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Abstract

The classical Le�ve¼que solution of heat transfer induced by a small step change in the surface temperature in a shear
~ow "u linear in y# is revisited[ To obtain the shear ~ow we rescale the laminar channel ~ow of a perfect gas at a high
Reynolds number in the Triple Deck scales and we investigate the retroaction of the temperature on the basic Poiseuille
pro_le "near the wall the pro_le is a linear in y#[ This retroaction is achieved by two means\ _rst through the dependence
of the viscosity and the density upon temperature and second through the gravity!induced transverse pressure gradient
gauged by the inverse of the Froude number[

In the case of no transverse gradient a new self!similar solution is obtained showing that the skin friction at the lower
wall is reduced by the heating while the one at the top wall is simultaneously increased[

In the general case with a Lower Deck based Froude number not in_nite\ the case of asymptotically small wall
temperature variation allows a linearized solution which is solved with the Fourier transform method[ If the Froude
number F is increased to in_nity we recover the preceding self!similar solution with small temperature variation[ If F is
now decreased to zero we _nd that the leading term in 0:F of the solution shows that the skin friction at the lower wall
is increased while that at the upper wall is decreased[

The conclusion is that the increase of temperature produces two opposite e}ects] _rst\ the expandability of the gas
causes an upward displacement of the streamlines and a pressure decrease "the preceding self!similar solution is recovered
with small tempterature variation#^ second\ the buoyant e}ect produces the reverse e}ect of a downward displacement
and a pressure increase which we believe may cause separation at the top wall in the non!linear case "skin friction at the
lower wall is increased\ whereas it is decreased at the upper wall#[ These two e}ects qualitatively explain the ~ow
computed with a full NavierÐStokes equation in an MOCVD reactor[ Þ 0888 Elsevier Science Ltd[ All rights
reserved[

Key words] Triple Deck^ Mixed convection^ Boundary layer

Nomenclature

−A the displacement function
Ai the Airy function
Bi the Airy Bi function
C Chapman constant\ _xed to one for convenience

E!mail address] pylÝccr[jussieu[fr "P[!Y[ Lagre�e#

f similar function for stream!function
F reduced Froude number
F9 natural Froude number
` similar function for temperature
G Fourier transformed wall temperature
H� the height of the channel
L� a longitudinal scale
p pressure
Pr Prandtl number\ _xed to one for convenience
R Reynolds number
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T temperature
U�9 characteristic velocity
x longitudinal coordinate measured from the beginning
of the susceptor
y transverse coordinate measured from the lower
wall
Y the Howarth Doronitsyn variable
z transverse coordinate measured from the upper wall\
positive downwards[

Greek symbols
a a small parameter
b� a constant
b� a constant
g a constant
o the small parameter
h a self!similar variable
u a small parameter for the change of temperature]
Tw−0
m viscosity
n dynamical viscosity
r density
t perturbation of the skin friction
c stream function[

Subscripts
P Poiseuille
h at the upper wall
w at the lower wall
9 of the undisturbed ~ow "Section 2[0#\ or _rst expan!
sion of linearized ~ow "Section 3[0#
0 perturbation in the Main Deck[

Superscripts
? derivative with respect to an obvious variable
� with dimension
− variables adimensionalized by H�[

0[ Introduction

It is well!known that the {Triple Deck theory|\ obtained
from NavierÐStokes equations in the limit of an in_nite
Reynolds number\ gives a good asymptotic description
of the separation of the stationary laminar boundary!
layer in external ~ows at any regime "subsonic\ transonic\
supersonic or hypersonic ð14Ł# as well as in pipe ~ows[ In
this last case Smith ð13Ł\ revisited by Saintlos and Mauss
ð10Ł\ showed that the Triple Deck degenerates into a
double one[

Thermal e}ects have not been strictly introduced in
treatments just cited] with a _xed wall temperature or an
adiabatic wall the dynamical and thermal problems were
decoupled "gravity being neglected#[ In hypersonic ~ows\
however\ a low temperature is responsible for an e}ect

ð1\ 19Ł which explains the ð2Ł di}erences between exper!
iments and theory "the temperature strati_cation comes
from a low wall temperature or from the hypersonic
entropy layer induced by the blunted nose of the plate
ð05Ł#[

The problem of the thermal response of an incom!
pressible Blasius boundary!layer has been posed by Zey!
tounian ð20Ł^ Me�ndez et al[ ð08Ł examined this problem
but with the retroaction through a variable density "per!
fect gas# and viscosity "model ~uid#[ Sykes ð18Ł looked
at buoyancy e}ects in a strati_ed ~ow\ the strati_cation
being in the perfect ~uid[ In these works\ only the forced
convection without gravity has been examined[ Without
external ~ow\ the problem is a free convection problem
driven by buoyancy\ see Stewartson ð16Ł and Gill et al[
ð02Ł\ the conclusion being that the ~ow is heated and that
it is pushed away from the hot plate "here we deal only
with horizontal plates\ see El Ha_ ð5Ł who investigated
the natural convection ~ow along a vertical plate with a
small bump leading to a special Triple Deck problem#[

The mixed convection problem occurs when both
e}ects of buoyancy and forced convection are present
and complete[ In the case of an incompressible buoyant
~uid ~owing over a horizontal plate at a colder tem!
perature this leads to a singularity] Schneider and Wasel
ð12Ł or Daniels ð3Ł[ Lagre�e ð06\ 07Ł introduces a very small
strati_cation in the Blasius boundary!layer showing the
possibility of occurrence of a self!induced solution in
the Triple Deck framework[ This {Lighthill eigenvalue|
solution has been found simultaneously by Bowles ð0Ł
and by an alternative method by Steinru�ck ð15Ł[ The
latter shows the in~uence of the step size in the location
of the singularity\ the observed branching in fact being a
{self!induced| solution[

In this paper we look at the in~uence of a step change
of the lower wall temperature in an established Poiseuille
~ow at high Reynolds number and high Froude number]
the mixed convection is localized in a thin layer near the
wall[ We concentrate our investigation on a special range
of longitudinal scales coherent with the Triple Deck tech!
nique[ Because the basic ~ow is a shear ~ow near the
wall\ this is a step forward in the Le�ve¼que ð04Ł description
and in certain respects\ it is an extension of Me�ndez et al[
ð08Ł and Lagre�e ð07Ł[

Using the ideas of asymptotic analysis we present the
equations obtained when Reynolds and Froude numbers
go to in_nity and when there is gravity and variable
density "perfect gas law#[ We solve this set of equations
with two di}erent techniques\ _rst using self!similar vari!
ables\ second using the Fourier transform\ in a sense
_nding the next order of the Le�ve¼que solution[ The choice
of a Poiseuille ~ow instead of an external ~ow was motiv!
ated by a practical application\ so\ we conclude by
a qualitative comparison of this theory with the
~ow occurring in an MOCVD reactor computed with
Fluent ð7Ł[
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1[ Governing equations

1[0[ Hypotheses

It is assumed that the ~uid is Newtonian\ steady\ lami!
nar\ two!dimensional and that the Reynolds number is
large[ The basic pro_le is an established Poiseuille ~ow
between two in_nite horizontal ~at plates[ Figure 0 is a
rough sketch of the physical problem[ Having assumed a
vanishingly small Eckert number "low Mach number
~ow# and a high Froude number\ the temperature is
uniform of constant value T�9 "which is the wall tem!
perature too# and the pressure is independent of y� and
decreases linearly with x�[

The basic ~ow is then simply]

u� � U�o
y�
H� 00−

y�
H�1� U�9Up"y¹#

p� � p�9−"r�9U�1
9#"1R−0"x�:H�#−F−0

9 "y�:H�##[ "0#

Here we have de_ned the Reynolds number
R � U�9H�:n� and the natural Froude number
F9 � U�1

9:"`�H�#[
At a certain place "the origin# the temperature is sud!

denly increased to the value T�w[ If the variation is a step
function\ the temperature is T�w and remains constant but
more generally it may be any function of x�[ The scale
of variation must be consistent with the longitudinal scale
x2 which will be de_ned later[ Two e}ects are put in the
model[ First as in Me�ndez et al[ ð08Ł the compressibility
is accounted for by using a perfect gas model and the
dependence of viscosity with the temperature is modelled\
as usual ð17Ł\ by a linear dependence "model ~uid#^ the
Prandtl number is one[ Second\ we will introduce the
gravity in the transverse direction creasing a mixed con!
vection problem in a thin layer near the wall[

A simple analysis at an in_nite Reynolds number is
that at scale H� for x� and y� the change of wall tem!
perature does not in~uence the core ~ow]
Up"y¹# 1TÞ:1x¹ � 9[ So TÞ� 9 everywhere at these scales[

Fig[ 0[ The incident Poiseuille pro_le at temperature T�9 encoun!
tering a heated wall at temperature T�w[

Hence a {boundary!layer| is introduced near the wall of
thickness R−0:2 in order to recover T"x × 9\ y � 9# � 0[
In this thin wall layer we scale x� with H�\ y� with
R−0:2H� and u� with R−0:2U�9^ then\ assuming Pr � 0\
no gravity\ constant density and viscosity we have]

u � y\ y
1

1x
T �

11

1y1
T\

whose solution\ in the case of T"x ³ 9\ y � 9# � 9\
T"x\ y � 9# � 9 and T"x × 9\ y � 9# � 0 is ð04\ 11Ł]

T"x\ y# � 0−
g

y:x0:2

9

e−
z2

8 dz

g
�

9

e−
z2

8 dz

[

This solution will be referred to as the {Le�ve¼que| solution[
It may be written in terms of the incomplete g!function]
T"x\ y# � G"0:2\ y2:x:8#:G"0:2#[ We will discuss in the fol!
lowing the scales that allow e}ects of gravity\ density
and viscosity variations and how they change this simple
solution[

1[1[ Equations near the bottom wall "Lower Deck#

As usual\ the ~ow will be perturbed at small spatial
scales at the vicinity of the wall where the speed is small[
So\ we look at the thin layer near the wall of gauge o\
whose value will be found next in studying the Main
Deck "we anticipate that o � R−1:6 and that the associated
longitudinal scale is x2 � R0:6^ more exactly we will see
that it is the smaller case satisfying the least degeneracy
leading to a simple resolution for the complete set of
equations and so\ we suppose that the temperature
changes at this scale#[ We scale the equations to obtain
the maximum of terms\ we write]

"x�\ y�\ u�\ v�# �"x2H�x\ oH�y\ oU�9u"x\ y#\

o1x−0
2 U�9v"x\ y##

the pressure is de_ned as the perturbation of the hydro!
static one]

p� � p�9−1"r�9U�1
9#

x2

R
"x#¦0−

y
F

¦p½ "x\ y#1 o1r�9U�1
9

and we put simply]

r� � r�9r"x\ y#\ T� � T�9T"x\ y#\ m� � m�9m"T#[

So Tw � T�"x�\ 9#:T�9[ We _nd the relation between the
transverse scale and the longitudinal one by least degener!
acy] x2 � o2R and we de_ne here a new Froude number
which is gauged by the new thickness oH�] say F � oF9[
The deduced system is then the classical one\ but with a
transverse pressure]

1

1x
ru¦

1

1y
rv � 9 "1#
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ru
1

1x
u¦rv

1

1y
u � −

1

1x
p½¦

1

1y
m

1

1y
u "2#

9 � −
1

1y
p½−

r−0
F

"3#

ru
1

1x
T¦rv

1

1y
T � Pr−0 1

1y
m

1

1y
T "4#

rT � 0[ "5#

The boundary conditions are u � v � 9 in y � 9 "no slip
at the wall# and u : y for x : −� "matching with the
Poiseuille pro_le far upstream#[ For the temperature we
have at the wall T � 0 for x ³ 9 and T � Tw for x × 9[
There are other boundary conditions for u\ p½ and T in
y : � that will be given from the asymptotic matching
between the two layers in the next section[

1[2[ Equations in the core ~ow "Main Deck#

1[2[0[ Pressure displacement relation
This layer should have been examined at _rst ð14Ł and

its examination would have led to the conclusion that
the boundary conditions are not ful_lled at the walls\
implying the existence of the preceding Lower Deck[ In
the Main Deck the longitudinal scale is small x� � x2H�x
"this is one of the key ideas of the Triple Deck] a quick
longitudinal scale to explain abrupt changes in the
boundary layer# and the transverse scale remains the
natural one] H� so y� �H�y¹[

The velocity is written as the perturbation of the Poise!
uille ~ow] u� � U�9"Up"y¹#¦ou0"x\ y¹## and
v� � ox−0

2 U�9v"x\ y¹#[ The pressure is
p� � p�9−1"r�9U�1

9#"x2:R#"x#¦ð"y¹:F9#¦p0"x\ y¹#o1Łr�9U�1
9

and we have]

r� � r�9"0¦or0#\ T� � T�9"0¦oT0#\

m� � m�9"0¦om0#[

NavierÐStokes equations then reduce to an inviscid per!
turbation]

r−0
9

1

1x
r0¦

1

1x
u0¦

1

1y¹
v0 � 9 "6#

Up

1

1x
u0¦v0

d
dy¹

Up � 9 "7#

Up

1

1x
v0 � −

1

1y
p0 "8#

Up

1

1x
T0 � 9[ "09#

So there is a transverse pressure!variation induced by
the transverse velocity[ The solution is straightforward\
because of the lack of initial thermal strati_cation "see
ð06Ł where it is present#\

u0"x\ y¹# � A"x#U?p"y¹#\ v0"x\ y¹# � −A?"x#Up"y¹#[

If we write the stream function] c"x\ y¹# � cp"x\ y¹#¦
oA"x#"1:1y¹#cp"x\ y¹#\ so]

c"x\ y¹# � cp"x\ y¹¦oA"x##[

The physical explanation is that the streamlines are
de~ected from −oA\ that is the reason why we will call
−A the displacement function[ The pressure plays a key
role because its possible variation across the deck gives
the correct value of o[ See Saintlos and Mauss ð10Ł for a
systematic derivation[ The scale x2 is in fact chosen here\
if o � R−1:6 and x2 � R0:6 we have]

p0"x\ 0#−p0"x\ 9# � 0
29

Aý"x#[ "00#

1[2[1[ Other choices of scales
The discussion of other scales may be found in Saintlos

and Mauss ð10Ł[ One other choice for the longitudinal
scale x2 Ł R0:6 would have led to a total transmission of
pressure]

p0"x\ 0#−p0"x\ 9# � 9[ "01#

This simple relation will be used to _nd self!similar
results[ The other interesting possibility is in the range
R0:6 Ł x2] no displacement is induced at _rst!order\ the
displacement is a second!order e}ect induced by the pres!
sure[ The smallest scale is bounded by a NavierÐStokes
region[ Because of the fact that there is no displacement
for R0:6 Ł x2\ we concentrate on x2 − R0:6 scales[

1[2[2[ Matchin`
The asymptotic matching between the Main Deck and

the Lower Deck gives the lacking boundary condition for
the velocity in the Lower Deck] u : y¦A for y : � "at
the lower boundary# and for the pressure
p½ "x\ �# � p0"x\ 9#[ Far upstream there is no displacement
of the streamlines in the Main Deck\ so we have
−A"�# � 9[ As well\ the matching of temperatures gives
T : 9 for y : �\ the perturbed temperature is localized
in the Lower Deck] the mixed convection problem is
local[

This layer transmits the perturbation induced in the
Lower Deck through it up to the upper boundary where
no slip condition is violated too] the Upper Lower Deck[
For this deck the pressure will match with p0"x\ 0# and
the longitudinal velocity with]

Up"y¹#¦ou0 :"0−y¹#−oA[ "02#

There are no temperature variations at all for it[

1[3[ Equations near the top wall "Upper Lower Deck#

We now look at the thin layer near the upper wall of
gauge o\ as for the Lower Deck this layer is necessary
to obtain the no!slip condition violated by "02#[ Again
x� � x2H�x\ but now we put y� �H�−oH�z[ The other
quantities follow]

u� � U�9u"x\ z#\ v� � o1x−0
2 U�9v"x\ z#

r� � r�9\ T� � T�9
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p� � p�9−1"r�9U�1
9#

x2

R
"x#

¦0−o
0−oz

F
¦ph"x#o11 r�9U�1

9[

The problem is completely incompressible here\ non!
buoyant and isothermal "there is no confusion with the
u and v in the two Lower Decks\ so only the pressure is
subscripted#]

1

1x
u¦

1

1z
v � 9 "03#

u
1

1x
u¦v

1

1z
u � −

d
dc

ph¦
11

1z1
u[ "04#

From the matching of velocity with the Main Deck ðy¹ :
0\ equation "02#Ł we have the behaviour u : z−A for
z : � and u : z for x : −�[ The no!slip condition is
u � v � 9 in z � 9[ The pressures match as
ph"x# � p0"x\ 0#[

1[4[ Final equations

1[4[0[ Classical form
The _nal problem is then made by solving the Lower

Deck problem ðequations "1#Ð"5#Ł with its boundary con!
ditions\ the Upper Lower Deck problem ðequations "03#
and "04#Ł with its boundary conditions and the coupling
pressure relation ðequation "01# or "00#\ depending on
the chosen longitudinal scale#[

1[4[1[ Howarth Doronitsyn form
A classic trick is used in order to write the equations

in an incompressible form ð08\ 17Ł[ The longitudinal vari!
able remains the same\ but the transversal one is changed
in noticing that the equations simplify if we put
dY � r dy[ So y � ÐY

9 T"Y?# dY?\ which may be written as]

y � Y¦g
Y

9

"T"x\ Y?#−0# dY?[

Next we de_ne V as rv¦u"1Y:1x#[ The _nal sim!
pli_cation is that the ~uid is a model ~uid m � CT and
for the sake of simpli_cation C is 0 and Pr is also 0[
Finally\ we write the pressure in the Lower Deck with
the help of the Upper Deck|s one as]

p"x\ y# � p0"x\ 9#−
0
F g

y

� 0
0
T

−01 dy?[

With these _nal assumptions we write the {fundamental
Triple Deck problem| of locally induced mixed con!
vection in a Poiseuille ~ow[ The Lower Deck problem
reads]

1

1x
u¦

1

1Y
V � 9 "05#

u
1

1x
u¦V

1

1Y
u � −T 0

1

1x
p0−

0
F g

Y

�

1

1x
"0−T# dY?

"06#

−
0
F

1Y
1x

"0−T#1¦
11

1Y1
u "07#

u
1

1x
T¦V

1

1Y
T �

11

1Y1
T "08#

with the boundary conditions] u � V � 9 in Y � 9 and
u : Y¦ÐY

9 "T−0# dY?¦A"x# for Y : �[ The tem!
perature is prescribed at the wall Y � 9] T � 0 for x ³ 9
and T � Tw for x × 9[

The Upper Lower Deck problem is unchanged]

1

1x
u¦

1

1z
v � 9 "19#

u
1

1x
u¦v

1

1z
u � −

d
dx

ph¦
11

1z1
u "10#

u : z−A for z : � and u : z for x : −�[ The no!slip
condition is u � v � 9 in z � 9[ The pressures match as]

ph"x#−p0"x# � 0
29

Aý"x#

or as "01# if x2 Ł R0:6[ Notice the links between the skin
frictions]

1u
1yby�9

�
1u
1YbY�9

0
TwT"x\ Y � 9#

[ "11#

The full non!linear resolution should be done with an
appropriate technique to catch separation of the bound!
ary!layer\ if it exists[ Here\ we will only look at self!
similar results in a simpli_ed case and at linearized results
for small u � Tw−0\ so we will only see a small decrease
at _rst!order in u in the skin friction[

2[ Fourier transformed linear resolution

2[0[ Linearized equations

Here we suppose that the variation of temperature at
the wall is very small but not necessarily a step\ say]
T � 0¦uT9"x\ 9# where T9"x\ 9# is the imposed wall tem!
perature variation\ it is the Heaviside function in the case
of a step[ We linearize the variables]
y � Y¦u ÐY

9 T9"x\ Y?# dY?\ u � Y¦uu9\ V � uV9 and so
on [ [ [ [

The linearized equations in the Lower Deck are then]

1

1x
u9¦

1

1Y
V9 � 9 "12#

Y
1

1x
u9¦V9 � −

1

1x 0p09¦
0
F g

Y

�

T9 dY?1¦
11

1Y1
u9

"13#
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Y
1

1x
T9 �

11

1Y1
T9[ "14#

We notice that at _rst!order the classical Le�ve¼que prob!
lem of di}usion of temperature in a linear shear ~ow is
of course recovered "as see in Section 2[0#[

2[1[ Fourier resolution

2[1[0[ Method
The classical technique is used ð14Ł]

u9 � f ?"Y# eiax\ V9 � −iaf"Y# eiax\

p09 � P eiax\ T9 � T"Y# eiax

and we _nd _rst that the temperature satis_es an Airy
equation]

0
d1

dh1
−h1T � 9

with h �"ia#0:2Y\ so T � G"a#ðAi"h#:Ai"9#Ł\ where G"a# is
the Fourier transform of the heating at the wall "if the
heating is a step\ this expression is the Fourier transform
of the generalized incomplete g!function leading to the
Le�ve¼que solution#[ Di}erentiating twice the velocity\ we
obtain an Airy equation for the transformed perturbation
of skin friction t � fý"Y# this equation being forced by
the temperature which is an Airy function]

0
d1

dh1
−h1 t �

0
F
"ia#0:2T[

By chance the particular solution is simply proportional
to Ai?[ Notice that a blind application of standard tech!
nique leads to the following expression which is then
equivalent to Ai?"h#]

−p 0g
h

9

Ai"j# Bi"j# dj1Ai"h#¦p0g
h

�

Ai
1

"j# dj1Bi"h#

¦Ai?"9#−p Bi"9# 0g
9

�

Ai
1

"j# dj1Ai"h#:Ai"9#[

2[1[1[ Results
So we _nd the perturbation of skin friction]

f ý"9# � 2b� Ai"9#P−
"ia#0:2

F
gG"a# "15#

next we obtain the displacement function]

A � b�P¦
bG"a#

F
¦BG"a# "16#

where the coe.cients\ b�\ b\ g and B are de_ned as fol!
lows]

b� � ð"ia#0:2:2 Ai?"9#Ł is the classical standard triple deck
response^
b � −ð0¦"0:8 Ai"9# Ai?"9##Ł and g � ð"0:2 Ai?"9##

−"Ai?"9#:Ai"9##Ł are due to the transverse pressure vari!
ation^
B � −ð0:2 Ai"9#"ia#0:2Ł comes from the density expan!
sion[

The pressure displacement relation "0# gives
Ph−P � ð"−a1#:29ŁA and the response of the Upper
Lower Deck is simply Ph � −"A:b�# "because there is no
b\ g or B and the upper displacement function is the
opposite of the lower one#[ The _nal pressure dis!
placement relation which includes the Main and Upper
Lower Decks is then P � ZA ðif we de_ne Z as
−"0:b�#¦"a1:29#Ł[

So\ for a given Fourier mode a\ the _nal linear response
in pressure depending on the heating at the wall is]

P � −
b:F¦B
b�−0:Z

G"a#[ "17#

With this we obtain next the displacement −A ðin sub!
stituting "17# in "16#Ł and the perturbation of the skin
friction t ðin substituting "17# in "15# to obtain the {real|
skin friction we have to subtract G"a# as seen in "11#Ł[
This solves completely the linearized problem of retro!
action of heating on the basic ~ow with compressibility
and gravity e}ects at Triple Deck scales in any case of
heating at the wall consistent with the Fourier method[

3[ Self!similar resolution

In this section we look at the response of the three
decks to a step in temperature occurring at the lower
wall[ This may be obtained directly "in the linearized
case# by inverse Fourier techniques "see Gittler ð01Ł who
does the systematic search of a self!induced solution in
the {standard| Lower Deck problem#\ but here we prefer
to search from scratch for a self!similar solution[ To
simplify\ we disconnect the two e}ects\ we will _rst _nd a
non!linear self!similar solution of the non!buoyant e}ect
and second a linear self!similar solution of the strongly
buoyant e}ect[ To obtain the similarity we have to look
at the equations at a longitudinal scale greater than R0:6

"pressure is equation "01#Ł[

3[0[ No buoyancy

Here we suppose that the gravity is negligible[ The
pressure is constant across all the decks ðequation "01#Ł
and it is easy to observe that it is then possible to have a
self!similar solution in the Lower Deck ðequations "05#Ð
"08#Ł[ With the new variables x and h � Y:x0:2 we have]

c"x\ Y# � x1:2f"h#\ u"x\ Y# � x0:2f ?"h#\

V"x\ Y# � 0
2
x−1:2"hf ?"h#−1f"h##p"x\ Y# � x1:2P9\

"T"x\ Y# � 0¦u`"h#[

Recall that here u is not necessarily small[ As well\ in the
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Upper Lower Deck\ we put the following variables into
"19# and "10#]

ph"x\ z# � x1:2P9\ c"x\ z# � x1:2fh"h#

u"x\ z# � x0:2f ?h"h#\ v"x\ z# � 0
2
x−1:2"hf ?h"h#−1f"h##

and here another self!similar variable h � z:x0:2 "there is
no confusion#[

So we have to solve the following problem] given u _nd
P9 so the relation of conservation of the −A function is
true[ What we have to verify is] a³ � uÐ�

9 ` dh−ah\ with a³
and a de_ned as follows[ First\ in the Lower Deck the
resolution of

−f 1−1
2
ff ý¦f ?1¦1

2
P9"0¦u`# � 9\ `ý¦1

2
f` � 9

with f"9# � 9\ f?"9# � 9 and fý"�# � 0[ `"9# � 0 and
`"�# � 9\ gives a pseudo!displacement
a³ � limh:�" f ?−h#[

Second\ in the Upper Lower Deck the resolution of

−f 1h−
1
2

fhf ýh¦
f ?1

2
¦

1
2

P9 � 9

with fh"9# � 9\ f ?h"9# � 9 and f ýh"�# � 0\ gives the
opposite of the real displacement] ah � limh:�" f ?h−h#[

All the self!similar calculations are performed with a
classic RungeÐKutta 3 integration with shooting "on the
condition at in_nity#[ In Fig[ 1 we display the value of P9

as a function of u] the more the ~ow is heated\ the more
there is a pressure expansion\ the line is the linearized
result −9[3496u ð01Ł[ The full linearized expression of
pressure is then −9[3496ux1:2[ The skin friction functions

Fig[ 1[ Coe.cient of the pressure as a function of u[ A sudden growth of temperature promotes a pressure decrease "no gravity#[ Points
are the non!linear self!similar results\ the line is the linearized one[

of u are plotted in Fig[ 2\ the line with a positive slope is
again the Gittler ð01Ł linearized result "0¦9[447u# which
corresponds to the linearized solution for the upper wall\
there the problem is a {standard Triple Deck| one[ The
conclusion is then natural for a favourable pressure gradi!
ent] the more the pressure decreases "when u increases#\
the more the skin friction fýh"9# increases from the unit
value[ On the other hand\ we note that the physical skin
friction at the lower wall fý"9#:"0¦u# is always lower
than 0\ the value of Poiseuille[ The fully linearized results
for the small step are 0−9[331ux9 for the skin friction at
the lower wall and the corresponding displacement is
−9[415ux0:2[

The pro_les are plotted below "in Fig[ 3# in the arbi!
trary case u � 0[ The physical velocity Lower Deck pro!
_le is f ?"h#:"0¦u`"h## function of
y:x0:2 � h¦u Ðh

9 `"j# dj and the temperature pro_le is `\
a function of the same y:x0:2[ The Upper Deck velocity
is f ?h"z:x0:2#[ We see the upward displacement in the
Lower Deck transmitted to the Upper Lower Deck^ the
straight line is the Poiseuille ~ow\ linear at those scales[

3[1[ Stron` buoyancy

In this case there is a transverse pressure variation but
u:F ð 0 and u ð 0^ it is impossible to _nd a complete
non!linear self!similar solution[ So we simply look at a
linearized similar solution[ The temperature is the classi!
cal incomplete g solution\ this integral disappears from
the displacement equation\ so for the pressure\ we have]
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Fig[ 2[ Coe.cient of the skin friction at the top wall fýh"9# "dots\ greater than one#\ the Gittler linearized result "upper line# and the
friction at the lower wall fý"9#:"0¦u# "dots\ lower than one# as a function of the relative increase of temperature u "no gravity\ self!
similar and non!linear#[

Fig[ 3[ The ordinate is physical here "y:x0:2#\ in abscissa the temperature pro_le ` "decreasing from 0Ð9#\ the velocity pro_le near the
bottom wall f?:"0¦u`# "dashing#\ the Poiseuille pro_le "yx−0:2# "straight line# and the velocity pro_le at the top wall f?h "plain#[ "No
gravity\ non!linear self!similar result\ the pro_les are plotted for the arbitrary value u � 0[#
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P"x\ y# � uF−0 0g
h

�

T"h# dh¦P1 x0:2[

The problem is to _nd P in order to have in the Lower
Deck where] u � hx−0:2¦u:Ff ?"h#

−f 1−
h1

2
f ý¦

h

2
f ?¦

0
2 g

h

�

T"h# dh−
h

2
T"h#¦

P
2

� 9

satisfying f ?"�# � a\ f ?"9# � 9\ f ý"�# � 9 and in the
Upper Lower Deck where] u � hx−0:2¦u:Ff ?h"h#

−f 1h−
h1

2
f ýh¦

h

2
f ?h¦

0
2

fh¦
P
2

� 9

satisfying f ?h"�# � −a\ f ?h"9# � 9[ f ýh"�# � 9[
So we _nd after numerical "again RungeÐKutta 3 with

shooting# integration of the systems that P � 9[980 and
a � 9[094[ The slopes are f ý"9# � 9[229 and
f ýh"9# � −9[971[ So the pressure in the Main Deck
behaves as 9[980"u:F#x0:2 and the displacement function
−A is constant over the heated region of value
−9[094"u:F# "there is an abrupt downward dis!
continuous displacement at those scales#[ The skin fric!
tion "1u:1y# at the lower wall is 0¦9[229"u:F#x−0:2 while
it is 0−9[971"u:F#x−0:2 on the upper wall "note that they
are singular in x � 9 at those scales#[ We plot the per!
turbations of the velocity pro_les in the Lower and Upper
Lower Deck f ?"h# and f ?h"h# in Fig[ 4[ We see that con!
clusions are reversed in comparison with the previous
case with no gravity[ The upper pro_le is with a smaller
slope\ the lower pro_le has an increased skin friction and
it presents an over shoot] in {falling down| the ~uid creates
a small jet[

Fig[ 4[ h is the ordinate\ in abscissa the perturbation of the linear velocity pro_le near the bottom wall f? "dashing# and the perturbed
velocity pro_le at the top wall f?h "linear results of the strongly buoyant case#[

4[ Comparisons in the step case and discussion

We now compare the two linearized methods "self!
similar and the Fourier transform#[ For the Fourier
method we use a {door!function| increase of temperature
"T � 0 for x × 0 and x ³ −0 and T � 0¦u for
−0 ³ x ³ 0#[ The comparison of the two methods is
meaningful only near the _rst discontinuity of tem!
perature "in x � −0\ be aware that in the previous sec!
tions x � 9 was the origin of thermal change#[ We take
05 273 points for the standard FFT code we use and the
domain lies between −49 and 49[ The algebraic decay of
the quantities is problematic in the FFT code and the
domain should be enlarged for better results[ To compare
the two methods we make two shifts\ _rst a shift of value
−0 for the origin of x for the self!similar results and
second we shift the ordinate by the calculated FFT value
obtained just before −0 "the tail after ¦0 is interfering
in −0 because of the periodicity coming from the FFT
method#[

4[0[ No `ravity

With those values\ in Fig[ 5 we compare favourably
the upward displacement without gravity in the case of
the self!similar resolution "−9[415"0¦x#0:2 note the
translation in −0# and in the FFT method ðequation
"17# with no −Aý termŁ[ The case of transverse pressure
variation introduces some upstream in~uence ðthe Aý in
term "00# which was not present beforeŁ smoothing the
displacement[ In Fig[ 6 the analytic pressure is plotted
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Fig[ 5[ The opposite of the displacement of the streamlines] A"x# comparison of the Fourier "FFT# code with and without transverse
pressure variation in the Main Deck "with Aý\ no Aý# and the self!similar solution "merged with the FFT solution#[ The displacement
is upward "A is negative# when there is no gravity[

Fig[ 6[ The pressure P"x#\ comparison of the Fourier code with and without transverse pressure in the Main Deck and the self!similar
solution[ The heating promotes a pressure drop[
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−9[3496"0¦x#1:2 compared with its Fourier counterpart\
again the agreement is excellent "if we shift again the
analytic pressure to the value of the calculated one just
before −0#[ The upstream induced pressure grows before
the heated region\ it is coherent with the upward dis!
placement[ Far away from the step we note that the
in~uence of Aý becomes negligible\ which is coherent with
the fact that there is no pressure variation if we look at
the phenomena at a bigger longitudinal scale[

The skin friction is plotted in Fig[ 7\ the two methods
agree in the lowering on the lower wall and increase on
the upper one\ always with the self!induced smoothing
when Aý is taken[

4[1[ With `ravity

Next we look at the buoyant case[ Here we compare
the Fourier result "17# with 0:F � 099 to the self!similar
solution[ Figure 8 shows the skip ðin the case of "01#Ł in
displacement from 9Ð9[094:F] the streamlines are
de~ected downwards[ Again\ this skip is smoothed when
the upstream in~uence term Aý "00# is put in the FFT
code[ The pressure grows 9[980"0:F#x0:2 in Fig[ 09\ with

Fig[ 7[ Perturbation of skin friction "no gravity case# low "resp[ up# F means a Fourier solution in the "resp[ Upper# Lower Deck
without Aý[ The perturbation increases on the upper wall "positive value# and decreases on the lower one "negative value#[ Aý induces
upstream in~uence] a decrease of t in the two decks " for x ³ −0#[

a small drop if upstream in~uence is allowed[ The small
discrepancy comes from the fact that the full ð17Ł is solved
and not his limit expression at 0:F : �[ Of course the
introduction of −Aý in the pressure relation introduces
some upstream in~uence\ but far from the discontinuity
it is again negligible[

The skin friction is increased at the lower wall and
diminished at the upper wall[ Here\ in Fig[ 00\ we have
plotted too\ the exponential eKx growth of the departure
of the skin friction from the Poiseuille ~ow before the
heated region\ showing the upstream in~uence[ We
checked that the birth of this upstream in~uence is in
exponential eKx in every case[ In the gravity dependant
case\ at the upper wall P and −A decrease and the skin
friction increases as eKx[ The value of K comes from the
search of an eigensolution of the system[
K �"−079 Ai?"9##2:6 "�4[077# is the {Lighthill eigen!
value| occurring here in this expansion free interaction[
In the preceding case with no gravity this result is valid
again\ pressure decreases and displacement increases at
the upper wall\ but −A increases "because of the integral
of the temperature term which is negligible in the strong
buoyant case#[
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Fig[ 8[ The opposite of the displacement of the streamlines] A"x#\ comparison of the Fourier code with "with Aý# and without "no Aý#
transverse pressure in the Main Deck and the self!similar solution "analytic#[ The displacement is downwards when there is strong
gravity[

The skin friction remains discontinuous even when
there is upstream in~uence "the same with the elliptic law
of Me�ndez et al[ ð08Ł#[ A new smaller scale must be
introduced to tackle this[

5[ Conclusion and discussion

5[0[ Results

We have stated the problem of a change of wall tem!
perature in a Poiseuille ~ow of a model perfect gas in the
framework of Triple Deck "i[e[ laminar Newtonian ~ow
at Reynolds in_nite#[ We have found the full linearized
solution in Fourier space and we have found with self!
similar variables a linearized solution and even a non!
linear solution when possible[ We have plotted the dis!
placement\ the pressure and the skin friction in the two
limiting cases "F in_nite or small#\ any intermediate value
of the Froude number may be plotted but we wish to
focus on the competition of the expandability of the gas
against the gravity e}ect[

As a result a physical explanation of the ~ow may be
given[ On the one hand\ we observe that in the case of no
gravity\ heating increases the volume of the gas so\ by

the expansion of the volume\ the pressure decreases and
the displacement −A of the streamlines is positive^
because of this upward de~ection\ the skin friction
increases on the top wall but decreases on the bottom
one[ On the other hand\ the case of strong gravity implies
a favourable pressure gradient induced by the tem!
perature strati_cation in the Lower Deck and a negative
displacement of the streamlines associated with an
increase of pressure in the Main and Upper Decks[ So
the skin friction is increased at the bottom and decreased
at the top\ a sort of jet is created near the wall[ It is likely
that this adverse pressure gradient may cause separation
at the top wall\ to con_rm this a full non!linear resolution
must be done[ The heuristical explanation of this
phenomenon would be that {the cold gas falls down|\ this
is a dramatic change to the common belief that states
that {the warm gas goes up|; Nevertheless\ it is consistent
with the counter pressure induced by the heating which
tends to brake the ~ow[

5[1[ Discussion

A discussion of this behaviour may be done if we
look at the free convection ~ow problem over a step in
temperature[ Scales are now any L� for x\ aL� for y\
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Fig[ 09[ P"x#\ comparison of the Fourier code with and without transverse pressure in the Main Deck and the self!solution[

deviation from hydrostatic pressure is scaled by ar9`L�\
density and viscosity by "r9\ m9# and velocities "u\ v# by
""a`L�#0:1\ a"a`L�#0:1#\ with the small parameter a

obtained by least degeneracy] a �"`L�2:n1#−0:4\ where
`L�2:n1 is a kind of Grashof number[

1

1x
ru¦

1

1y
rv � 9 "18#

ru
1

1x
u¦rv

1

1y
u � −

1

1x
p¦

1

1y
m

1

1y
u "29#

9 � −
1

1y
p−"r−0# "20#

ru
1

1x
T¦rv

1

1y
T � Pr−0 1

1y
m

1

1y
T "21#

rT � 0[ "22#

Now\ if we suppose the temperature variation gauge u

small] T � 0¦uT	\ so "r−0# � −uT	 and variations of m

are of order u[ So if we rescale y by D\ the pressure is
rescaled by uD\ the longitudinal velocity by "uD#0:1\ the
convective di}usive equilibrium gives D � u−0:4[ The _nal
transverse scale is then "`uL�2:n1#−0:4L�[ The _nal system\
where we omit the O"u# variations of r and m\ is exactly
the Stewartson ð16Ł free convection problem on a plate
in the Boussinesq approximation "here we neglect the
in~uence of the upper wall#[ It will produce the same

conclusion as in Gill et al[ ð02Ł] the ~uid will go up heated
by the plate[ This solution will destroy the mixed one
when the Lower Deck velocity "oU9# is smaller than the
free convection velocity "u1:4"`L�2:n1#−0:09"`L�#0:1# at the
chosen longitudinal scale x2 "so L� is chosen as H�x2#\
this gives the criterion 0 ð"u:F#\ which is really out of
range of our study[ That is the reason why common sense
predicts an upward deviation\ but our problem of mixed
convection "at u:F ¾ 0# cannot be considered as a super!
position of a Poiseuille ~ow plus this solution because of
the non!linearity present[

5[2[ Qualitative application to Metal Oxide Chemical
Vapour Deposition

An application of this asymptotic analysis may be
found in MOCVD ~ows[ {Metal Oxide Chemical
Vapour Deposition| is a state!of!the!art method of epi!
taxy for creation of semi!conductors for electronics and
optoelectronics[ The reactor is often a pipe\ at the entry
the fresh reactant gases arrive and the chemical process
takes place on the heated zone called the {susceptor|[ The
challenge is to obtain the growth of very thin layers of
atoms on the susceptor[ Of course\ complete NavierÐ
Stokes solvers are now very accurate ð8\ 6Ł to compute
all the _elds[ In fact the problems are not in the dynamics
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Fig[ 00[ t"x#\ comparison of the Fourier code without "low F means Fourier solution in the Lower Deck and low A means analytic
solution in the Lower Deck# and with "low with Aý means Fourier solution with Aý in the Lower Deck# transverse pressure in the Main
Deck and the self!similar solution[ The eigenvalue solution is plotted here too and referred to as e[v[ The strong gravity e}ect may
cause a separation at the upper wall\ whereas the shear is increased at the lower wall[

"the ~ow is laminar and stationary# but in the chemistry\
because there are many complex reactions[ Using Fluent
ð7Ł\ we evaluate roughly the ~ow with strong "Fig[ 01#
and small buoyancy "Fig[ 02# in a typically simpli_ed
reactor[ Here calculations are a bit crude and the values
of Reynolds and Froude are R � 116 and F9 � 9[6[

The _rst _gure is very similar to those calculated and
plotted by Holstein ð03Ł "the adimensionalized number

Fig[ 01[ Longitudinal velocity pro_les computed by Fluent in a heated pipe with gravity[ Notice the back ~ow at the upper wall induced
by the heating and the increase of skin friction on the susceptor[

he uses is Grasho} divided by R1 which is the inverse of
our Froude number# and it clearly shows the negative
de~ection of the ~uid ~ow and a separation near the
upper wall^ the second _gure is without gravity and shows
the positive de~ection of the ~uid ~ow[ But approximate
methods are always interesting] for example\ it has been
shown by Van de Ven et al[ ð29Ł or Ghandi and Field ð00Ł
that the linear pro_le approximation is good enough to
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Fig[ 02[ Streamlines computed by Fluent in a heated pipe without gravity[ Notice that they are de~ected by the susceptor[

predict the growth rate^ our purpose was to investigate
the next term in this expansion\ which was done using
the Triple Deck Theory[ The hypotheses that we needed
in this paper are unfortunately a bit farm from exper!
imental problems occurring in real MOCVD reactors\ an
increase of the velocity by factor 09 would move the
non!dimensional numbers in a better range[ Nevertheless\
even if the operating Reynolds number is often less than
199 and the Froude number is smaller than one\ the
preceding theory seems to agree qualitatively "we put no
ticks on the graphs# with numerical phenomena occurring
in the reactor[ With no gravity\ the expansion of the gas
pushes up the streamlines "Figs 5 and 02#\ with gravity the
cold gas is falling down "Figs 8 and 01# and a recirculating
region is created[

This comparison is only a rough one and a better one
would involve a careful examination of more NavierÐ
Stokes calculations rescaled with the scales that we exhi!
bited[ Then a full non!linear Triple Deck calculation
would be necessary to calculate the supposed "as
observed in the full N[S[ computation# heating!induced
upper!wall separation "incidentally the case of a cold spot
instead of a hot one could be investigated#[ Finally and
most interesting for the MOCVD community\ the trans!
port equation may be simply included in this theory\ at
_rst!order\ it remains the same as in "29# or "00#] the
heating induces changes of velocity inducing themselves\
at second!order\ a modi_cation of the growth rate on the
susceptor[
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