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SOME EXEMPLES OF STRESS CONCENTRATION 
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THE SINGULARITIES 
 

 
 
The solution for the linear elastic problem is expanded in this 
neighbourhood as a series (so-called Williams’ expansion) in terms of the 
powers of the radial coordinate r  in the following manner 
 

...)()(),( ++= θθ λ ukrOUrU  
 

To simplify, we consider in a first step a single mode. 
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Assumption: There is no external body force or surface traction applied 
in the neighbourhood of the wedge. It extends to clamping conditions 
(zero displacements) and more general homogeneous boundary 
conditions. The problem of non homogeneous (non vanishing) boundary 
conditions is not treated here (Leguillon and Sanchez-Palencia, 1987). 
 
Remark: The first term )( )( 0 OUrOU =  of the series is the rigid body 
translation associated with the origin O . The rigid body rotation is 
equally represented in this series:  
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The exponents λ  are solutions to an eigenvalue problem, having the 
angular function )(θu  as eigenfunction. They depend only on the local 
geometry (the opening ω  in the present case) not on the global one and 
on the intensity of the applied load. 
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By replacing ( )r uα θ  for 1 2( , )U x x  in the variational formulation of the 
problem and by considering the test (weighting) functions of the form 

)()( θϕ vr  in which )(rϕ  has compact support in the neighbourhood of the 
singular point, we arrive after some calculations and integrations by parts 
(Leguillon, Sanchez-Palencia, 1987) at the following variational problem 
for λ  and )(θu  
 

)(    0))(),(())(),(( ))(),(( 2 θθθθθλθθλ vvucvubvua ∀=++−  
 
where (.,.)a  and (.,.)c  are bilinear and symmetric operators, and (.,.)b  is a 
bilinear and antisymmetric operator.  
 
The above variational formulation looks like an eigenvalue problem. It 
can be approximated by finite elements. Then the problem takes the 
following form  
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0 )( =XA λ  
 

where )(λA  plays the role of the stiffness matrix and where X  is the 
unknown vector of the nodal values of )(θu . Thus one has to solve 
successively the following problems  
 
1) Find λ  such that 0))(det( =λA  
2) Find X  such that 0 )( =XA λ  
 
A Newton Algorithm is used for the first item using a LU factorization of 
the matrix )(λA . Inverse iterations solve the second item, vector X  is the 
eigenvector of  )(λA  for the 0 eigenvalue. 
One can view the search for the solutions of the form )(θλur  as the search 
for certain solutions among an infinity of solutions of the elasticity 
problem defined on the given domain, but in which no boundary 
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conditions are specified on the part extΓ  of the boundary (whose actual 
geometry no longer plays any role). 
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We are then going from a two-dimensional problem in the variables 21  , xx  
or θ ,r  to a one-dimensional problem in the variable θ . Thus, in 3D the 
problem of determining the singularity becomes a two-dimensional 
eigenvalue problem in the angular variables θ and ϕ . 
 
The exponents λ  possess all the properties of the solutions of the 
eigenvalue problems: They may be real or complex, simple or multiple. 
 
The coefficients k , called the generalized stress intensity factors (GSIF), 
are real (resp. complex) when the exponents are real (resp. complex). 
They depend on the applied load and the global geometry of the 
structure. 
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For such a solution to have finite energy, we must have 0)Re( >λ  in 2D 
(or 2/1)Re( −>λ  in 3D). When the first exponents are such that 1)Re( <λ , 
we are dealing with singular terms ; effectively, in this case, the strains 
(derivatives of displacements) and the stresses behave as 1−λr  and tend to 
infinity as 0→r  
 

...)( ),( 1 += − θθσ λ
ijij srkr  

 
This situation has clearly some consequences on the numerical 
calculations (by the finite element method for example), but is not, as is 
well known, uniquely a numerical phenomenon; it is inherent in the 
equations of elasticity. Stresses do not converge, and in finite elements 
refining the mesh in the neighbourhood of the singular point leads to 
higher and higher values for the computed stress field.  
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Properties: If λ  is solution then λ  (complex conjuguate), λ−  and λ−  are 
also solutions in 2D (λ , 1−−λ  et 1−−λ  in 3D). The formers correspond to 
the behaviour in the neighbourhood of the origin, and the latters to the 
behaviour in the neighbourhood of infinity (finite energy).  The 
eigenfunctions associated with λ  et λ−  are distinct in elasticity (they 
become identical only for the Laplace scalar problem). 
 
Remark : There is a complete series expansion  
 

...)()()(),( 2211
21 +++= θθθ λλ urkurkOUrU  

 
Apart from the integer exponents, all terms are singular to a certain 
degree.  For example, for 21 2<<λ  the stresses are finite ( 012 >−λ ) but the 
derivatives of the stresses tend to infinity ( 022 <−λ ). 
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Some examples (the exponent 0 is not mentioned here): 
 
• Re-entrant corner, for example °=90ω  in a homogeneous and 
isotropic material, 545.01=λ , 908.02=λ , 13=λ , … The unit exponent here 
corresponds to the rigid body rotation. 
 
For a re-entrant corner in a homogeneous and isotropic medium, the 
exponents are independent from the elastic properties of the material, and 

1λ  for example is solution of the following equation (see the three-point 
bending on the cut-off sample below) 
 

)sin( ))2(sin( ωλωπλ =−  
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Crack in a homogeneous and isotropic medium (Williams’ series,  1956) 
2/121 ==λλ , 143 ==λλ , 2/365 ==λλ , …  

 
All eigenvalues have multiplicity 2 (in 2D) ; the two eigenfunctions 
associated with 1/2 are the well-known crack opening mode I and crack 
in-plane shear mode II ; we recover next the rigid-body rotation and the 
uniform traction parallel to the crack (called non-singular T- stress), etc. 
The T-stress term associated with 4 1λ =  writes 
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In generalized 2D (pseudo 3D), the multiplicity is increased to 3 for each 
of these terms.  Adding to the value 1/2, the crack out-of-plane shear 
mode III, and to 1 a second non-singular stress, etc  
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● Interfacial crack ξλ i2/11 += , ξλ i2/12 −= , … the first exponents are 
complex and conjugate to each other ; the real part is equal to 1/2.  The 
imaginary part ξ  depends on the elastic contrast between the two 
substrates (Rice 1988) ; this contrast may be described with the aid of 
two coefficients of  Dundurs (1967), 
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For a crack that lies at the interface between two homogeneous and 
isotropic materials  
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whereβ  is the second parameter of Dundurs 
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Here iE  and iν  designate Young’s modulus and the Poisson’s ratio of 
material i, respectively.  
This relation implies a sign convention, even though both two signs + 
and – are present in the series (complex + complex conjuguate). 
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● Crack perpendicular to an interface between two homogeneous and 
isotropic materials (figure below), even though the present case is 
about a crack it does not give exponents with real parts equal to  1/2. 
When 21 EE >  (resp. 21 EE < ) 2/1<λ  (resp. 2/1>λ ) is double; this situation 
is discussed in Section 4. 
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Application : Fracture in a multilayered system 
  

 
The tortuous crack paths are highly desirable because they increase the 
apparent toughness of the material.  
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LOGARITHMIC TERMS 
 
There exists a complexity to this decomposition, as in all eigenvalue 
problems of non-symmetric matrices; the matrix is not necessarily 
diagonalizable; there may be Jordan blocks, i.e., defective eigenvalues 
and their associated generalized vectors (root-vectors). In the case that is 
of interest to us, for an algebraic multiplicity 2 and for a unit geometric 
multiplicity 1 of the exponent λ  (only one eigenvector for the exponent 
of multiplicity 2, Jordan block 22× ), the corresponding term in the series 
take the following form  
 

[ ])()()ln( ')( θθθ λλ vurrkurk ++  
 
where )(θu  is the unique eigenfunction and )(θv  the generalized 
eigenfunction. We also find this situation in the paradox of Sternberg-
Koiter (Leguillon 1988) for example.  
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Inhomogeneous problems (external applied forces that are not zero in the 
neighbourhood of the singular point) can also give rise to the logarithmic 
terms (Leguillon and Sanchez-Palencia 1987). 
 
The exponents and the eigenfunctions may sometimes be known 
explicitly (Bui [1978] and others for a crack; Dempsey and Sinclair 
[1979-1981], for a re-entrant corner in a bi-material; Rice [1988] and 
others for an interfacial crack, …), or may be determined numerically 
(Leguillon and Sanchez-Palencia [1987] and others for the 2D case; 
Leguillon [1995] and others for the 3D case). 
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COMPUTATION OF THE GENERALIZED STRESS INTENSITY 
FACTOR (GSIF) k  
 
 
The extraction of the generalized intensity factor from the elastic solution 
can be carried out based on an integral computed on an arbitrary contour 
Γ  starting and ending on the free boundary of the re-entrant corner or of 
the crack. (Leguillon and Sanchez-Palencia 1987, Labossiere and Dunn 
1999) 
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In the case of a simple eigenvalue λ , we have 
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where )(θλ −− ur  designates the mode that is dual to the mode )( θλ ur , and 
where FEU  is the finite element approximation of the elastic solution.  
The integral ψ , which is path independent (i.e. independent of the 
contour Γ, easy proof), is defined for all functions U  and V  in 
equilibrium by  
 

ds]  )(  )([2
1) ,( UnVVnUVU σσψ −= ∫Γ

,       
 
Here, Γ is an arbitrary contour encircling the singular point, and n  its  
normal pointing toward the singular point.  
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This method can also be used in the case of complex eigenvalues 
(Leguillon and Sanchez-Palencia 1987).  
 
In the case of multiple eigenvalues, we obtain a system to solve instead 
of a simple equation (here multiplicity 2  2 equations) 
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Property (a kind of bi-orthogonality although ψ  is not a duality product) 
necessary to establish the relations above:  
Let )(θαur  et )(θβvr  be two solutions of the eigenvalue problem, then  
 

0))(),(( =θθψ βα vrur   if αβ −≠  
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Proof: With the two arguments being equilibrium solutions, the integral 

))(),(( θθψ βα vrur  is therefore independent of the contour on which it is 
computed.  We choose a circular contour of radius R  

 

∫ −=
+ ωβα

βα θθθθθθθψ
0

d)](  )(')(  )( 2))(),(( unsvnsRvrur  
 
Because of the independence with respect to the contour, this result 
should be independent of R , whence the following alternative:  
- either the integral in θ  is zero, or  αβ −= . 
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THE PARTICULAR CASE OF COMPLEX EXPONENTS 
 
For a crack in a homogeneous medium and in the most general case of a 
double, real exponent (multiplicity 2), the solution is expressed in series 
as  
 

...)()()(),( 2211 +++= θθθ λλ urkurkOUrU  
 
The mixing of two modes of fracture, called mixed mode, can be defined 
without ambiguity by the angle φ  satisfying the relation 
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The approach becomes more delicate in the complex case. The expansion 
includes two modes that are conjugated with each other  
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With these notations, it is k2  that is the generalized intensity factor as 
presented in Rice (1988) for example. 
The expansion can be written in two possible ways that give rise to the 
definition of mixed modes  
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or 
))(Im()2Im())(Re()2Re(),( ii θθθ ξλξλ ukrukrrU ++ −=  
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Unfortunately, this parameter φ , defined based on one of the above two 
relations, is far from being intrinsic. We verify, in the case of interfacial 
crack ( 2/1)iRe( ==+ λξλ ) that 
- The first definition leads to a parameter that depends on the units 
selected to define the length scale (if length were defined in millimetre 
instead of in meter, then φ  must be augmented by 27°), 
- The second definition leads to a parameter that depends on the 
distance r  based on which it is measured. 
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This result is even more troublesome, since experiments indicate that the 
fracture toughness at an interface is highly dependent on how forces are 
acting on the interface. 
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MATCHED ASYMPTOTIC EXPANSIONS 
 
We continue to consider the generic case of a re-entrant corner, perturbed 
this time by a small cavity of diameter ε  at its tip. The letter ε  is 
traditionally used to denote the dimensionless “small parameter” in 
asymptotic expansions. We follow this tradition even if it appears that the 
dimensionless character is not necessary. It must be small compared to 
any other length involved in the geometry but that’s all. 
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Solving an elasticity problem in the domain εΩ  presents some difficulties 
because of the small size of the perturbation. We prefer to try to represent 
the solution εU  in the form of an outer expansion or expansion of the far 
field 
 

correction small  ),(),( 21
0

21 += xxUxxU ε  
 
where 0U  is the solution of the same elasticity problem, but now posed 
on the unperturbed domain 0Ω  (figure) that can be considered as the limit 
of εΩ  as 0→ε .  
It is clear that this solution 0U  constitutes a satisfying approximation of  

εU  as one moves away from the perturbation, in other words, outside a 
neighbourhood of the perturbation, and thence its designation as the outer 
field (or far field, or remote field). 
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Evidently, this information is incomplete, particularly when we are 
interested in the fracture mechanisms. We therefore dilate the space 
variables by introducing ε/ii xy = .  In the limit when 0→ε , we obtain an 
unbounded domain inΩ  (figure) in which the diameter of the cavity is 
equal to 1. 
We then search for a different representation of the solution under the 
form of an expansion known as interior field or near field  
 

...),( )(),( )(),(),( 21
1
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02121 ++== yyVFyyVFyyUxxU εεεεεε  
 
When we substitute this expression in the equations of the problems for 
the determination of 0V , 1V  , … we notice that there is a lack of the 
conditions at infinity to have correctly stated problems.  These missing 
conditions will be furnished by the matching conditions.  
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The interior and exterior expansions describe the solution εU  in terms of 
the near field and the far field.  There must exist an intermediate zone 
(close to the perturbation of the far field and far from the near field) 
where both expansions are valid.  In other words, the behaviour of the far 
field, when one moves closer to the origin, must match with the 
behaviour of the near field, when one moves away from the perturbation. 
The behaviour of the far field near the origin, which is the solution of a 
problem posed in 0Ω , is described by the expansion in powers of r  as 
previously encountered  
 

...)()(),( ++= θθ λ ukrOUrU  
 
where we have assumed for simplicity that the dominant term was real 
and have multiplicity one. The matching conditions can then be written 
as follows 
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when ∞→+==   / 2
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2
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∞→ρ  when    
The first difficulty appears due to the fact that the second condition does 
not allow for stating correctly the problem for 1V  in the framework of the 
Lax-Milgram theorem; the solution that we are looking for must have 
finite energy in the unbounded domain inΩ , in particular it must decrease 
to 0 at infinity.  We must proceed by superposition 
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1W  is therefore solution of a well-posed problem (in particular 
0),( 21

1 →yyW  when ∞→ρ ). 1V  and 1W  are independent of the global 
geometry and the applied load. 
  
The behaviour at infinity of 1W  is known from the singularity theory, it is 
the dual mode ( )r uλ θ−−  (it has a finite energy at infinity)  
 

1
1 2( , ) ( ) ...W y y uλκρ θ−−= +  

 
Such a term of the inner expansion must match with the outer terms, it 
gives rise to the first corrective term of the outer expansion (where 

1
Û  is 

solution to a well posed problem 
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1 2 1 2 1 2
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Such relation plays a role in the definition of topological derivatives, 
indeed one can write 
 

0
12 11 2 1 2

1 2
( , ) ( , ) ˆ( ) ( , ) ...U x x U x x k r u U x x

ε
λ λκ ε θ

ε
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As well as in some inverse problem to determine a flaw size from a full 
field measurement for instance. In this case 0U  and U ε  are known (using 
DIC for instance), κ  and k  also and then ε  can be extracted (Leguillon 
2011). 
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A second difficulty appears: How to calculate 1W ? The domain inΩ  must 
be artificially bounded at a distance that is large compared to 1 (which is 
the dilated diameter of the perturbation). 
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Then the first difficulty mentioned above disappears, and we can solve 
directly the problem for 1V  by imposing on the new boundary ∞Γ  a 
Dirichlet boundary condition 
 

∞Γ= on    )(),( 21
1 θρ λ uyyV  

 
or a Neumann boundary condition  
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We now have at our disposition two descriptions of the solution εU  and 
in particular we can remark that, because of the rule of derivativation 

ii yx ∂∂=∂∂ /. /1/. ε , in the neighbourhood of the perturbation, the stress field 
is given as a function of  ε  by 
 

...)),(()),(( 21
11

21 += − yyVkxxU yσεσ λε  
where 

11
y :)(et    :)( VCVUCU yx ∇=∇= σσ εε  

 
x∇  and y∇  designate the gradient operators with respect to  x  and y , 

respectively, and  C  the elastic-moduli matrix. The term )( 1
y Vσ  is 

independent of the global geometry of the structure as well as of the 
loading intensity. 
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EXAMPLE 1: SIF AT THE TIP OF A SHORT CRACK 
 
Let us consider a short crack with length ε  at the tip of a short crack 
emanating from a V-notch (the loading is supposed to be symmetric). 
 

 
The outer and inner expansions are respectively 
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1V  exists and is solution to an elastic problem, thus it undergoes the crack 

tip singularity at 'O  ( '  and 'r θ  are polar coordinates emanating from 'O  
whereas  and r θ  rely on O) 
 
    1 1 1/2

1 2( , ) ( ') ' ( ') ...IV y y V O uκρ θ= + +  
 
Plugged in the inner expansion it leads to (with ' '/r ρ ε= ) 
 

1/2 1/2 1/2
1 2( , ) Const. ' ( ') ... thus I IU x x k r u K kε λ λκ ε θ κ ε− −= + + =  

 
As a particular case, along a straight edge ( 1λ = ) 1/2

IK kκ ε=  
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EXAMPLE 2: THE INGLIS FORMULA 
 
A well-known engineering procedure for crack arrest consists in drilling 
a hole at the crack tip. What is the vertical tension acting at point A (

)(22 Aσ ) in term of the hole radius ε ?  
 

 
The far field expansion writes classically as a function of the mode I at 
the crack tip 
 

...),(),( 21
0

21 += xxUxxU ε  
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with 
...)()(),( 2/10

21
0 ++= θII urkOUxxU  

 
The near expansion writes 
 

...),()(),(),( 21
12/10
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I σ

ε
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The tension at A is proportional to the inverse of the square root of the 
hole radius ( 2/1/1 ε ). 
 
 
 
 



 45 

EXAMPLE 3: SIF’S AT THE TIP OF A KINKED CRACK 

 
We consider mixed mode loadings and the two singular terms of the 
Williams expansion of the leading term 0U  (no kink 0ε = ) of the 
outer expansion 
 

0 0 1/2 1/2
1 2( , ) ( ) ( ) ( ) ...I III IIU x x U O K r u K r uθ θ= + + +  

 
Matching conditions with these 3 terms impose clearly 3 terms of the 
inner expansion 
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1 2 and V V  are solutions to elastic problems, they depend on the kink 

angle α  and undergo the crack tip singularities at 'O  
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Plugging these expressions in the inner expansion and using the 
physical variable ' '/r ρ ε=  lead to the linear relationship 
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EXAMPLE 4: STEEL PLATES BONDED BY AN ADHESIVE 

 
The three-point bending test 

 
 

 The corner at the macro (a) and micro (b) scales 
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Steel: GPa 200=E , 3.0=ν  
Adhesive: GPa 2=E , 36.0=ν  
 
Small parameter: the adhesive thickness e.  
 
At the macro-scale (e = 0), the two plates are considered as perfectly 
bonded with continuous displacements and forces (far field). Near 
the corner between the two steel plates, the solution is singular and 
expands in power terms 
 

...)( )0,0(),( 0
21

0 ++= θα urkUxxU   
    
α = 0.545 at a right angle in a homogeneous material. 
 
 
The actual solution writes 
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correction small ),(),( 21
0

21 += xxUxxU e      
 
Stretching the domain by 1/e (i.e. yi=xi/e, ρ=r/e) and considering the 
limit e→0 leads to an inner expansion in the form 
 

...)( )0,0(),()( 21
0

2121 ++== yyVekUeyeyUxxU ee α     
 
V(y1,y2) must behave like ραu(θ) at infinity.  
 
V(y1,y2) is solution to an elastic problem and undergoes a singular 
behaviour at the corner between steel and epoxy (near field) 

 
 

...)( )0,0(),( 21 ++= θρκ β vVyyV       
 
β = 0.670  
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κ depends only on the elastic contrast between steel and epoxy and is 
computed once for all κ = 0.29  
Then, the true intensity factor K of the β singularity in the actual 
solution is 
 

κβα −= ekK          
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EXAMPLE 5: DIGITAL IMAGE CORRELATION 
 
The problem is to detect a short crack with length l at the notch root from 
a full field measurement, i.e. from a complete displacement field DICU  
obtained by digital image correlation (DIC). 
 

 
  
With the usual notations, the two terms inner and outer expansions write 
respectively 
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The coefficient 2 k l λβ α=  is the GSIF of the very singular term 

( )r uλ θ−− , it can be extracted from lU  or at least from its measured 
approximation DICU  
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And finally 
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FRACTURE MECHANICS – GRIFFITH’S CRITERION  
 
There are two criteria that have been often invoked in fracture 
mechanics: An energy criterion, also known as Griffith’s criterion (1921) 
and a criterion on maximal stress, whose complementary character will 
be examined further in a different discussion.  We limit our presentation 
here to Griffith’s criterion. Consider two states, an initial state and a state 
following the extension of the appearance of a small crack of surface Sδ . 
The balance of energy gives  
 

0=++ SGWW ckp δδδ  
 
where pWδ  and kWδ  represent the variation of the potential energy and of 
the kinetic energy.  The increase in the crack surface area is denoted 

dS  εδ =  (d  designates, in plane elasticity, the thickness of the structure 
under study), cG  is the fracture energy per unit area of newly created 
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crack: The fracture toughness. In these conditions, SGcδ  is the fracture 
energy.  
If the initial state is in equilibrium, then 0≥kWδ , and a necessary 
condition for fracture is written as follows  
 

  c
p GS

W ≥− δ
δ  

 
The above is the incremental form of Griffith’s criterion, which by itself 
is obtained by considering a continuous extension from 0 to ε , and whose 
limit when  0→Sδ  is 
 

 p
c

W
G G

S
∂

− = ≥
∂

 

 
G  is called the energy release rate (a differential form). There always 
exists some indications against the use of this formula, the derivative 
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whose limit may not exist (due to oscillations, infinite limit, see further 
below). 
In a different case considered in, e.g., Leguillon (2002, 2003), the left-
hand side vanishes,  0=G  can never be greater than the threshold cG ; this 
criterion would oppose to all crack initiation, which is contrary to what 
have been experimentally observed.  There is a paradox that can only be 
lifted by considering in certain situations a spontaneous crack on a finite 
length and an incremental criterion.  
In what follows, we define  
 

inc  WG
S

δ
δ

= −  

 
as the incremental energy release rate. No limit is involved but the crack 
increment Sδ is a priori unknown. We will see that those two definitions 
(differential vs. incremental) coincide for a crack in a homogeneous 
medium.  
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APPLICATION TO FRACTURE MECHANICS – COMPUTATION 
OF THE ENERGY RELEASE RATE 
 

 
 

The knowledge of the field εU , in the form of the interior and exterior 
expansions will yield an asymptotic expression of the variation of the 
potential energy pWδ .  
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We first show (Leguillon 1989), by using the classic definition of the 
potential energy pW , that 
 

0 0( ) ( ) ( , )p p pW W U W U U Uε εδ ψ− = − =  
 
where ψ  designates the path independent integral previously defined. 
This integral may be taken indifferently in the exterior domain or in the 
interior domain. By computing in the interior domain inΩ , it follows that  
 

...22 +=− dAkWp λεδ  
 
Where d  is the thickness of the structure and where the coefficient A is 
defined by  

 
))(),,(( 21

1 θρψ λ uyyVA =  
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We then deduce that 
 

inc 2 2 1     ...pW
G k A

S
λδ

ε
δ

−− = = +  

 
This expression plays a defining role, and leads to some immediate 
consequences. We see that when 2/1>λ  (weak singularity, i.e., weaker 
than the case of a crack in a homogeneous body) (resp. 2/1<λ , strong 
singularity) this term tends toward  0 (resp. infinity) when 0→ε .  
 
A crack in a homogeneous medium ( 2/1=λ ) constitutes a limit between 
the two cases.  The classic definition (differential) of the energy release 
rate coincides with the definition of the incremental rate incG G= . We 
then obtain the equivalence between Griffith’s criterion cGG≥  and 
Irwin’s criterion (1957) IcI kk ≥  with AGk cIc /2 = .  
When a structure is homogeneous and the material isotropic  
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EA /)1( 2ν−=   (plane strains) 
 
where E  and ν  are respectively the Young’s modulus and the Poisson’s 
ratio of the material.  
 
In the case of a strong singularity ( 2/1<λ ), the incremental criterion is 
always satisfied regardless of the loading, no matter how small this 
loading would be (in practice, a small but finite loading); it can be 
explained based on this fact that the fracture of a fibre (more rigid than 
the matrix) in a composite is followed necessarily by a debonding of the 
fibre/matrix interface (fibre pullout) or by the damage of the matrix. 
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Several particular cases of weak singularities were proposed in Leguillon 
(2003).  
 
The generalization of this result to multiple eigenvalues and to complex 
eigenvalues yields respectively  
 

  ...)"'( 122
221

2
1 +++=− −λεδ

δ AkAkkAkS
Wp  

 
and 
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...))'Re((2 1)Re(2)Im(i222 ++=− −λλ εε
δ

δ
AkAk

S
Wp  

 
where, in the real case, 'A  and "A  play identical role to that of A with 
similar definitions. 
 

1 2
1 21 2 1 2

1 2
2 11 2 1 2

( ( , ), ( )) ; " ( ( , ), ( ))

' ( ( , ), ( )) ( ( , ), ( ))

A V y y u A V y y u

A V y y u V y y u

λ λ

λ λ

ψ ρ θ ψ ρ θ

ψ ρ θ ψ ρ θ

= =

= +
 

 
where ),( 21

1 yyV  and ),( 21
2 yyV  behave at infinity respectively like 

)(1 θρ λ u  and )(2 θρ λ u .  
 
As a particular case, for a crack in a homogeneous and isotropic medium, 
we have 0'=A  and AA =" .  
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In the complex case, A is real and 'A  is complex.   
 

{ }))(),,((Re 21
1 θρψ λ uyyVA = ,  ))(),,((' 21

1 θρψ λ uyyVA =  
 
with 
 

),( i ),(),( 212121
1 yyVyyVyyV IR +=  

 
where ),( 21 yyV R  and ),( 21 yyV I  behave at infinity respectively like 

{ })(Re θρ λ u  and { })(Im θρ λ u . 
 
We see immediately in this case that the limit when 0→ε  cannot exist 
because of the term )Im(i2 λε , which represents oscillations.  
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For an interfacial crack (particular case of complex exponents) that 
propagates in a straight line along the interface, 0'=A  and the oscillating 
term disappears. On the other hand, the formula does not simplify for the 
case of a deviation of a propagating crack outside of the interface, and the 
study of this case becomes difficult for this reason.  
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AN  EXAMPLE: THE CRITERION OF  HE AND HUTCHINSON 
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The approach of He and Hutchinson (1989) is slightly different from our 
approach, but leads to an identical result.  
 
Exterior asymptotic expansion: 
 

...),(),( 21
0

21 += xxUxxUε  
 

0U  is the solution of the structural problem before the onset of a new 
branch of crack of length dε  (crack deflection) or pε  (crack penetration). 
The behaviour of 0U  in the neighbourhood of the crack tip (assume that 
only one mode is excited) is: 
 

...)( )(),( 0
21

0 ++= θλurkOUxxU  
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Interior asymptotic expansion, deflection (subscript d ): 
 

...)),()(()(),(),( 21
0

2121 +++== yyWukOUyyUxxU dd θρεεε λλεε  
 

Interior asymptotic expansion, penetration (subscript p): 
 

...)),()(()(),(),( 21
0

2121 +++== yyWukOUyyUxxU pp θρεεε λλεε  
 

Then the incremental energy release rates are  
 

inc 2 2 1 ...d d dG k A λε −= +  (deviation), inc 2 2 1 ...p p pG k A λε −= +  (penetration) 
 

where 
 

))(),,(( 21 θρψ λuyyWA dd=   and  ))(),,(( 21 θρψ λuyyWA pp=  
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Crack deflection is possible if  
 

inc i
d cG G≥   

 
where i

cG  is the interface toughness (difficult to measure). 
 
Crack penetration is prevented if 
 

inc 2
p cG G≤   

 
where 2

cG  is the toughness of material 2. From both of the above 
inequalities, we deduce the following criterion for crack deflection  
 

2 1

2 
i

d d c

p p c

A G
A G

λ
ε
ε

−
 

≥  
 
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For an obvious reason (simplification), He and Hutchinson added to their 
analysis the following questionable assumption pd εε = . From there, they 
obtained the following toughness condition for the promotion of crack 
deflection  
 

2 
i

d c

p c

A G
A G

≥  
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AN OTHER EXAMPLE : THE COOK AND GORDON MECHANISM 
 
A four-point bending test is performed on a bi-material specimen in 
which the notch tip is at a distance  of the interface, small compared to 
the layers thickness for instance. 
 

 
 
Two mechanisms are competing, the crack growth in material 1 and an 
early debonding of the interface ahead of the crack.  
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The asymptotic expansions for a small  refer to an « unperturbed » state 
with 0= . 
 

 
...)( )0(),( 0

21
0 ++= θλ urkUxxU  

 
Firstly, let us examine the case 0=d  (no debonding) 
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[ ] ...)0,,(ˆ)( )0()0,,()0,,( 21
10

2121 +++== yyVukUyyUxxU θρ λλ


  
 
Accounting now for a debonding length d  with /d=µ , it comes 
 

[ ] ...),,(ˆ)( )0(),,(),,( 21
10

2121 +++== µθρµ λλ yyVukUyyUdxxU 

  
 
then the incremental energy release rate writes 
 

 
inc 2 2 1 ( ) (0) ...p
d

W A AG k
S

λδ µ
δ µ

− −
= − = +  

 
Where 
 

))(),,,(ˆ()( 21
1

θρµψµ λ uyyVA =  holds for 0=µ  and 0≠µ . 
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The limits for a very small or very large debonding d  compared to  can  
be studied. 
This mechanism is competing with the crack growth in material 1. The 
energy release rate (differential) can be calculated with a crack increment 
length δ  small with respect to . It comes 
 

...)0( 2 122 += − AkG λλ   
 
One deduces a necessary condition for interface debonding  
 

1)0(2
)0()(

c

i
c

G
G

A
AA

≥
−

λµ
µ  

 
where i

cG  and 1
cG  are respectively the interface and material 1 toughness. 
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OTHER  EXAMPLES 
 
The approach proposed here can be equally applied to study the fracture 
of joints (figure below, Leguillon 2002) or to a mechanism (observed in 
certain experiments) of interface debonding ahead of a matrix crack 
(Leguillon et al. 2000, see above). In these cases (as above in the Cook 
and Gordon mechanism), a new difficulty appears: There are two small 
parameters that enter into competition in the asymptotic process: (i) the 
crack length, and (ii) in the first case the joint thickness or in the second 
case the distance from the crack tip to the interface. But this problem is 
purely technical (i.e., not conceptual).  
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THREE-POINT BENDING ON V-NOTCHED SPECIMENS A 
PARADOX 
 

 
 
Energy criterion 

inc      p
c

W
G G

S
δ
δ

− = ≥  (incremental) 
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Continuous crack growth c
p GGS

W         ≥=∂
∂−⇒  (differential) 

 
G  energy release rate (Griffith 1920) 
(existence of the derivative ?) 
 
Maximum stress criterion:     cσσ   ≥  or  cττ   ≥  
 
 cσ tensile strength 
 cτ  shear strength 
 
If 2/1>λ  then ∞+=  σ   and  0  =G  (differential) 
 Stress criterion  crack initiation whatever the applied load.  
 Energy criterion (differential form)  no crack initiation whatever 
the applied load.  
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These conclusions are contradictory and do not match with the 
experiments: crack initiation occurs for a finite load not an infinitely 
small one. 
 
The two conditions are NECESSARY conditions but nor one nor the 
other is SUFFICIENT. 
 
The essential difference between the incremental and differential forms 
of the energy criterion lies in the existence of an additional parameter Sδ  
in the former. This forms the basis of what is called Finite Fracture 
Mechanics (FFM): 
Aveston, Kelly (1973), Parvizi, Garett, Bailey (1978),  
Hashin (1996), Francfort, Marigo (1998), Leguillon (2001) 
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PARVIZI, GARETT AND BAILEY  EXPERIMENTS (1978) 
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Applied strain at the onset of the first transverse crack vs. the thickness of 
the internal ply. 
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Parvizi et al. show, using a shear-lag model, that the change in potential 
energy prior to and following the onset of the first transverse crack, 
writes: 
  

2 2   p aW A e dδ σ− =  
 
 A scaling coefficient 
 aσ  applied load 
 d  specimen thickness (plane strains) 
 
The energy criterion gives 
 

2 2             c
a c a

GA e d G ed
Ae

σ σ≥ ⇒ ≥  

 
There are two areas in the above figure: 
 the right part is governed by the maximum stress criterion, 
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 the left part is governed by the energy criterion. 
 
Nevertheless, both criteria are fulfilled, one being often hidden by the 
other. 
 
The thickness 0e  plays a particular role, below, failure is governed by 
the energy criterion and there is no kinetic energy production; above, the 
stress criterion predominates and there is production of kinetic energy. 
  

0

0       e
eedeGdeGWW ccpk

−=−−= δδ  

 
Remarks : 
 an equilibrium state exists prior to and following the onset of the 
first transverse crack, 
 the crack length is a priori known. 
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FAILURE OF A BAR IN TENSION 

 
 

21       
2

a
p pW W SL

E
σδ− = =  

 
 aσ  applied load, 
 E  Young’s modulus. 
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The energy balance gives 
 

2 21              
2

a c
c a

EGSL G S
E L

σ σ≥ ⇒ ≥  

 
Paradox: whatever the applied tension and whatever the cross section of 
the bar, it twill break provided it is enough long!  
 It is not the energy criterion but the stress one that governs the 
failure.  
As in the previous example, there is a characteristic length such that the 
criteria exchange below this value. 
 

20
2  

c
cEGL σ=  

If 0  LL ≥ , there is production of kinetic energy  
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0

0   L
LLSGSGWW ccpk

−=−=δ  

 
It is even possible to consider multiple fractures, the condition for n 
cracks is 
 

0 0L n L− ≥  
 
Nevertheless, it is not possible in that case to decide if whether one, two 
or n cracks will appear. 
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CRACK ONSET AT A CORNER: A NEW CRITERION 
 
In the case of a crack under a symmetric loading, the single mode I is 
excited 
 

...)(     )(  ),( 21 ++= θII urkOUxxU  
 

For a bar with a smooth surface, the T-stress term (uniform tension) is 
excited 
 

... )(    )(  ),( 21 ++= θtrTOUxxU  
 

In the general case of a re-entrant corner 
 

...)(    )(  ),( 21 ++= θλ urkOUxxU  



 87 

 
The leading term of the change in potential energy prior to and 
following the onset of a crack with length δ  in the direction 0θ  writes 
 

... ),(   2
0

2 +=− dKkWp λδθωδ   
 

(Leguillon 1989). 
 
The energy criterion gives 
 

ccp GKkdGW   ),(         12
0

2 ≥⇒≥− −λδθωδδ   
 
A lower bound for the admissible crack lengths can be derived from this 
inequality 
 

)012(   ),(  
0

2
12 >−≥− λθωδ λ

Kk
Gc

  
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The tension in the direction 0θ  writes 
 

... )(    ),( 0
1

0 += − θθσ λ srkr  
 
If the stress criterion is fulfilled from the corner up to a distance δ  in the 
direction 0θ , an upper bound for δ  can now be derived 
 

)01(   )(           ),( 01
0 >−≤⇒≥ − λ

σ
θδσθδσ λ

c
c

sk
  

 
k  is proportional to the applied load  if it is small the bounds are 
incompatible. 
For monotonically increasing loads, the solution is reached when both 
criteria are simultaneously fulfilled, i.e. with equalities instead of 
inequalities in the above expressions. Thus  
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2
0

2
0

0 ),(
)(   

c

c

K
sG

σθω
θ

δ =  

 
 1=λ , smooth surface of a homogeneous body, no upper bound 
 2/1=λ , crack tip, no lower bound, infinitely small crack extensions 
can be considered  Griffith’s criterion. 
 
Replacing for 0δ  gives an onset criterion in the direction 0θ  
 

12

0

1
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−−


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



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θω sK
Gkk ccc  

 
If unknown, the failure direction cθ  can be determined by 
 

ωπθθθθωθθω λλλλ −<<∀≥ −−−− 20  ,    )(),(  )(),( 00
12

0
1

0
121 sKsK cc  
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With the following normalization for the eigenmode )(θu  
 

1  )( =cs θ   (usually π2/1 ≈ ) 
 
one finally gets 
 

12
1

 )(    −
−






=≥ λ

λ

σω ccc K
Gkk   where  ),(  )( cKK θωω =  

 
 This criterion coincides with the Griffith’s criterion (Irwin) for a crack  
( 0=ω , 2/1=λ ) 

Ic
c

I kK
Gk   )0(  =≥  

 

(where EK
21  )0( ν−

=  for an isotropic material (plane strains)). 
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 It coincides with the maximum stress criterion for the smooth 
boundary of a homogeneous material ( πω= , 1=λ ) 
 

cT σ  ≥   
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THREE-POINT BENDING ON V-NOTCHED SPECIMENS: THE 
PARADOX IS SOLVED 
 
Experiments of Dunn, Suwito, Cunningham on PMMA (1997),  and of  
Yosibash, Bussiba, Gilad, Amar on Alumina (2002). 
 

 
Variations of  a , h  and ω , allow showing that the intensity factor k  is the 
appropriate parameter to predict failure. The criterion writes 
 

)(  ωDkk ≥  
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Here Dk  must be experimentally identified for each opening value of the 
V-notch. The above criterion can be used to predict the critical values of 
the intensity factor. 
 
In case of a symmetric loading, the first singular exponent is well 
separated from the following (this would also be true for pure anti-
symmetric loadings if they were available). Predictions and experiments 
match in a quite satisfying way. 
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Experiments by Dunn et al. on PMMA notched specimens 
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Experiments by Yosibash et al. (2002) on Alumina specimen (from 

Leguillon , Yosibash, 2003) 
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THE REVISITED CRITERION OF HE AND HUTCHINSON 
 
The criterion is being written as follows 
 

 

2 1

2

i
c d d

c p p

G A
G A

λ
ε
ε

−
 

≤   
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We are now able to determine the lengths dε  and pε  provided 1/ 2λ ≥  
 

 

2 22

2  and  
i
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d pi

d c p c

sG s G
A A

ε ε
σ σ

   
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Where ( / 2)  (deflection)  and  ( )  (penetration)d ps s s sπ π= =  
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It comes finally 
 

 

2 1
2 1

2

i
c d d c

i
c p p c

G A s
G A s

λ
λσ

σ

−
− 

≤   
 

 

 

 
0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5Ln(E2/E1)

0.25

1

4
R



 98 

NOTCH IN A BI-MATERIAL 
 

 
 

Experiments by Mohammed and Liechti (2000), comparison with the 
Cohesive Zone Model (Needleman 1990). 
Direction of failure is known  interface  )(ωK . 
Two singular exponents: 

831.0 ,563.0 ,45 21 ==°= λλω  
996.0 ,666.0 ,90 21 ==°= λλω  
176.1 ,970.0 ,135 21 ==°= λλω  
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When ↓ ω , 1λ  et 2λ  tend to merge and give finally a double real root for 
°≈ 26  ω . Beyond ( °≤≤ 26   0 ω ), there is a complex exponent(+ 

conjugate). 
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MODE MIXITY 
 
With two real modes (or a complex mode + conjugate) the argument is 
still valid, the equation giving 0δ  is now implicit (numerically solved) 
and an additional parameter is involved: the mode mixity  
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1

2  λλ −= rk
km    or   2ikm r

k
ξ−=  

 
Similarly to the situation of an interface crack ( 1/ 2 iλ ξ= + ), this 
parameter depends on the distance to the corner tip ! (except if 21 λλ =  or 

0ξ = ) 
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