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a b s t r a c t 

A liquid drop sitting on an elastic rod may act as a winch, or windlass, and pull the rod inside itself and 

coil it. This windlass effect has been shown to be generated by surface tension forces and to work best 

for small systems. Here we study the case where the drop is large enough so that its weight interferes 

with surface tension and modifies the windlass mechanics. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Windlasses are winches used to pull weight or tighten sails

on boats. They typically provide tension in a rope as it is wound

around a cylinder, thereby transferring rotation momentum into

translation momentum. In 1989, Vollrath and Edmonds [1] pro-

posed that the water droplets present along the threads in a spi-

der web were acting as tiny windlasses, providing tension to the

web, helping the structure to sustain loads ( e.g. wind), and preserv-

ing its integrity. Few years ago this windlass effect of small drops

on micronic threads has been shown to be generated by capillary

forces [2] : the affinity of the thread material for water is strong

and surface tension acts against the elasticity of the thread, even-

tually buckling and coiling it. Spider thread windlasses are yet an-

other example of elastocapillarity, the study of the interplay be-

tween fluid forces and elasticity of solids [3–5] . Former examples

include the bending of elastic plates around liquid drops [6] , the

buckling of biofilaments inside liquid drops [7] , and the wetting of

fiber arrays [8–10] . Previous works on the capillary windlass ef-

fect have focused on parameter values for which gravity could be

discarded, namely for very small systems where the weight of the

drop is much smaller than capillary forces, see e.g. [11,12] . 

Here we investigate the windlass system in the presence of

gravity and show how its mechanics is changed when the weight

of the drop is taken into account. We introduce a simple analyti-

cal model and compute the bifurcation diagram of the system. We
∗ Corresponding author. 
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hen perform experiments to test our theoretical predictions and

how that gravity hinders the activation of the windlass mecha-

ism. 

. Model 

We consider an elastic rod of length L and circular cross-section

f radius a , made with an elastic material of Young’s modulus E .

he rod then has a flexural rigidity E I , where I = πa 4 / 4 is the

econd moment of area of the section. A liquid drop, of volume

/3 π R 3 , is sitting astride the elastic rod. In the experimental setup

e use systems with e.g. a ∼ 1 μm, R ∼ 0 . 1 mm, L ∼ 1 cm. In this

ase, the shape of the drop stays approximately spherical [13] . The

lastic rod is held at both extremities with pinned joints, see Fig. 1 ,

nd we study the behaviour of the system as the right end is

rought toward the left end, that is as the end-to-end distance X

s decreased. In the present case where gravity is accounted for,

he drop then goes down and the systems adopts a V shape, see

ig. 1 . Nevertheless, as we deal with a sub-millimetric system, sur-

ace effects are coming into play and the affinity of the rod with

he liquid has to be taken into account. We do this by considering

he energies of the three different interfaces present in the sys-

em. Per unit of area, we call γ SV the energy of the solid-air inter-

ace, γ SL the energy of the solid-liquid interface, and γ LV the en-

rgy of the liquid-air interface. In the case where the rod material

as a stronger affinity with the liquid than with air, i.e. γ SL < γ SV ,

he rod may enter the liquid, that is, buckle and then coil inside

he drop. Buckling will interfere with the simple V shape response

entioned earlier. In order to calculate the behavior of the system,

e write down its total potential energy and minimize it. 

https://doi.org/10.1016/j.mechrescom.2018.01.008
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Fig. 1. A heavy drop of radius R on a coilable elastic rod with circular cross-section 

of radius a and total length L = L in + L out . The sagging angle β is measured as the 

end-to-end distance X is varied. The tension of the rod outside the drop is called 

T . Depending on the value of X , the rod inside the drop is either straight or coiled. 

The two points A and B where the rod enters/exits the drop are called meniscus 

points. 
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Fig. 2. Bifurcation diagram for the model presented in Section 2 . The tension T 

is plotted as a function of the end-shortening L − X . The diagram comprises two 

branches. Branch ( I ) corresponds to configurations where the system is unbuckled 

and behaves as a thread sagging under the weight of the drop, with the tension T 

decreasing as the end-shortening is increased. Branch ( II ) corresponds to configu- 

rations where the elastic rod coils inside the drop and T is constant, insensitive to 

the end-shortening. 
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We first consider the potential energy of the weight of the drop

 g = MgY c , where Y c is the center of the (spherical) drop, M its

ass, and g the acceleration of gravity. We add the energy V γ =
 πaL in γSL + 2 πaL out γSV for the solid-liquid and solid-air interfaces,

here L in is the total contour length of the rod inside the drop and

 out is the total rod length outside the drop. Since in the present

odel we do not let the liquid drop deform, the energy for the

iquid-air interface 4 πR 2 γ LV is constant and therefore discarded.

he bending energy of the elastic rod is 1 
2 EI 

∫ L 
0 κ

2 (s ) d s, where κ( s )

s the curvature of the rod and s the arc-length along the rod. We

erform the following simplifications: (i) the curvature outside the

rop is considered zero, (ii) before buckling the curvature inside

he drop is considered to vanish and the wetted length to be L in =
 R, while (iii) once coiling has started, L in > 2 R and the coiled rod

as curvature 1/ R . Under these assumptions the bending energy is

ritten V κ = 

1 
2 (L in − 2 R ) EI 

R 2 
. Adding the different terms we end up

ith a total potential energy 

(L in , L out , Y c , β) = V g + V γ + V κ

= MgY c + 2 πaL in γSL + 2 πaL out γSV + (L in − 2 R ) 
EI 

2 R 

2 
(1) 

e minimize this energy under the following constraints. Exten-

ional deformations are neglected so the total length L is con-

tant with L = L in + L out . Next, as we work with displacement con-

rolled boundary conditions, we deal with fixed X = 2 R + L out cos β .

dditionally the position of the center of the drop is given by

 Y c + L out sin β = 0 . Finally the wetted length L in cannot be smaller

han 2 R , that is we have an inequality constraint h 0 = L in − 2 R ≥ 0 .

e use the first constraint to eliminate the variable L out . Next,

e cope with the second constraint by introducing a constraint

unction h 1 = (L − L in ) cos β − X = 0 and a Lagrange multiplier �,

nd with the third constraint by introducing a constraint func-

ion h 2 = 2 Y c + [ L − L in ] sin β = 0 and a Lagrange multiplier V . Fi-

ally the inequality constraint h 0 ≥ 0 is treated by introducing a

ositive μ≥ 0 multiplier and considering the Kuhn–Tucker condi-

ion μ h 0 = 0 . Consequently we work with the Lagrangian L in the

hree-dimensional space u = (L in , Y c , β) 

 (L in , Y c , β) = V − �( [ L − L in ] cos β − X ) 

− V ( 2 Y c + [ L − L in ] sin β) − μ(L in − 2 R ) (2) 

he necessary conditions for which the energy V is minimum are

nown as Kuhn–Tucker conditions [14] and read 

∂L 

∂u 

= 0 , μ ≥ 0 , μ h 0 = 0 (3)

e call these conditions equilibrium conditions. Sufficient condi-

ions to have a minimum, involving the Hessian matrix H with
 i j = ∂ 2 L / ( ∂ u i ∂ u j ) 

 = 

( 

0 0 V cos β − � sin β
0 0 0 

V cos β − � sin β 0 (L − L in ) (� cos β + V sin β) 

) 

(4) 

ill be called stability conditions. Parameters are R, EI, X, Mg ,

γ = γSV − γSL and unknowns are L in , Y c , β , V , �, μ. 

ctive constraint. We first focus on solutions with h 0 = 0 , that is

efore buckling happens. The solution to (3) is 

 in = 2 R , Y c = −X − 2 R 

2 

tan β , β = arccos 
X − 2 R 

L − 2 R 

(5a) 

 = Mg/ 2 , � = 

Mg 

2 tan β
(5b) 

The Lagrange multipliers � and V are identified to be the hor-

zontal and vertical reactions of the pinned joints. Noting T =
cos β + V sin β the tension in the rod outside the drop, we have

 = 

Mg 

2 sin β
and μ = T − T p (6) 

here T p = 2 πa �γ − EI 
2 R 2 

and the condition μ≥ 0 yields T ≥ T p .

he force 2 πa �γ corresponds to the compressive capillary force

pplied on the rod at the meniscus points A and B , see Fig. 1 . 

Starting from X = L and decreasing X , the system follows Branch

 I ), drawn in Fig. 2 . At first, when X = L, the tension T outside the

rop is infinite, as in any perfectly taut, horizontal string holding

 weight. The tension then decreases down to the buckling point

 , where T = T p . The remaining, T < T p , of Branch ( I ) has μ< 0 and

herefore corresponds to configurations that do not fulfill equilib-

ium conditions (3) . 

Next, we test the stability of configurations in the upper part of

ranch ( I ). The Hessian matrix (4) has to be evaluated for u = u 

eq ,
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Fig. 3. Experimental bifurcation diagram for the windlass system with Mg/ (2 T p ) = 

0 . 46 . The sagging angle β is recorded as the end-shortening L − X is increased. The 

data clearly shows the two branches introduced in the theory and the flat, plateau, 

response in the second (coiling) regime, where the sagging angle is insensitive to 

the end-shortening. Theoretical predictions are also drawn and compare well with 

experimental points. 

Fig. 4. Experimental data for the plateau value sin βp as a function of the parameter 

Mg /(2 T p ). 17 different diameters have been used 2 R = 83.3, 92.0, 110.4, 115.5, 122.1, 

131.1, 141.8, 159.8, 167.8, 178.5, 188.2, 204.1, 213.2, 225.0, 238.5, 256.2, 284.0 μm. 

(Please note the presence of a 18th point, at Mg/ (2 T p ) = 0 . 64 , corresponding to a 

rod with larger diameter, see Caption of Fig. 5 for more informations). (Inset) Ex- 

perimental angle βp as function of end-shortening L − X for the 17 values of the 

parameter Mg /(2 T p ), ranging from 0.01 (green) to 0.46 (red). (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web ver- 

sion of this article.) 

Fig. 5. The ‘thickness’ σ of Branch ( II ) as function of Mg /(2 T p ). Inset: Details of 

the experimental bifurcation curve for Mg/ (2 T p ) = 0 . 64 ( 2 a = 8 . 3 ± 0 . 7 μm and 

2 R = 497 ± 2 μm), showing the microstructure of Branch ( II ). 

4

where u 

eq is given by ((5)). We find 

H 

eq = 

( 

0 0 0 

0 0 0 

0 0 (L − L in ) T 

) 

(7)

A sufficient condition for stability is that δu · H 

eq · δu > 0 for all

δu = (δL in , δY c , δβ) , where δu is a small variation about u 

eq that

has to be perpendicular to the three vectors ∂ h 1 / ∂ u , ∂ h 2 / ∂ u , and

∂ g / ∂ u , see [14] for more details. In the present case there is no

variation perpendicular to all three vectors, hence no admissible

variation. 1 Equilibriums in the upper part of Branch ( I ) are conse-

quently all stable. 

Passive constraint. We now describe solutions with h 0 > 0, that is

L in > 2 R . The solution to (3) is 

L in = L − X − 2 R 

cos β
, Y c = −X − 2 R 

2 

tan β , T = T p , μ = 0 (8a)

β = βp = arcsin 

Mg 

2 T p 
, V = Mg/ 2 , � = T p cos β (8b)

The rod is steadily coiling inside the drop and the system

evolves with constant β and constant tension T . In the decreasing

X experiment described earlier, as we reach the buckling point P

the system bifurcates on Branch ( II ). Note that the part of the line

T = T p that lies before P is such that L in < 2 R and is therefore not

physical. 

Stability of solutions involve the same Hessian matrix (7) and

we have to compute the sign of δu · H 

eq · δu for every δu perpen-

dicular to both ∂ h 1 / ∂ u , ∂ h 2 / ∂ u (the inequality constraint is now

inactive). The subspace of admissible variation has dimension one

and is given by δu = ([ L − L in ] sin β, [ L − L in ] / 2 , − cos β) . We have

δu · H 

eq · δu = cos 2 β (L − L in ) T , which is strictly positive as long as

T = T p > 0 . Branch ( II ) is then stable as long as the capillary force

2 πa �γ is larger than the coiling force EI 
2 R 2 

. 

3. Experiments 

Experiments were performed with a Thermoplastic Poly-

Urethane (TPU) rod, of diameter 2 a = 2 ± 0 . 7 μm, produced by

melt spinning, and Rhodorsil V10 0 0 silicone oil droplets (density

ρ = 960 kg/m 

3 ). Young’s modulus for TPU was measured to be

17 ± 2 MPa, see [11] for more details. For TPU and silicone oil,

the surface tension �γ = γLV cos θY was measured to have γLV =
21 . 1 mN/m and θY = 23 degrees. The value g = 9 . 81 m/s 2 was used

for the acceleration of gravity. Care was taken to position the drop

as close to the center of the rod as possible, as confirmed by the

symmetric tilt of the two straight halves of the outside rod. The

ratio of the weight Mg to twice the plateau tension 2 T p naturally

arises from the model and we use it in the following. Liquid drops

with diameter 2 R ranging from 83.3 to 284 μm were used, yield-

ing a ratio Mg /(2 T p ) ranging from 0.01 to 0.46. The end-to-end dis-

tance X was decreased at a speed of 12 μm/s and no dynamic effect

was observed. We followed the position of the drop using particle

tracking at the rate of one image every second, and we recorded

the angle β as a function of the end-shortening L − X, see Fig. 3 .

We also recorded the value of the constant angle βP in the coil-

ing regime for each different drop radius, and plotted sin βP as a

function of Mg /(2 T p ), see Fig. 4 . 
1 This special case comes from the fact that we have to fulfill three constraints in 

a three dimensional space. 
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. Discussion and conclusion 

Experiments clearly show a two-regime response of the sys-

em, corresponding to the two bifurcation branches introduced in

ection 2 . In Fig. 3 we see that the angle β starts by increasing

s X is decreased, as predicted by Eq. 5. In this first regime, the
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ystem behaves as a flexible thread sagging under the application

f a dead weight, with the sag increasing as the tension in the

hread decreases. As the tension reaches the threshold T p the rod

uckles in the drop which no longer acts as a dead weight but

ather as an active winch, reeling in and coiling more and more

od length as the end-to-end distance X is decreased. This second

egime is characterized by a flat, plateau, response where the

ngle β no longer depends on X . In addition to the experimental

ata, we draw in Fig. 3 the two branches predicted by the theory

nd find a good agreement between experiments and theory.

e also note on Fig. 3 that, experimentally, the highest point of

ranch ( I ) is higher than the plateau value βP . This mismatch

s due to the subcritical nature of the buckling transition, which

s studied in [11] in the absence of gravity and remains in the

resence of gravity. Consequently the buckling transition is here

ssociated with a small jump, a sudden decrease of the angle β
nd a sudden increase of the tension T . Varying the drop radius,

e experimentally record the plateau value βP and test Equation

8) according to which sin βP should be equal to Mg /(2 T p ). We

ee in Fig. 4 that the experimental data agrees with the linear

ependance sin βP = Mg/ (2 T p ) but that a deviation starts to build

or large values of Mg /(2 T p ). This discrepancy is thought to be due

o the spherical drop assumption in our model: experimentally,

n order to equilibrate the hydrostatic pressure within the drop,

ravity modifies the shape of the drop as well as the location of

he meniscus points A and B [15] . 

Finally, we note that experimentally Branch ( II ) is not a mere

traight line but carries a microstructure, shown in the inset of

ig. 5 . At several locations, the system jumps between two con-

gurations with different values of the angle β and the tension T .

pon coiling (decreasing X ), during a jump, β decreases and T in-

reases, while upon uncoiling (increasing X ) the situation would

e reversed. We see in Fig. 5 that the ‘thickness’ σ of Branch

 II ) increases with the size of the drop and becomes large when

g /(2 T p ) > 0.5. In this case the drop becomes so large that the ge-

metrical hypotheses in our model (spherical assumption, location

f meniscus points A and B ) break down. Again, this is illustrated

y the βp value for the last point Mg/ (2 T p ) = 0 . 64 which does not

t the linear regime, see Fig. 4 . 

In the case the weight of the drop vanishes, M g → 0, the bi-

urcation diagram of Fig. 2 is modified and the buckling point P

pproaches the vertical axis ( X p → L, βp → 0 ), keeping the same

 p value. As we are not considering the intrinsic extensibility of

he rod, in this limit M g → 0, Branch ( I ) only comprises the upper

art T > T p of the vertical axis, and buckling takes place as soon

s some non-zero end-shortening L − X is introduced. The weight

f the drop therefore induces a delay on windlass activation: one

as to reach a finite end-shortening L − X p to induce activation. For

mall weights, the end-shortening at activation grows as 

L − X p 

L 
� 

1 

2 

(
Mg 

2 T p 

)2 

(9) 
or large weights, activation is prevented as soon as βp reaches

/2, that is as Mg reaches 2 T p . Finally we note that once the wind-

ass is activated, the tension in the rod outside the drop is inde-

endent of the weight Mg : we have T = T p even if, e.g. , Mg = 0 . 
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