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2Institut Jean Le Rond d’Alembert, CNRS (UMR 7190), Sorbonne Université, 75005 Paris, France
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Mechanical stress and conformation of helical elastic rods clamped at both ends were studied upon
unwinding. By axial rotation of one end, the winding number was progressively changed from the natural
one (n ¼ n0) to complete chirality inversion (n ¼ −n0) while keeping the total elongation fixed and
monitoring the applied torque M and tension T. Along the unwinding process, the system crosses three
distinct states: natural helix (þ), mixed state (þ=−), and inverted helix (−). The mixed state involves two
helices with opposite chiralities spatially connected by a perversion (helicity inversion). Upon unwinding,
the perversion is “injected” (nucleated) from one side and travels toward the opposite side where it is
eventually “absorbed” (annihilated), leaving the system in the (−) state. In the mixed state, the profile of
MðnÞ is almost flat: the system behaves as a constant torque actuator. The three states are quantitatively
well described in the framework of a biphasic model which neglects the perversion energy and finite size
effects. The latter are taken into account in a numerical simulation based on the Kirchhoff theory of elastic
rods. The traveling perversion in helical elastic rods and related topological phenomena are universal, with
applications from condensed matter to biological and bioinspired systems, including in particular
mechanical engineering and soft robotics.
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An unloaded elastic rod with uniform curvature and twist
adopts a helical shape with radius R0 and pitch χP0, with
chirality χ ¼ �1 for a positively or negatively turning helix,
corresponding to positive or negative winding number n0. If
the rod is now held by its ends and twisted so that the total
winding number n becomes zero, its shape then comprises
two helices with opposite handedness separated by a
perversion, a phenomenon relevant to a number of biological
and bioinspired systems including tendrils of plants [1,2],
propelling flagella of microorganisms [3,4], and even elec-
trospun microfibrils [5,6]. The interest for twisted elastic
rods [7–9] was renewed in the last decades [10,11] in the
context of single molecule DNA nanomechanics [12–17],
plant development [18,19], soft robotics, or microengineer-
ing [20–22], and these applications have in turn motivated
theoretical research [23–28]. A theoretical description of
helical elastic rods using the formalismof dynamical systems
provides an explanation for the winding of tendrils of
plants with single or multiple perversions [29–31]. An
analogy between perversion and fractional charges in
Haldane’s dimerized quantum spin chain was also recently
proposed [28].
Continuous handedness inversion of an elastic helix is, to

our knowledge, still an open question. To reverse the
chirality of a helix with n ¼ n0, one can start to unwind
it at constant elongation [see Fig. 1(a) and the Supplemental
Material [32], video 1]. At some critical winding 0<n<n0

a perversion is generated at one end, in agreement with
theoretical prediction [28]. As unwinding continues, the
injected perversion travels toward the opposite end. Finally,
at another critical winding −n0 < n < 0, the perversion gets
“absorbed” at the opposite end, and we obtain a purely hand-
reversed helix. If now the stretching force is relieved, the
elongation decreases and the obtained hand-reversed helix
adopts a conformation where the coils are collapsed,
maintained by contact forces (see the Supplemental
Material [32], Fig. S1). The generation (injection) and the
absorption (expulsion) of the perversion are singular events,
reminiscent of phase transitions. Their experimental and
theoretical quantification is a delicate issue, as it will be
discussed.
In this Letter, we report on experiments, theory, and

simulation of chirality inversion of elastic helices clamped
at both ends at extension z and winding n. The resulting
phase diagram in the ðz; nÞ space for three encountered
phases, the natural chirality helix (þ), the coexistence of
both chiralities (þ=−), and the opposite chirality (−), is
shown in Fig. 1(b). We also monitored the axial torque M
and axial force T as functions of n, from n ¼ n0 to
n ¼ −n0; see Fig. 2. The phase diagram is reproduced
within a model based on phase coexistence of (þ) and (−)
chirality helices ignoring clamped boundaries and the
perversion. In order to take into account the perversion
itself and the boundary conditions, we performed numerical
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simulations on a finite-size system in the Kirchhoff model,
reproducing in detail both MðnÞ and TðnÞ profiles, includ-
ing oscillations, a pseudoplateau of MðnÞ, and jumps at
both ends of the mixed phase; see Fig. 3.
We report data for elastomer helical rods with Young’s

modulus E ¼ 5.0� 2 MPa, radius R0 ¼ 3.9 mm, pitch
P0≡ z0=n0¼ 4.7mm, thickness d¼ 1.7mm, and n0¼ 9.5;
see the Supplemental Material [32] for more details. For the
sake of verification, experiments with several helices with
different radii and pitches were also carried out. Fig. 1(a)
shows the experimental setup where the rod is clamped in a
mandrel at each end. The upper end is fixed to a rotation
stage while the lower end is connected to both a torque
meter and a force gauge.
Figure 1(b) shows domains of existence in (extension vs

winding number) plane, for the states (þ), (−), and the
mixed state (þ=−) where the system comprises both (þ)
and (−) regions together with a perversion at the interface
between them. The extension z and the winding number n
are normalized respectively by the total arclength L and by
the number of coils of the unloaded rod n0. The boundary
between the different phases is determined experimentally
by increasing z at constant n starting from the (þ=−) state.

At a critical z, the perversion disappears (with a corre-
sponding slope discontinuity on the axial torque), yielding
either a pure (þ) or (−) state, depending on the sign of n.
The width of the coexistence zone over n decreases as z
gets larger, meaning that the more elongated the helix is,
the more one needs to unwind to inject a perversion. In
the limit z → L, the value of n at which the perversion
appears goes to 0: for a completely straight rod, a
perversion cannot exist. On the other hand, as z goes
down to z0 (the extension of unloaded rod), the width of the
coexistence zone increases. In the biphasic model (dis-
cussed below), at z ¼ z0, coexistence happens for −1≲
n=n0 ≤ þ1 which means that if one starts with the natural

(a)

(b)(c)

FIG. 2. Profiles of the force TðnÞ (a) and torque MðnÞ (b) for
n0 ¼ 9.5 coils and z0=L ¼ 0.2. Different values of the elongation
z are used: blue, z=L ¼ 0.93; green, z=L ¼ 0.88; red,
z=L ¼ 0.82. Dots are measured quantities, and thick lines are
quantities calculated in the biphasic approximation for a rod with
Poisson ratio ν ¼ 0.5. Inset (c) shows the strain energy calculated
separately for all three phases for z=L ¼ 0.82. The physical
solution corresponds to the minimal one at given n.

(a) (b)

FIG. 1. (a) Experimental setup. The rod is held by mandrels at
its extremities; the upper mandrel is rotated n turns while the
lower mandrel is fixed to a torque meter and a scale. The man-
drels apply a torqueM and a force T on the rod. (b) Experimental
phase diagram in the ðz; nÞ plane for the parameter value
z0=L ¼ 0.2, where L is the total length. The regions (−),
(þ=−), and (þ) correspond respectively to reversed chirality,
the coexistence of both chiralities, and natural chirality. The
dotted horizontal line for z ¼ z0 represents the value of z of the
unloaded helix, so that for z > z0 (shaded) the helix is extended.
The black crosses are experimental data, and the red curve is the
calculated phase boundary with the biphasic model; see the
Supplemental Material [32], data 1. The blue line is the calculated
limit below which the (−) part of the rod has loops collapsed in
self-contact; see the Supplemental Material [32], video 2. The
black dot indicates the natural state of the helix ðn0; z0Þ.
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state (n=n0 ¼ 1 ¼ z=z0), any unwinding would lead to the
presence of a perversion.
Figure 2 shows typical results of helix unwinding

experiments for three values of z. The overall mechanical
behavior of the rod is qualitatively similar at any z. The
unwinding experiments start at n=n0 ¼ 1with (þ) chirality.
As n decreases, M decreases, and the axial force T
decreases. At a critical n, a snapping transition occurs,
and a perversion is created at one extremity of the rod. The
choice of the snapping extremity is arbitrary. For lower n
values, a regime takes place where (þ) and (−) helices
coexist, connected by a perversion. Moreover, depending
on z, the snapping occurring at the creation of a perversion
is accompanied by a self-contact between the (−) coils; see
the Supplemental Material [32], video 1. Within this mixed
state (þ=−), T increases and M exhibits a pseudoplateau,
the plateau value depending on z and z0. As n is further

decreased, the perversion disappears at the opposite end,M
decreases again, and T continues to increase, but with a
steeper slope. This latter regime corresponds to a pure (−)
helix with chirality opposite to the natural one. The jump in
MðnÞ is weaker at this side of the plateau, when the
perversion gets annihilated. The oscillations, occurring
once per turn, are clearly visible in MðnÞ and, albeit to
a lesser extent, in TðnÞ.
To reproduce the phase diagram and the profiles of TðnÞ

and MðnÞ, we use a biphasic approximation in which we
neglect the perversion and the boundary layers near the
clamps; this simplification holds true in the limit n0 → ∞.
We therefore work with the elastic energy

Eðκ�; τ�; αÞ ¼ αLϵþ þ ð1 − αÞLϵ−; ð1Þ
where α and (1 − α) are the fractions of rod in the (þ) and
(−) chirality states respectively. In the Kirchhoff approxi-
mation [8,30], which assumes that the rod is inextensible,
unshearable, and has a constant cross section, linear
densities of energy ϵ� are written as

ϵ� ¼ 1

2
Bðκ� − κ0Þ2 þ

1

2
Cð�τ� − τ0Þ2; ð2Þ

where B and C are the bending and the twisting stiffnesses.
For a homogeneous and isotropic material quantities B
and C are given by B ¼ EI and C ¼ EI=ð1þ νÞ, where
I ¼ πd4=64 is the second moment of the circular cross
section, ν the Poisson ratio, and E the Young modulus.
The quantities κ� and τ� are respectively the curvature
and the torsion in the equilibrium chiral states χ ¼ �1,
and κ0 and τ0 are their values in the natural (unloaded)
state. In our notation the torsions τ� of both (þ) and
(−) states are positive. Curvatures are related to radii
Ri and pitches Pi by κi ¼ Ri=½R2

i þ ðP2
i =4π

2Þ� and
τi ¼ ðjPij=2πÞ=½R2

i þ ðP2
i =4π

2Þ�, where i stands for þ, −
or 0.
The energy (1) is minimized under fixed elongation ζ

and winding number μ

ζ ¼ αL
τþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ2þ þ τ2þ
p þ ð1 − αÞL τ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ2− þ τ2−
p ¼ z ð3aÞ

μ ¼ α
L
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ2þ þ τ2þ
q

− ð1 − αÞ L
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ2− þ τ2−

q

¼ n: ð3bÞ

The conformation of the rod at given z and n is then
found by introducing the Lagrangian

L ¼ E − Tðζ − zÞ − 2πMðμ − nÞ

where T and M are the Lagrange multipliers associated
with the constraints (3), and are recognized as the axial
force and axial torque applied on the system. This varia-
tional approach has then seven unknowns: κ�, τ�, α, T, and
M. Requiring ∂L=∂κ� ¼ 0 and ∂L=∂τ� ¼ 0 yields

FIG. 3. Experimental profile MðnÞ compared to numerical
simulations and biphasic calculations, with no fitting parameter.
The parameters for simulation are z0=L ¼ 0.2, z=L ¼ 0.82, and
n0 ¼ 9.5. The events of creation and annihilation of the perver-
sion are pointed by arrows, blue for experiment and red for
simulation. The snapshots of the rod at these events and in the
mixed state are shown in insets. Calculated configurations for the
three cases are shown on the lower panel.
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T
B
¼ γþτþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ2þ þ τ2þ
q

¼ γ−τ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ2− þ τ2−

q

; ð4aÞ

M
B

¼ ðκ2þ þ τ2þÞ−1=2½κþðκþ − κ0Þ þ Γτþðτþ − τ0Þ� ð4bÞ

¼ −ðκ2− þ τ2−Þ−1=2½κ−ðκ− − κ0Þ þ Γτ−ðτ− þ τ0Þ�; ð4cÞ

where we have used the notations γ� ¼ κ0=κ� − 1þ
Γð1 ∓ τ0=τ�Þ and Γ ¼ C=B ¼ 1=ð1þ νÞ. The equa-
tions (4) corroborate the conservation of force T and torque
M along the rod, and are equivalent to the conserved
quantities I2 ≡ T2 and I3 ≡M · T [30], with T ¼ ð0; 0; TÞ
and M · T=T ¼ M.
In the cases α ¼ 0 or α ¼ 1, corresponding to purely (þ)

and (−) configurations, κ� and τ� are found from (3). The
loads T and M are given by (4), and the energy by (1).
When computing the profiles of Fig. 2, we need to compare
the energy of the purely (þ) and (−) states to the energy of
the mixed state, i.e., when 0 < α < 1. The value of α is
fixed by setting ∂L=∂α ¼ 0 which yields

κ2þ þ ðΓþ 2γþÞτ2þ ¼ κ2− þ ðΓþ 2γ−Þτ2−; ð5Þ

which is, interestingly, equivalent to conservation of the
invariant I1 ≡ κ21 þ κ22 þ Γκ23 þ 2T · d3=B, with d3 the
tangent to the rod [33].
The seven equations, (3), (4), and (5), are solved

numerically for the seven unknowns, κþ, κ−, τþ, τ−, T,
M, and α. For the mixed state, we only keep solutions
having 0 < α < 1. For these solutions, the energy is always
found to be lower than the energy of the pure (þ) and (−)
states: as soon as it exists the mixed state prevails. The
phase diagram of Fig. 1(b) is drawn for z0=L ¼ 0.2 and
shows for which values of z=L and n=n0 each of the three
states [(þ), (−), or mixed] prevails. The red line corre-
sponds to either α ¼ 0þ or α ¼ 1− and represents the
calculated boundary in the ðn=n0; z=LÞ plane where the
mixed state becomes energetically favorable. The blue line
represents the occurrence of τ− ¼ 0 within the mixed
phase. Below this line, the numerical solution for the
(−) segment has a negative extension. Physically, the (−)
segment remains in self-contact during experiments, since
it cannot adopt a negative extension due to contact between
coils; see the Supplemental Material [32], video 2.
Calculated profiles MðnÞ and TðnÞ are shown in Fig. 2.
The model captures the overall features found in experi-

ments. In particular, the average value of the pseudoplateau
is approximately

Mplateau ≈ −BΓzz0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðz0=LÞ2
q

=ðR0L2Þ ð6Þ

while deviation from this constant is ΔM ≡Mðα ¼ 1−Þ−
Mðα ¼ 0þÞ ≈ 2.5BΓð1 − z=LÞz20=ðR0L2Þ, indicating that
for z close to L and z0=L small (weak natural torsion),

the slope of the plateau can be neglected compared with
Mplateau. In our case, where z0=L ¼ 0.2 and for z=L > 0.8,
we have Mplateau=ΔM ≳ 10. Therefore, in what follows we
omit the prefix “pseudo” and use the term “plateau.” Notice
that Mplateau scales with the twisting stiffness C and z0,

related to τ0 via z0=L ¼ τ0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ20 þ τ20
p

. This means that
during inversion, one has to providework against the natural
torsion of the helix in order to invert the pitch. When
z=L → 1 the transition line (red line in Fig. 1) has a parabolic

shape n ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðz=LÞ2
p

hðΓ; z0=L; z=LÞwhere the function
h is of order 1. The corresponding force at transition reads as
T ≈ B½1 − ðz0=LÞ2�3=2hðΓ; z0=L; z=LÞ=R2

0 and the torque

M ≈ −BΓz0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðz0=LÞ2
p

=ðR0LÞ. These formulas remind
us that the transition at z ¼ L (usually called the writhing
transition) happens at a finite load, and generalize the critical
load value given in [30].
There is a shift in the value of n between experiment

(upper abscissa labels) and theory (lower abscissa labels);
see Fig. 2. This shift is a manifestation of some memory
effects [34] that our theory, based on linearly elastic and
unshearable rods, does not capture. In the experiment, the
memory effects can be avoided if one chooses vertical
trajectories in ðn; zÞ space as we did for constructing the
phase diagram [Fig. 1(b)].
We now focus on experimental features not captured by

the biphasic approximation: the jumps inM at the injection
and expulsion of the perversion and the oscillations in
MðnÞ. The surplus of axial torque necessary to inject the
perversion is due to the energy barrier necessary for the
nucleation of the perversion. The analytical biphasic model
does not take into account this energy barrier, and this
explains why the values of n at which the perversion
appears do not concur in Figs. 1(b) and 2: one has to
unwind further in order to provide enough energy to
overcome the nucleation barrier. The jump in M at the
disappearance of the perversion is far less pronounced:
indeed, the left side of experimental and theoretical profiles
coincide fairly in Figs. 1(b) and 2(b).
In order to capture the finite-size effects due to the

perversion and the boundaries, we carried out numerical
simulations of a Kirchhoff elastic rod, using AUTO07 [35];
see the Supplemental Material [32]. The results forMðnÞ at
fixed elongation z=L ¼ 0.82 are shown in Fig. 3 and
compared to both experiments and the biphasic model.
The entire simulated n evolutions of M including the
shapes of the clamped rods with n0 ¼ 9.5 and n0 ¼ 4
are shown in the Supplemental Material [32], videos 3 and
4 respectively. The discontinuities at injection and expul-
sion of the perversion are recovered with fair precision, as
well as the oscillations. Notice from the video that the jump
at injection and at expulsion as well as the amplitude of
oscillations decrease with increasing n0, as expected [34].
The simulation also captures the asymmetry between the
creation and annihilation jumps, resulting from the fact that
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the state of inverse chirality is energetically higher than the
original one because of the positive natural chirality τ0; see
Eq. (2). This asymmetry also explains why the value of the
plateau in M is not zero.
The oscillations of the axial torque during the coexist-

ence regime are linked to the clamping boundary con-
ditions. Recall that in the biphasic model, where
conformations are purely helical, these oscillations are
absent. Clamping conditions are incompatible with pure
helical shapes because the conformation near the clamp
cannot be a helix. Therefore, by constraining the rod to be
clamped at opposite ends, we introduce some axial asym-
metry which results in the observed oscillations.
Being a boundary between two demixed phases, the

perversion can be seen as a soliton. In a rod with natural
curvature κ0 > 0 but no natural torsion (τ0 ¼ 0), the two
states (þ) and (−) would be completely symmetric, i.e.,
energetically degenerate. In this case, the perversion could
travel upon winding or unwinding freely, with zero torque
[30]. Our present analysis assumes both κ0 and τ0 to be
nonzero, implying that the natural state has a finite positive
pitch, while the inverted helix, when unloaded, has col-
lapsed coils. The symmetry between (þ) and (−) states is
broken by finite τ0. In turn, one has to pay elastic energy
when transforming (þ) to (−) states: unwinding by Δn
costs energy −MplateauΔn, where the value of Mplateau ∝
−τ0 [see Eq. (6)]. The quasiflatness of MplateauðnÞ in the
mixed state implies that the rod acts as a constant torque
actuator; see the Supplemental Material [32], video 5. A
nice parallel can be drawn with the case where the rod is
held at constant n ¼ 0 and the distance z increases, as
discussed in [30] in the context of a torque-free spring. In
our case, the perversion turns, modulating both (þ) and (−)
states and keeping the torque flat. The resulting spring is
then softer than the same spring in a pureþ or − state, both
in extension [see Fig. 2(a)] and in rotation [see Fig. 2(b)].
This apparently simple mechanical system exhibits

several remarkable properties that hold significance in
biology, bioinspired microrobotics [36], or mechanical
engineering [37] and brings new insight even in the context
of single-molecule unwinding [38]. More generally, torque
plateau together with injection and annihilation snapping
events are remarkable observable phenomena certainly
relevant to the exploration of nature and to the design of
new biomimetic devices.
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