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Abstract

The classical L�evêque solution of heat transfer induced by a small step change in the
surface temperature in a shear 
ow (u linear in y) is revisited. To obtain the shear


ow we rescale the laminar channel 
ow of a perfect gas at high Reynolds number

in the Triple Deck scales, and we investigate the retroaction of the temperature on

the basic Poiseuille pro�le (near the wall the pro�le is a linear in y). This retroac-
tion is achieved by two means, �rst through the dependance of the viscosity and

the density upon temperature and second through the gravity-induced transverse

pressure gradient gauged by the inverse of the Froude number.

In the case of no transverse gradient a new self-similar solution is obtained showing

that the skin friction at the lower wall is reduced by the heating while the one at

the top wall is simultaneously increased.

In the general case with a Lower Deck based Froude number not in�nite, the

case of asymptotically small wall temperature variation allows a linearized solution

which is solved with Fourier transform method. If the Froude number F is increased

to in�nity we recover the preceding self-similar solution with small temperature

variation. If now F is decreased to zero we �nd that the leading term in 1=F of the

solution shows that the skin friction at the lower wall is increased while that at the
upper wall is decreased.

The conclusion is that the increase of temperature produces two opposite e�ects:
�rst, the expandability of the gas causes an upward displacement of the streamlines

and a pressure decrease (the preceding self-similar solution is recovered with small

temperature variation); second, the buoyant e�ect produces the reverse e�ect of a

downward displacement and a pressure increase which we believe may cause separa-

tion at the top wall in the non linear case (skin friction at the lower wall is increased
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whereas it is decreased at the upper wall). These two e�ects qualitatively explain

the 
ow computed with full Navier-Stokes equation in a M.O.C.V.D. reactor.

Key words: Triple Deck; Mixed Convection; Boundary Layer

1 Introduction.

It is well known that the \Triple Deck theory", obtained from Navier Stokes
equations in the limit of in�nite Reynolds number, gives a good asymptotic
description of the separation of the stationary laminar boundary-layer in exter-
nal 
ows at any r�egime (subsonic, transonic, supersonic or hypersonic (Smith
(25))) as well in pipe 
ows. In this last case Smith (24), revisited by Saintlos
& Mauss (21), showed that the Triple Deck degenerates into a double one.

But, thermal e�ects had not been strictly introduced in treatments just cited:
with a �xed wall temperature or an adiabatic wall the dynamical and thermal
problems were decoupled (gravity being neglected). In hypersonic 
ows, how-
ever, a low temperature is responsible for an e�ect (Brown et al (2) or Neiland
(20)) which explains the (Brown et al (3)) di�erences between experiments
and theory (the temperature strati�cation comes from a low wall tempera-
ture or from the hypersonic entropy layer induced by the blunted nose of the
plate(Lagr�ee (16))).

The problem of the thermal response of an incompressible Blasius boundary-
layer has been posed by Zeytounian (31); M�endez et al (19) examined this
problem but with the retroaction through a variable density (perfect gas) and
viscosity (model 
uid). Sykes (29) looked at buoyancy e�ects in a strati�ed

ow, the strati�cation being in the perfect 
uid. In these works, only the
forced convection without gravity has been examined. Without external 
ow,
the problem is a free convection problem driven by buoyancy, see Stewartson
(27) and Gill et al (13), the conclusion being that the 
ow is heated and that
it is pushed away from the hot plate (here we deal only with horizontal plates,
see El Ha� (6) who investigated the natural convection 
ow along a vertical
plate with a small bump leading to a special Triple Deck problem).

The mixed convection problem occurs when both e�ects of buoyancy and
forced convection are present and compete. In the case of an incompressible
buoyant 
uid 
owing over a horizontal plate at a colder temperature this leads
to a singularity: Schneider & Wasel (23) or Daniels (4). Lagr�ee (17) and (18)
introduces a very small strati�cation in the Blasius boundary layer showing
the possibility of occurrence of a self induced solution in the Triple Deck
framework. This \Lighthill eigenvalue" solution has been found simultaneously
by Bowles (1) and by an alternative method by Steinr�uck (26). The latter
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shows the in
uence of the step size in the location of the singularity, the
observed branching in fact being a \self induced" solution.

In this paper we look at the in
uence of a step change of the lower wall
temperature in an established Poiseuille 
ow at high Reynolds Number and
high Froude Number: the mixed convection is localized in a thin layer near the
wall. We concentrate our investigation on a special range of longitudinal scales
coherent with the Triple Deck technique. Because the basic 
ow is a shear 
ow
near the wall, this is a step forward in the L�evêque (15) description, and, in
certain respects, it is an extension of M�endez et al (19) and Lagr�ee (18).

Using the ideas of asymptotic analysis we present the equations obtained when
Reynolds number and Froude number go to in�nity and when there is gravity
and variable density (perfect gas law). We solve this set of equations with
two di�erent techniques, �rst using self-similar variables, second using Fourier
transform, in a sense �nding the next order of the L�evêque solution. The choice
of a Poiseuille 
ow instead of an external 
ow was motivated by a practical
application, so, we conclude by a qualitative comparison of this theory with
the 
ow occurring in a M.O.C.V.D. reactor computed with Fluent (8).

2 Nomenclature

Roman symbols

-A the displacement function

Ai the Airy function

Bi the Airy Bi function

C Chapman constant, �xed to one for convenience

F reduced Froude number

F0 natural Froude number

f similar function for stream-function

g similar function for temperature

G Fourier transformed wall temperature

H� the height of the channel

L� a longitudinal scale
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p pressure

Pr Prandtl number, �xed to one for convenience

R Reynolds number

T Temperature

U�0 characteristic velocity

x longitudinal coordinate measured from the beginning of the susceptor.

y transverse coordinate measured from the lower wall

Y the Howarth Doronitsyn variable

z transverse coordinate measured from the upper wall, positive downwards

Greek Symbols

� a small parameter

� a constant

�� a constant


 a constant

" the small parameter

� a selfsimilar variable

� a small parameter for the change of temperature: Tw � 1

� viscosity

� dynamical viscosity

� density

� perturbation of the skin friction

 stream function

Subscripts

P Poiseuille

h at the upper wall
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w at the lower wall

0 of the undisturbed 
ow x3.1 , or �rst expansion of linearized 
ow x4.1

1 perturbation in the Main Deck

Superscripts

0 derivative with respect to an obvious variable

� with dimension

� variables adimensionalized by H�

2.1 Hypotheses

It is assumed that the 
uid is Newtonian, steady, laminar, two-dimensional
and that the Reynolds number is large. The basic pro�le is an established
Poiseuille 
ow between two in�nite horizontal 
at plates. Figure 1 is a rough
sketch of the physical problem. Having assumed a vanishingly small Eckert
number (low Mach number 
ow) and a high Froude number, the temperature
is uniform of constant value T �0 (which is the wall temperature too) and the
pressure is independent of y� and decreases linearly with x�.

The basic 
ow is then simply:

u�=U�0
y�

H�
(1�

y�

H�
) = U�0Up(�y); (1)

p�= p�0 � (��0U
�2
0 )(2R�1(x�=H�)� F�10 (y�=H�)):

Here we have de�ned the Reynolds number R = U�0H
�=�� and the natural

Froude Number F0 = U�20 =(g
�H�):

At a certain place (the origin) the temperature is suddenly increased to the
value T �w. If the variation is a step function, the temperature is T �w and remains
constant but more generally it may be any function of x� . The scale of vari-
ation must be consistent with the longitudinal scale x3 which will be de�ned
latter. Two e�ects are put in the model. First as in M�endez & al (19) the com-
pressibility is accounted for by using a perfect gas model, and the dependance
of viscosity with the temperature is modelled, as usual (Stewartson (28)), by
a linear dependance (model 
uid); the Prandtl number is one. Second, we will
introduce the gravity in the transverse direction creating a mixed convection
problem in a thin layer near the wall.
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A simple analysis at in�nite Reynolds number is that at scale H� for x� and y�

the change of wall temperature does not in
uence the core 
ow: Up(�y)@ �T=@�x =
0: So �T = 0 everywhere at these scales. Hence a \boundary layer" is introduced
near the wall of thickness R�1=3 in order to recover T (x > 0; y = 0) = 1: In this
thin wall layer we scale x� with H�, y� with R�1=3H� and u� with R�1=3U�0 ;
then, assuming Pr = 1; no gravity, constant density and viscosity we have:

u = y; y
@

@x
T =

@2

@y2
T;

whose solution, in the case of T (x < 0; y = 0) = 0; T (x; y = 0) = 0 and
T (x > 0; y = 0) = 1 is (L�evêque (15), Schlichting (22)):

T (x; y) = 1�

R y=x1=3
0 e�

�3

9 d�
R
1

0 e�
�3

9 d�
:

This solution will be refered as the \L�evêque" solution. It may be written in
terms of the incomplete Gamma function: T (x; y) = �(1=3; y3=x=9)=�(1=3).
We will discuss in the following the scales that allow e�ects of gravity, density
and viscosity variations and how they change this simple solution.

2.2 Equations near the bottom wall (Lower Deck)

As usual, the 
ow will be perturbed at small spatial scales at the vicinity
of the wall where the speed is small. So, we look at the thin layer near the
wall of gauge ", whose value will be found next in studying the Main Deck
(we anticipate that " = R�2=7; and that the associated longitudinal scale is
x3 = R1=7; more exactly we will see that it is the smaller case satisfying least
degeneracy leading to simple resolution for the complete set of equations,
and so, we suppose that the temperature changes at this scale). We scale the
equations to obtain the maximum of terms, we write:

(x�; y�; u�; v�) = (x3H
�x; "H�y; "U�0u(x; y); "

2x�13 U�0 v(x; y));

the pressure is de�ned as the perturbation of the hydrostatic one:

p� = p�0 � 2(��0U
�2
0 )

x3
R
(x) + (�

y

F
+ ~p(x; y))"2��0U

�2
0

and we put simply:

�� = ��0�(x; y); T � = T �0 T (x; y); �� = ��0�(T ):
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So Tw = T �(x�; 0)=T �0 : We �nd relation between the transverse scale and the
longitudinal one by least degeneracy: x3 = "3R; and we de�ne here a new
Froude number which is gauged by the new thickness "H�: say F = "F0 . The
deduced system is then the classical one, but with a transverse pressure:

@

@x
�u+

@

@y
�v=0; (2)

�u
@

@x
u+ �v

@

@y
u=�

@

@x
~p+

@

@y
�
@

@y
u; (3)

0=�
@

@y
~p�

�� 1

F
; (4)

�u
@

@x
T + �v

@

@y
T =P�1r

@

@y
�
@

@y
T; (5)

�T =1: (6)

The boundary conditions are u = v = 0 in y = 0 (no slip at the wall) and
u ! y for x ! �1 (matching with the Poiseuille pro�le far upstream): For
the temperature we have at the wall T = 1 for x < 0 and T = Tw for x > 0:
There are other boundary conditions for u; ~p and T in y ! 1 that will
be given from the asymptotic matching between the two layers in the next
paragraph.

2.3 Equations in the core 
ow (Main Deck)

2.3.1 Pressure displacement relation

This layer should have been examined at �rst (Smith (25)) and its examination
would have let to the conclusion that the boundary conditions are not ful�lled
at the walls, implying the existence of the preceding Lower Deck. In the Main
Deck the longitudinal scale is small x� = x3H

�x; (this is one of the key ideas
of the Triple Deck: a quick longitudinal scale to explain abrupt changes in
the boundary layer) and the transverse scale remains the natural one: H� so
y� = H� �y:

The velocity is written as the perturbation of the Poiseuille 
ow: u� = U�0 (Up(�y)+
"u1(x; �y)) and v

� = "x�13 U�0 v(x; �y): The pressure is p
� = p�0 � 2(��0U

�2
0 )x3

R
(x) +

( �y
F0

+ p1(x; �y)"
2)��0U

�2
0 : And we have:

�� = ��0(1 + "�1); T
� = T �0 (1 + "T1); �

� = ��0(1 + "�1)
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Navier-Stokes equations reduce then to an inviscid perturbation:

��10

@

@x
�1 +

@

@x
u1 +

@

@�y
v1=0; (7)

Up
@

@x
u1 + v1

d

d�y
Up=0; (8)

Up
@

@x
v1=�

@

@y
p1; (9)

Up
@

@x
T1=0: (10)

So there is a transverse pressure-variation induced by the transverse velocity.
The solution is straightforward, because of the lack of initial thermal strati�-
cation (see Lagr�ee (17) where it is present),

u1(x; �y) = A(x)U 0p(�y); v1(x; �y) = �A
0(x)Up(�y):

If we write the stream function:  (x; �y) =  p(x; �y) + " A(x) @
@�y
 p(x; �y); so:

 (x; �y) =  p(x; �y + "A(x)):

The physical explanation is that the streamlines are de
ected from �"A; that
is the reason why we will call �A the displacement function. The pressure
plays a key role because its possible variation across the deck gives the correct
value of ": See Saintlos & Mauss 96 (21) for systematic derivation. The scale
x3 is in fact chosen here, if " = R�2=7; and x3 = R1=7 we have:

p1(x; 1)� p1(x; 0) =
1

30
A00(x) (11)

2.3.2 Other choices of scales

The discussion of other scales may be found in Saintlos & Mauss 96 (21). One
other choice for the longitudinal scale x3 � R1=7 would have led to a total
transmission of pressure:

p1(x; 1)� p1(x; 0) = 0: (12)

This simple relation will be used to �nd self- similar results. The other inter-
esting possibility is in the range R1=7 � x3: no displacement is induced at �rst
order, the displacement is a second order e�ect induced by the pressure. The
smallest scale is bounded by a Navier-Stokes region. Because of the fact that
there is no displacement for R1=7 � x3, we concentrate on x3 � R1=7 scales.
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2.3.3 Matching

The asymptotic matching between the main deck and the lower deck gives
the lacking boundary condition for the velocity in Lower Deck: u ! y + A
for y ! 1 (at the lower boundary) and for the pressure ~p(x;1) = p1(x; 0).
Far upstream there is no displacement of the streamlines in the Main Deck, so
we have �A(1) = 0: As well the matching of temperatures gives T ! 0 for
y !1; the perturbed temperature is localized in the Lower Deck: the mixed
convection problem is local.

This layer transmits the perturbation induced in the Lower Deck through it up
to the upper boundary where no slip condition is violated too: the Upper Lower
Deck. For this deck the pressure will match with p1(x; 1) and the longitudinal
velocity with:

Up(�y) + "u1 ! (1� �y)� "A: (13)

There are no temperature variations at all for it.

2.4 Equations near the top wall (Upper Lower Deck)

We now look at the thin layer near the upper wall of gauge ", as for the Lower
Deck this layer is necessary to obtain the no slip condition violated by (13).
Again x� = x3H

�x; but now we put y� = H� � "H�z: The other quantities
follow:

u� = "U�0u(x; z); v� = "2x�13 U�0 v(x; z);

�� = ��0; T � = T �0 ;

p� = p�0 � 2(��0U
�2
0 )

x3
R
(x) + (�"

1� "z

F
+ ph(x)"

2)��0U
�2
0 :

The problem is here completely incompressible, non-buoyant and isothermal
(there is no confusion with the u and v in the two Lower Decks, so only the
pressure is subscripted):

@

@x
u+

@

@z
v=0; (14)

u
@

@x
u+ v

@

@z
u=�

d

dx
ph +

@2

@z2
u; (15)
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From the matching of velocity with the Main Deck (�y ! 1; equation (13)) we
have the behaviour u ! z � A for z ! 1 and u ! z for x ! �1. The no
slip condition is u = v = 0 in z = 0. The pressures match as ph(x) = p1(x; 1).

2.5 Final equations

2.5.1 Classical form

The �nal problem is then made by solving the Lower Deck problem (equations
(2-6)) with its boundary conditions, the Upper Lower Deck problem (equa-
tions (14-15)) with its boundary conditions, and the coupling pressure relation
(equation (12) or (11), depending on the chosen longitudinal scale).

2.5.2 Howarth Doronitsyn form

A classical trick is used in order to write the equations in an incompressible
form (M�endez & al (19) or Stewartson (28)). The longitudinal variable remains
the same, but the transversal one is changed in noticing that the equations
simplify if we put dY = �dy: So y =

R Y
0 T (Y 0)dY 0; which may be written as:

y = Y +

YZ

0

(T (x; Y 0)� 1)dY 0:

Next we de�ne V as �v + u@Y
@x
. The �nal simpli�cation is that the 
uid is a

model 
uid � = CT; and for sake of simpli�cation C is 1 and Pr is 1 too.
Finally we write the pressure in the Lower Deck with the help of the Upper
Deck's one as:

p(x; y) = p1(x; 0)�
1

F

yZ

1

(
1

T
� 1)dy0:

With those �nal assumptions we write the "fundamental Triple Deck problem"
of locally induced mixed convection in a Poiseuille 
ow. The Lower Deck
problem reads:

@

@x
u+

@

@Y
V =0; (16)

u
@

@x
u+ V

@

@Y
u=�T (

@

@x
p1 �

1

F

YZ

1

@

@x
(1� T )dY 0 � (17)
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�
1

F

@Y

@x
(1� T )) +

@2

@Y 2
u; (18)

u
@

@x
T + V

@

@Y
T =

@2

@Y 2
T; (19)

with the boundary conditions: u = V = 0 in Y = 0; and u ! Y +
R Y
0 (T �

1)dY 0 + A(x) for Y !1: The temperature is prescribed at the wall Y = 0 :
T = 1 for x < 0 and T = Tw for x > 0:

The Upper Lower Deck problem is unchanged:

@

@x
u+

@

@z
v=0; (20)

u
@

@x
u+ v

@

@z
u=�

d

dx
ph +

@2

@z2
u; (21)

u ! z � A for z ! 1 and u ! z for x ! �1. The no slip condition is
u = v = 0 in z = 0. The pressures match as:

ph(x)� p1(x) =
1

30
A00(x);

or as (12) if x3 � R1=7. Notice the links between the skin frictions:

@u

@y y=0

=
@u

@Y Y=0

1

TwT (x; Y = 0)
: (22)

The full non linear resolution should be done with an appropriate technique
to catch separation of the boundary-layer, if it exists. Here, we will only look
at self-similar results in a simpli�ed case and at linearized results for small
� = Tw � 1; so we will only see a small decrease at �rst order in � in the skin
friction.

3 Fourier transformed linear resolution

3.1 Linearized equations

Here we suppose that the variation of temperature at the wall is very small
but not necessary a step, say: T = 1+ �T0(x; 0) where T0(x; 0) is the imposed
wall temperature variation, it is the Heaviside function in the case of a step.
We linearize the variables:
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y = Y + �
R Y
0 T0(x; Y

0)dY 0; u = Y + �u0; V = �V0 and so on...

The linearized equations in the Lower Deck are then:

@

@x
u0 +

@

@Y
V0=0; (23)

Y
@

@x
u0 + V0=�

@

@x
(p10 +

1

F

YZ

1

T0dY
0) +

@2

@Y 2
u0; (24)

Y
@

@x
T0=

@2

@Y 2
T0: (25)

We notice that at �rst order the classical L�evêque problem of di�usion of
temperature in a linear shear 
ow is of course recovered (as seen on x3.1).

3.2 Fourier resolution

3.2.1 Method

The classical technique is used (Smith (25)):

u0 = f 0(Y )ei�x; V0 = �i�f(Y )e
i�x; p10 = Pei�x; T0 = T (Y )ei�x:

and we �nd �rst that the temperature satis�es an Airy equation:

(
d2

d�2
� �)T = 0;

with � = (i�)1=3Y; so T = G(�)Ai(�)
Ai(0)

; where G(�) is the Fourier transform

of the heating at the wall (if the heating is a step, this expression is the
Fourier transform of the generalized incomplete Gamma function leading to
the L�evêque solution). Di�erentiating twice the velocity, we obtain an Airy
equation for the transformed perturbation of skin friction � = f 00(Y ) this
equation being forced by the temperature which is an Airy function:

(
d2

d�2
� �)� =

1

F
(i�)1=3T:

By chance the particular solution is simply proportional to Ai0 : Notice that
a blind application of standard technique leads to the following expression
which is then equivalent to Ai0(�) :
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��(

�Z

0

Ai(�) Bi(�)d�) Ai(�) + �(

�Z

1

2

Ai(�)d�) Bi(�) +

+(Ai 0(0)� �Bi(0)(

0Z

1

2

Ai(�)d�) Ai(�)=Ai(0):

3.2.2 Results

So we �nd the perturbation of skin friction:

f 00(0) = 3��Ai(0)P �
(i�)1=3

F

G(�); (26)

next we obtain the displacement function:

A = ��P +
�G(�)

F
+BG(�); (27)

where the coe�cients, ��, �, 
 and B are de�ned as follows:

�� = (i�)1=3

3Ai0(0)
is the classical standard triple deck response,

� = �(1 + 1
9Ai(0) Ai0(0)

) and 
 = ( 1
3Ai0(0)

�
Ai0(0)
Ai(0)

) are due to the transverse
pressure variation,

B = � 1
3Ai(0)(i�)1=3

comes from the density expansion.

The pressure displacement relation (11) gives Ph�P = ��2

30
A and the response

of the Upper Lower Deck is simply Ph = �
A
��

(because there is no � no 
 and

no B; and the upper displacement function is the opposite of the lower one).
The �nal pressure displacement relation which includes the Main and Upper
Lower Decks is then P = ZA; (if we de�ne Z as � 1

��
+ �2

30
):

So, for a given Fourier mode �; the �nal linear response in pressure depending
of the heating at the wall is:

P = �
�=F +B

�� � 1=Z
G(�) (28)

With this we obtain next the displacement �A (in substituting (28) in (27))
and the perturbation of the skin friction � (in substituting (28) in (26) to
obtain the "real" skin friction we have to substract G(�) as seen in (22)).
This solves completely the linearized problem of retroaction of heating on the
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basic 
ow with compressibility and gravity e�ects at Triple Deck scales in any
case of heating at the wall consistent with the Fourier method.

4 Self-similar resolution

In this paragraph we look at the response of the three decks to a step in
temperature occurring at the lower wall. This may be obtained directly (in
the linearized case) by inverse Fourier techniques (see Gittler (12) who does
the systematic search of self induced solution in the "standard" Lower Deck
problem), but here we prefer to search from scratch for a self similar solution.
To simplify we disconnect the two e�ects, we will �rst �nd a non-linear self-
similar solution of the non buoyant e�ect, and second a linear self-similar
solution of the strongly buoyant e�ect. To obtain the similarity we have to
look at the equations at a longitudinal scale greater than R1=7 (pressure is
equation (12)).

4.1 No buoyancy

Here we suppose that the gravity is negligible. The pressure is constant across
all the decks (equation (12)), and it is easy to observe that it is then possible
to have a self-similar solution in the Lower Deck (eq. (16)-(19)). With the new
variables x and � = Y=x1=3 we have:

 (x; Y ) = x2=3f(�); u(x; Y ) = x1=3f 0(�); V (x; Y ) =
1

3
x�2=3(�f 0(�)� 2f(�))

p(x; Y ) = x2=3P0; T (x; Y ) = 1 + �g(�):

Recall that here � is not necessary small. As well in the Upper Lower Deck,
we put in (20)-(21) the following variables:

ph(x; z) = x2=3P0;  (x; z) = x2=3fh(�);

u(x; z) = x1=3f 0h(�); v(x; z) =
1

3
x�2=3(�f 0h(�)� 2fh(�));

with here an other self similar variable � = z=x1=3 (there is no confusion).

So we have to solve the following problem: given � �nd P0 such as the relation
of conservation of the �A function is true. What we have to verify is: �a =
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�
R
1

0 gd� � ah; with �a and a de�ned as follows. First in the Lower Deck the
resolution of

�f
000

�
2

3
ff

00

+ f
02 +

2

3
P0(1 + �g) = 0; g

00

+
2

3
fg = 0;

with f(0) = 0; f
0

(0) = 0 and f 00(1) = 1: g(0) = 1; and g(1) = 0; gives a
pseudo displacement �a =lim(

�!1
f 0 � �):

Second, in the Upper Lower Deck the resolution of

�f
000

h �
2

3
fhf

00

h +
f

02

3
+
2

3
P0 = 0

with fh(0) = 0; f
0

h(0) = 0 and f 00h (1) = 1; gives the opposite of the real
displacement: ah =lim(

�!1
f 0h � �):

All the self-similar calculations are performed with a classical Runge-Kutta 4
integration with shooting (on the condition at in�nity). We display now on
�gure 2 the value of P0 as a function of � : the more the 
ow is heated, the
more there is a pressure expansion, the line is the linearized result �:4507 �
(Gittler (12)). The full linearized expression of pressure is then �:4507 �x2=3.
On �gure 3 are plotted the skin frictions functions of � , the line with a positive
slope is again the Gittler linearized result (1 + :558� ) which corresponds to
the linearized solution for the upper wall, there the problem is a "standard
Triple Deck" one. The conclusion is then natural for a favourable pressure
gradient: the more the pressure decreases (when � increases), the more the
skin friction f 00h (0) increases from the unit value. On the other hand, we note
that the physical skin friction at the lower wall f 00(0)=(1 + �) is always lower
than 1; the value of Poiseuille. The full linearized results for the small step
are 1 � :442�x0 for the skin friction at the lower wall and the corresponding
displacement is �:526�x1=3:

5 Governing equations

The pro�les are plotted below (on �gure 4) in the arbitrary case � = 1: The
physical velocity Lower Deck pro�le is f 0(�)=(1 + �g(�)) function of y=x1=3 =
� + �

R �
0 g(�)d�; and the temperature pro�le is g function of the same y=x1=3.

The Upper Deck velocity is f 0h(z=x
1=3). We see the upward displacement in

the Lower Deck transmitted to the Upper Lower Deck; the straight line is the
Poiseuille 
ow, linear at those scales.
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5.1 Strong buoyancy

In this case there is a transverse pressure variation but � =F << 1 and � <<
1; it is impossible to �nd a complete non linear self similar solution. So we
simply look at a linearized similar solution. The temperature is the classical
incomplete Gamma solution, his integral disappears from the displacement
equation, so we have for the pressure:

P (x; y) = �F�1(

�Z

1

T (�)d� +�)x1=3:

The problem is to �nd � in order to have in the Lower Deck where: u =
�x�1=3 + �=Ff 0(�)

�f
000

�
�2

3
f

00

+
�

3
f

0

+
1

3

�Z

1

T (�)d� �
�

3
T (�) +

�

3
= 0;

satisfying f 0(1) = a; f 0(0) = 0; f 00(1) = 0; and in the Upper Lower Deck
where: u = �x�1=3 + �=Ff 0h(�)

�f
000

h �
�2

3
f

00

h +
�

3
f

0

h +
1

3
fh +

�

3
= 0;

satisfying f 0h(1) = �a; f 0h(0) = 0: f 00h (1) = 0:

So we �nd after numerical (again Runge-Kutta 4 with shooting) integration
of the systems that � = 0:091 and a = 0:105. The slopes are f 00(0) = 0:330
and f 00h (0) = �0:082: So the pressure in the Main Deck behaves as 0:091 �

F
x1=3

and the displacement function �A is constant over the heated region of value
�0:105 �

F
(there is an abrupt downward discontinuous displacement at those

scales). The skin friction (@u=@y) at the lower wall is 1+0:330 �
F
x�1=3 while it

is 1� 0:082 �
F
x�1=3 on the upper wall (note that they are singular in x = 0 at

those scales). We plot the perturbations of the velocity pro�les in the Lower
and Upper Lower Deck f 0(�) and f 0h(�) on �gure 5. We see that conclusions
are reversed in comparison with the previous case with no gravity. The upper
pro�le is with a smaller slope, the lower pro�le has an increased skin friction
and it presents an over shoot: in "falling down" the 
uid creates a small jet.
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6 Comparisons in the step case and discussion

We now compare the two linearized methods (self-similar and the Fourier
transform). For the Fourier method we use a "door-function" increase of tem-
perature (T = 1 for x > 1 and x < �1, and T = 1 + � for �1 < x < 1). The
comparison of the two methods is meaningful only near the �rst discontinuity
of temperature (in x = �1, be aware that in the previous sections x = 0 was
the origin of thermal change). We take 16384 points for the standard FFT code
we use and the domain lies between �50 and 50: The algebraic decay of the
quantities is problematic in the FFT code and the domain should be enlarged
for better results. To compare the two methods with make two shifts, �rst a
shift of value �1 for the origin of x for the self-similar results, and second we
shift the ordinate by the calculated FFT value obtained just before �1 (the
tail after +1 is interfering in �1 because of the periodicity coming from the
FFT method).

6.1 No gravity

With those values, on �gure 6 we compare favorably the upward displacement
without gravity in the case of the self similar resolution (�:526(1+ x)1=3 note
the translation in �1) and in the FFT method (equation (28) with no �A

00

term). The case of transverse pressure variation introduces some upstream
in
uence (the A00 in term (11) which was not present before) smoothing the
displacement. On �gure 7 is plotted the analytic pressure �:4507(1 + x)2=3

compared with his Fourier counterpart, again the agreement is excellent (if
again we shift the analytic pressure to the value of the calculated one just
before �1): The upstream induced pressure grows before the heated region,
it is coherent with the upward displacement. Far away from the step we note
that the in
uence of A00 becomes negligible, which is coherent with the fact
that there is no pressure variation if we look at the phenomena at a bigger
longitudinal scale.

The skin friction is plotted on �gure 8, the two methods agree in the lowering
on the lower wall and increase on the upper one, with always the self induced
smoothing when A00 is taken.

6.2 With gravity

Next we look at the buoyant case. Here we compare the Fourier result (28)
with 1=F = 100 to the self similar solution. Figure 9 shows the skip (in the
(12) case) in displacement from 0 to 0:105=F : the streamlines are de
ected
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downwards. Again, this skip is smoothed when the upstream in
uence term
A00 (11) is put in the FFT code. The pressure grows 0:091 1

F
x1=3 on �gure

10, with a small drop if upstream in
uence is allowed. The small discrepancy
comes from the fact that the full (28) is solved, and not his limit expression
at 1=F ! 1: Of course the introduction of �A

00

in the pressure relation
introduces some upstream in
uence, but far from the discontinuity it is again
negligible.

The skin friction is increased at the lower wall and diminished at the upper
wall. Here, on �gure 11, we have plotted too the exponential eKx growth of the
departure of the skin friction from the Poiseuille 
ow before the heated region,
showing the upstream in
uence. We checked that the birth of this upstream
in
uence is in exponential eKx in every case. In the gravity dependant case,
at the upper wall P and �A decrease and the skin friction increases as eKx:
The value of K comes from the search of an eigensolution of the system.
K = (�180 Ai0(0))3=7(= 5:188 ) is the \Lighthill eigenvalue" occurring here
in this expansive free interaction. In the preceding case with no gravity this
result is valid again, pressure decreases and displacement increases at upper
wall, but �A increases (because of the integral of the temperature term which
is negligible in the strong buoyant case).

The skin friction remains discontinuous even when there is upstream in
uence
(the same with the elliptic law of M�endez et al (19)). A new smaller scale must
be introduced to tackle with this.

7 Conclusion and discussion.

7.1 results

We have stated the problem of a change of wall temperature in a Poiseuille 
ow
of a model perfect gas in the framework of Triple Deck (i.e. laminar Newtonian

ow at Reynolds in�nite). We have found the full linearized solution in Fourier
space and we have found with self-similar variables a linearized solution and
even a nonlinear solution when possible. We have plotted the displacement,
the pressure and the skin friction in the two limiting cases (F in�nite or small),
any intermediate value of the Froude number may be plotted but we whishe
to focus on the competition of the expandability of the gas against the gravity
e�ect.

As a result a physical explanation of the 
ow may be given. On the one
hand, we observe that in the case of no gravity, heating increases the volume
of the gas so, by the expansion of the volume, the pressure decreases and
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the displacement �A of the streamlines is positive; because of this upward
defection, the skin friction increases on the top wall but decreases on the
bottom one. On the other hand, the case of strong gravity implies a favorable
pressure gradient induced by the temperature strati�cation in the Lower Deck
and a negative displacement of the streamlines associated with an increase of
pressure in the Main and Upper Decks. So the skin friction is increased at
the bottom and decreased at the top, a sort of jet is created near the wall. It
is likely that this adverse pressure gradient may cause separation at the top
wall, to con�rm this a full nonlinear resolution must be done. The heuristical
explanation of this phenomenon would be that \the cold gas falls down", this
is a dramatic change to the common belief that states that \the warm gas
goes up"! Nevertheless it is consistent with the counter pressure induced by
the heating which tends to brake the 
ow.

7.2 Discussion

A discussion of this behaviour may be done if we look at the free convection

ow problem over a step in temperature. Scales are now any L� for x; �L�

for y, deviation from hydrostatic pressure is scaled by ��0gL
�, density and

viscosity by (�0; �0);and velocities (u; v) by ((�gL�)1=2; �(�gL�)1=2); with the
small parameter � obtained by least degeneracy: � = (gL�3=�2)�1=5: Where
gL�3=�2 is a kind of Grasho� number.
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�
@
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T; (32)

�T =1: (33)

Now, if we suppose the temperature variation gauge � small: T = 1 + � ~T ;
so (� � 1) = � � ~T , and variations of � are of order �. So if we rescale y by
�; the pressure is rescaled by ��; the longitudinal velocity by (��)1=2, the
convective di�usive equilibrium gives � = ��1=5: The �nal transverse scale is
then (g�L�3=�2)�1=5L�: The �nal system, where we omit the O(�) variations
of � and �, is exactly the Stewartson (27) free convection problem on a plate
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in the Boussinesq approximation (here we neglect the in
uence of the upper
wall). It will produce the same conclusion than in Gill & al (13): the 
uid
will go up heated by the plate. This solution will destroy the mixed one when
the Lower Deck velocity ("U0) is smaller than the free convection velocity
(�2=5(gL�3=�2)�1=10(gL�)1=2) at the chosen longitudinal scale x3 (so L

� is chosen
as H�x3), this gives the criterion 1 � �

F
; which is really out of range ofour

study. That is the reason why common sense predicts an upward deviation,
but our problem of mixed convection (at �=F � 1) cannot be considered as a
superposition of a Poiseuille 
ow plus this solution because of the nonlinearity
present.

7.3 Qualitative application to M.O.C.V.D

An application of this asymptotic analysis may be found in M.O.C.V.D. 
ows.
"Metal Oxide Chemical Vapor Deposition" is a state-of-the-art method of Epi-
taxy for creation of semi-conductors for electronics and optoelectronics. The
reactor is often a pipe, at the entry the fresh reactant gases arrive and the
chemical process takes place on the heated zone called the "susceptor". The
challenge is to obtain the growth of very thin layers of atoms on the susceptor.
Of course complete Navier-Stokes solvers are now very accurate (Fotiadis & al
(9), Ern & al (7)) to compute all the �elds. In fact the problems are not in the
dynamics (the 
ow is laminar and stationary) but in the chemistry, because
there are many complex reactions. Using Fluent (8), we evaluate roughly the

ow with strong (�gure 12) and small buoyancy (�gure 13) in a typical sim-
pli�ed reactor. Here calculations are a bit crude and the values of Reynolds
and Froude are R = 227 and F0 = :7.

The �rst �gure is very similar to those calculated and plotted by Holstein
(14) (the adimensionalized number he uses is Grasho� divided by R2 which is
the inverse of our Froude number) and it clearly shows the negative de
ection
of the 
uid 
ow, and a separation near the upper wall; the second �gure is
without gravity and shows the positive de
ection of the 
uid 
ow. But approx-
imate methods are always interesting: for example, it has been shown by Van
de Ven et al (30) or Ghandi & Field (11) that the linear pro�le approximation
is good enough to predict the growth rate; our purpose was to investigate the
next term in this expansion, which was done using the Triple Deck Theory.
The hypotheses that we needed in this paper are unfortunately a bit far from
experimental problems occurring in real M.O.C.V.D. reactors, an increase of
the velocity by factor 10 would move the non-dimensional numbers in a better
range. Nevertheless, even if the operating Reynolds number is often less than
200 and the Froude Number is smaller than one, the preceding theory seems to
agree qualitatively (we put no ticks on the graphs) with numerical phenomena
occurring in the reactor. With no gravity, the expansion of the gas pushes up
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the streamlines (�g 6 and 13), with gravity the cold gas is falling down (�g 9
and �g 12) and a recirculating region is created.

This comparison is only a rough one, and a better one would involve a care-
ful examination of more Navier-Stokes calculations rescaled with the scales
that we exhibited. Then a full nonlinear triple deck calculation would be nec-
essary to calculate the supposed (as observed in the full N.S. computation)
heating-induced upper-wall separation (incidentally the case of cold spot in-
stead of a hot one could be investigated). Finally, and most interesting for the
M.O.C.V.D. community, the transport equation may be simply included in
this theory, at �rst order, it remains the same as in (30) or (11): the heating
induces changes of velocity inducing themselves, at second order, a modi�ca-
tion of the growth rate on the susceptor.

This work is dedicated to Marguerite Delepierre n�ee Rogier.

8 Titles and Abstracts in foreign languages

8.1 title and abstract in french

titre: �A propos de la convection thermique mixte, induite localement par une
variation brusque de temp�erature dans un �ecoulement de Poiseuille et �etudi�ee
dans le cadre de la "triple couche".

R�esum�e: La solution classique de L�evêque d�ecrivant la variation de temp�erature
induite par une variation brusque du chau�age de la paroi pour un �ecoulement
de cisaillement pur est r�eexamin�ee dans le cas d'un �ecoulement de Poiseuille
plan horizontal d'un gaz parfait pesant et visqueux pr�es de la paroi.

La r�etroaction de l'�el�evation de temp�erature sur le pro�l de base est e�ectu�ee
de deux mani�eres: premi�erement par la d�ependance de la densit�e et de la vis-
cosit�e avec la temp�erature, deuxi�emement par le gradient de pression trans-
verse induit par la gravit�e (et jaug�e par l'inverse du nombre de Froude), la
d�emarche adopt�ee est celle de la "Triple Couche".

Outre la solution nonlin�eaire autosemblable obtenue dans le cas non pesant,
des solutions lin�earis�ees sont pr�esent�ees. Si la gravit�e n'est pas prise en compte,
on constate que les lignes de courant sont d�eport�ees vers le haut (de par la
dilatibilit�e du gaz): le frottement pari�etal diminue en bas et augmente en haut.
En revanche, si la gravit�e est incluse et qu'elle est importante, le ph�enom�ene
inverse se produit; cela pourrait causer un courant de retour pr�es de la paroi
sup�erieure.
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Ces deux e�ets ont �et�e observ�es qualitativement par simulation directe des
�equations de Navier Stokes compl�etes dans un r�eacteur pour �epitaxie en phase
gazeuse.

8.2 title in german

Gemischter Konvektion infolgue eines Sprungs der Ober
�achentemperatur in
eines Poiseuille- Str�omung mit Dreier- Deck- Theorie.
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