𝐻 and 𝛥,
nd for Atlas numbers 𝑛 = 1 and 𝑛 = 2. A clear arrangement of the different solutions
ppears, but this arrangement does not hold for any 𝑛, as is shown in Fig. 13.

Fig. 13. The relative positioning of the curves in Fig. 12 does not hold for any 𝑛. The
curves 𝐵𝑛 and 𝐶𝑛 keep their relative positioning, but the curves 𝐴𝑛+𝑗 all eventually
cross 𝐵𝑛 and 𝐶𝑛. For example, 𝐴𝑛+1 crosses 𝐶𝑛 at 𝑛 ≃ 7.1 and 𝐵𝑛 at 𝑛 ≃ 9.7.

we will observe sequentially the three states: Point-Contact, Extended-
Contact, and finally Hanging-Fold, before switching to the 𝑛+ 1 mode.
In contrast, for 𝑛 ≥ 8, we will not observe the Hanging-Fold state and
will switch directly form the 𝑛th Extended-Contact state to the 𝑛 + 1𝑡ℎ
Point-Contact state.

Note that all these arrangements depend on the value of 𝑘 taken for
the number of pieces of the flat region in the Extended-Contact state
(here 𝑘 = 1), with 𝑘𝑚𝑎𝑥 = 2𝑛 + 1. In Fig. 14 we plot a high 𝑛 part
f the bifurcation diagram, with 𝑘 = 3, and show the behavior of the
ystem will exhibit multistability and hysteresis. Consider for example
hat we have loaded the structure by increasing 𝐻𝛥∕𝐻 up to the point
𝑈0 lying at the end of the 𝑘 = 3 segment of the 25th Extended-Contact
branch. Upon increasing 𝐻𝛥∕𝐻 further, and if 𝑘 does not increase, the
structure will jump on the point 𝑈1 on the 26th Point-Contact branch.
If we then start unloading, the structure will reach point 𝑈2 on the 25th
Hanging-Fold branch and, upon further decrease of 𝐻𝛥∕𝐻 , will jump
toward on of the points 𝑈3, 𝑈4, or 𝑈5. Resuming the loading will close
the hysteresis loop.
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Fig. 14. Hysteresis and multistability at large Atlas number. Starting on point 𝑈1 and
decreasing the compaction ratio 𝐻𝛥∕𝐻 = (2∕𝜋)√𝛥∕𝐻 will cause the system to visit
point 𝑈2 then jump on either points 𝑈3, 𝑈4, or 𝑈5. Then increasing the compaction
ratio will bring the system to 𝑈0 where it will jump on 𝑈1 to close a hysteresis loop.
Point-Contact states are plotted as continuous red lines, Extended-Contact states with
𝑘 = 1 as dashed green lines, Extended-Contact states with 𝑘 = 2 as dashed blue lines,
Extended-Contact states with 𝑘 = 3 as dashed magenta lines, and Hanging-Fold states
as dotted brown lines.

Fig. 15. Buckling an elastica inside a tunnel is much harder than in the unconstrained
setup. The horizontal force needed to compress an elastic rod increases much more
rapidly in the constrained case (orange) than in the unconstrained case (blue). Note
that we have considered the fully nonlinear version of the equilibrium Eqs. (1), (2), (4),
(5), (6) for the unconstrained case, where 𝑃 (𝛥) = 4𝜋2+ 2𝜋2 𝛥+⋯ instead of 𝑃 (𝛥) = 4𝜋2 in
the von Kármán approximation, see for example Bazant and Cedolin (2010, Fig. 1.26a).

7. Discussion and conclusion

We have detailed the different equilibrium configurations a planar
beam may adopt when buckled in a rectangular cavity (Section 4). We
have shown that they are all based on an Arch solution that spans from
the lower to the upper wall (Section 3). For each solution type, we
have given their range of existence in terms of the imposed horizontal
(𝛥) and vertical (𝐻) displacements. We have explained how the global
system is a repetition of the same solution and have introduced the
Atlas number 𝑛 which counts the repeats. We have used rescaled
quantities to illustrate how the vertical (𝐹 ) and horizontal (𝑃 ) applied
forces vary as functions of the imposed displacements 𝐻 and 𝛥, and
we have shown that the state of the system during loading is entirely
characterized by the compaction ratio 𝐻𝛥∕𝐻 = (2∕𝜋)

√

𝛥∕𝐻 . Finally,
we have introduced a cellular model that yields an averaged response of
the structure as the loads are increased. The cellular model also clearly
illustrates why it is much harder to compress and squash a beam inside
a cavity than in the unconstrained case, see Fig. 15.
8 
Fig. A.16. Part of the Hanging-fold state in which the beam does not touch both walls.

All the above results are based on the von Kármán kinematic
approximation and are then only valid as long as 𝐻 and 𝛥 are small
enough. As 𝐻 > 0.2 and/or 𝛥 > 0.1, the structure enters the full
nonlinear regime and, for example, the exact collapse seen in Figs. 7
and 8 is no longer valid, Ying-Yang solutions may appear, and the forces
𝐹 and 𝑃 (together with the number 𝑛 of repeats) will reach maximum
values before decreasing (Deboeuf et al., 2024). The global bifurcation
diagram, Figs. 12 and 13, gets more complicated and depends on the
loading history due to the presence of large hysteresis. These features
will be the subject of a subsequent report.
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Appendix A. The planar elastica solution in the hanging-fold state

We here compute some basic quantities attached to the Hanging-
fold state. In this state, a region of the beam does not touch both walls
and its equilibrium is given by a planar elastica solution, see Fig. A.16,
with no vertical component in its inner force. We therefore have to
integrate system (8) with 𝑛𝑦(𝑠) ≡ 0, and the boundary conditions (2a)
together with 𝜃(𝓁′) = 0. The solution of 𝜃′′(𝑠) = −𝑃 𝜃(𝑠) with 𝜃(0) = 0 is
𝜃(𝑠) = 𝑐 sin

√

𝑃 𝑠. Enforcing 𝜃(𝓁′) = 0 yields
√

𝑃 𝓁′ = 𝜋 (A.1)

Additionally, the continuity of the bending moment at the contact point
(𝑠 = 0 in Fig. A.16) implies that 𝜃′(𝑠 = 0) = 𝑐

√

𝑃 equals the value given
in Eq. (13). This continuity constraint yields

𝑐 =
𝑓
𝑃

t an
√

𝑃𝓁
2

(A.2)

Finally, we can compute the horizontal extent of the solution as

𝑥(𝓁′) = ∫

𝓁′

0
1 − (1∕2) 𝜃2(𝑠) d𝑠 = 𝓁′

(

1 − 𝑐2

4

)

(A.3)
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Table B.1
Formulas for the forces 𝑃 and 𝐹 , the bending energy 2𝑛𝐸𝜅 , the end shortening 𝛥, the
eight 𝐻 , and the Atlas number 𝑛 for the cellular model, as functions of different pairs
f variables.

𝑃 𝐹 2𝑛𝐸𝜅 –

(𝛥, 𝐻) 31 𝛥
𝐻2 31 𝛥2

𝐻3 16 𝛥2

𝐻2 𝑛 = 0.62
√

𝛥
𝐻

(𝛥, 𝑛) 81 𝑛2 130 𝑛3
√

𝛥 40𝛥𝑛2 𝐻 = 0.62
√

𝛥
𝑛

(𝐻 , 𝑛) 81 𝑛2 208𝐻 𝑛4 104𝐻2𝑛4 𝛥 = 2.6𝐻2𝑛2

Appendix B. The cellular model formula in all variables

The solution of the cellular model (Section 5) may be expressed
using different pairs of variables. We list in Table B.1 the different
possibilities.

Data availability

Data will be made available on request.
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