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4 Place Jussieu, 75252 PARIS CEDEX 5. FRANCE
e.mail: pyl@ccr.jussieu.fr

Abstract: We investigate the boundary layer 
ow with thermal e�ects on a 
ate plate per-

turbed by a bump or a thermal spot. We introduce the buoyancy e�ects in the framework of "triple

deck" theory. This is a particular case of the mixed thermal convection problem which is known to lead

to a breakdown when the plate is cooled, and when the governing parameter, the "Richardson number",

is of order one. Here we try to study the onset of the phenomenon since we work at small Richardson

number. For this simpli�ed problem, the usual "triple deck" structure reduces to a "double deck" one

when this number increases, and a new term in the pressure displacement relation, accounting for the

hydrostatic pressure change across the main deck, appears from the analysis. The linearized and non

linearized solutions of this new set of equation show upstream in
uence of a thermal spot or a bump

on the boundary layer.

1. Introduction, state of the art

We investigate the 
ow r�egime which occurs when a laminar, uniform, stationary
and two- dimensional 
ow of a Newtonian 
uid meets a horizontal 
at plate which is at
a di�erent temperature from the free stream. The plate is cooled (or heated) by natural
convection by Archimedes force and by forced convection. This problem is known as
"mixed convection" because both e�ect compete; the magnitude of this competition is
the Richardson number de�ned here by J = g��T0

U2
1

Lp
Re

(in fact our study deals with

small J , and we will show that ~J = JRe1=8 is more convenient). This number gauges the
ratio of thermal coupling e�ect, modelled by Boussinesq approximation, versus dynamic
e�ects. We suppose that viscosity does not change with temperature, see M�endez &
Trevi~no (1992) for this in
uence, but without buoyancy.

The Reynolds number (Re = U1L
� ) is large, so, viscous and conductive e�ects

in the 
uid (Prandtl number of order one, but this is not restrictive) are localized in a
small neighbourhood of the wall. This leads to the system (see next references) deduced
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from Prandtl boundary layer theory, with no slip condition, outer 
ow matching, and
imposed temperature:
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Relation (1c) de�nes J: Unfortunately, it has been shown by Schneider & Wasel (1985),
Daniels & Gargaro (1993) and Daniels (1992) (for example) that boundary layer equa-
tions, when coupled with energy equation by buoyancy become abruptly singular at a
(relatively small) �xed abscissa.

A very simple way to understand this, is to over simplify Daniels's work (1992).
Suppose that there is an algebraic departure from the non buoyant solution for the
displacement thickness Æ � xa; then, the pressure (@p=@y = J�), after integration
through boundary layer behaves like p � Æ � xa; but the speed (u@u=@x � �@p=@x)
is now u � x(a=2); next we obtain the boundary layer thickness (u@u=@x � @2u=@y2)
as Æ � x((2�a)=4). This gives a = 2=5, a more cumbersome calculation gives a = 0:43:::
Another over simpli�ed point of view will be explained in the last paragraph.

Thus, we propose to revisit this problem of "mixed convection" on the basis of
"triple deck" (Neiland (1970) and Brown et al. (1975)), we will not smooth the sin-
gularity but we will show that this approach captivates some features like: strong self
induced upstream in
uence (in case of cold wall), no upstream in
uence and Tollmien
Schlichting (Smith (1979)) waves (in case of hot wall). Linearized and non linear com-
puted (by a �nite di�erence scheme) solutions will be presented in the case of bump or
thermal spot.

Our problem is di�erent from the problem studied by Sykes (1978), because he
considers that the scale of temperature strati�cation is the scale of the upper deck, while
we take it to be smaller and of order of the boundary layer thickness; it is di�erent to
from El Ha� (1994) who studies a vertical natural convection (previous papers referred
to horizontal convection) boundary layer perturbed by a bump with similar asymptotic
methods.

2. Basic Flow

We suppose, for the sake of simplicity, that the basic 
ow, driven by the free stream
uniform velocity, is a classical Blasius boundary layer. This is not restrictive, because
all we need is a basic velocity pro�le UO(y): We study a localised disturbance at the
distance L of the leading edge. At this point, the boundary layer is of thickness Re�1=2L.
The incoming 
uid is at temperature T1, and the plate at T0, (say: �T0 = T0 � T1).
Pure thermal convection is relevant as long as the transverse gradient from equation
(1c) is small. It means that 1 >> J >> Re�1: So, under those hypotheses, the forced
thermal boundary layer is of the same thickness as the dynamic one.

Let us remark that we impose the scale L, but Schneider & Wasel (1985) or Daniels
& Gargaro (1993) do not because, in the real mixed convection problem, the natural
longitudinal scale is built with Richardson number. It is the length that gives unit
Richardson number. Nevertheless, the calculations they did, show that the breakdown
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occurs for a rather small abscissa, that means that the Richardson number built with
this abscissa is smaller than one. It is then interesting to investigate small J behaviour.

3. Triple Deck interaction: the J � Re�1=8 r�egime

3.1.1. Main Deck

The classical triple deck tool (Neiland (1970) and Brown et al. (1975)) is applied to
cope with a localized disturbance gauged by x3L longitudinally. Perturbation of speed
in the main deck is "U1, where " is unknown, so we recover:

U = U0(y) + "A(x)U0(y); v = �
"Æ

x3
A(x)U0(y); and T = �0(y) + "A(x)�00(y); (2)

where U0(y) and �0(y) are of course the undisturbed basic speed and temperature pro-
�les. For the temperature, as for the speed, there is a matching between the top of the
main deck and the bottom of the upper deck, and it is the same for the lower deck.
We see that the temperature behaves as the Stewartson S function in hypersonic 
ows
(Brown et al. (1975)). We recover in this deck the unknown displacement function of
the boundary layer �A(x):

3.1.2. Crossing the main deck

This perturbation of temperature gives rise to a transverse change of pressure
through the "main deck", we develop it in power of " as (neglecting 0("3) terms):

@p0
@y

+ "
@p1
@y

+ "2
@p

@y
= " ~J(�0(y) + "A(x)�00(y)); (3)

where we have anticipated the fact that the pressure in the lower deck is of order "2, and
that x3 is of order "

3 and where, for convenience, we have de�ned a reduced Richardson
number: ~J = J

"
:

Looking at each power of ", we see that the �rst term is zero (as we supposed); the
second one shows that there is a pressure strati�cation coming from basic temperature
pro�le ( ~J

R1
0 �0(y)dy ), it does not depend on x at the short scale x3, and it will then

not be useful; the third one integrates (using �0(1) = 0; �0(0) = 1 by de�nition) as:

p(x; y!1)� p(x; y! 0) = ~JA(x)(�0(1)� �0(0)) = � ~JA(x); (4)

where p(x; y!1) splices with upper deck and p(x; y! 0) with lower deck.

3.1.3. The upper deck

The matching with the "upper deck" for the pressure (p(x; y ! 1) is written for
short p(x)) gives Hilbert integral (we recover the classical linear perturbed perfect 
uid

in the subsonic case):
�
"Æ
"3

�
1
�

R �A0
x�� d�; the usual gauge " = Æ�1=4 = R�1=8 and the new

pressure displacement relation (Lagr�ee (1994)) is:

1

�

Z
�A0

x� �
d� = p� ~JA: (5)
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The e�ect of the temperature is to add a new term proportional to the displacement
function A, it may be interpreted as a hydrostatic variation of pressure.

3.2 Double deck interaction: the Re�1=8 � J � 1 r�egime

It is worth noticing that as the Richardson number increases, in order of magnitude,
from Re�1=8, the perturbations in the upper deck become smaller and smaller and the
longitudinal gauge, while remaining much more smaller than one, grows; so we �nd that
for moderate values of J , the good choice for " is rather " = jJ j and the relation becomes:�
jJ j�4Re�1=2

�
1
�

R �A0
x�� d� = (p� A) and ultimately the pressure displacement relation

degenerates in the form (Lagr�ee (1994)):

p = �A; (6a)

for a cold wall, and in the form:
p = A; (6b)

for a hot one, with: Re�1=8 � jJ j � 1: This shows that the upper deck is not necessary
for the interaction to take place, the same phenomenon exists in hypersonic 
ows (Brown
et al. (1975)) for cold wall. The p = �A relation is found in the birth of hydraulic
jumps in Bowles & Smith (1992), Gajjar & Smith (1983) and in subsonic pipe 
ows by
Ruban & Timoshin (1986) and leads to upstream in
uence. Note that the interaction
relation p = �A was independently found by Bowles (1994).

3.3. Lower Deck

There are two possibilities for the lower deck depending on the temperature of the
spot either (i) it is of magnitude "�T0 either (ii) bigger.

i) no spot, or weak one

If there is no spot (but a hump) or if it is weak, in the lower deck, classical gauges
are used: u is of order ", p of order "2, and x3 is "

3, temperature matching with main
deck gives the order " for the temperature, transverse variable is " times the transverse
variable in the main deck.

We recover the basic lower deck set:
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T: (7)

Boundary conditions are no slip at the wall, A(�1) = 0 and for y ! 1; u ! y + A;
and T ! y + A:

ii) spot

But, if the spot is warmer (or cooler), the temperature in the lower deck must be
rescaled by the temperature of the spot Tw. Say that on a small distance scaled by
x3 the temperature of the plate changes from T0 to T0 + Tw; then it is better to use
((Tw=�T0)�T0) = Tw; instead of ("(�T0)) as a new gauge of temperature variation
(and Tw >> "�T0 ).
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The convective/ di�usive temperature equation is still the same, but there is now
a transverse pressure gradient in the lower deck ( @p

@y
= j�) if j = ~JTw=�T0 is of order

one (this is a second Richardson number):

�
@p(x; y)

@x
= �

dp(x)

dx
+ j

1Z
y

@�(x; y)

@x
dy; (8)

where p(x) is the pressure at the top of the lower deck (at the bottom of the main deck).
Temperature is gauged by: T = T1+(T0�T1)(1+ Tw

T0�T1 �) = T0+Tw�: The matching

between the lower and main decks becomes: 1 + Tw
T0�T1 �(y!1) = 1 + "(y +A(x))�00;

and since the temperature is strong at the wall (Tw; >> "�T0:), the temperature � is
then zero at in�nity. Hence, we obtain the lower deck problem: (which is very similar
to Zeytounian (1991)):
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(9)
Boundary conditions are no slip at the wall, A(�1) = 0 and for y ! 1; u ! y + A;
but � ! 0:

3.4. various fundamental problems

Depending on the values of the Richardson number we may build various "fun-
damental problems of triple deck" by mixing the above lower deck problem and the
pressure displacement relations we found.

3.5. linearized solution, eigenvalue

The system admits the Blasius solution u = y as a basic one. Perturbing it by a
small amount, and taking the Fourier transform of the result, gives:

i�~u+
@

@y
~v = 0; i�y~u+ ~v = �i�~p+ j

1Z
y

i� ~Tdy +
@2

@y2
~u; i�y ~T =

@2

@y2
~T : (10)

The temperature ( ~T = Ai(y(i�)1=3)) is an Airy function. Perturbation of skin friction
~� = @~u

@y veri�es an Airy di�erential equation forced by an Airy function, this is solved
as:

@

@y
~u(0) = 1 +

(i�)2=3~p

Ai0(0)
� j(i�)1=3(

Ai(0)

3Ai0(0)
� Ai0(0)); (11)

then we �nd the displacement function ( ~F is the Fourier transform of the bump):

~A+ ~F =
(i�)1=3~p

3Ai0(0)
� j(Ai(0) +

1

9Ai0(0)
): (12)

In this expression (written for short ~A + ~F = ��~p + j�j , where �� is the standard
triple deck coeÆcient) with temperature e�ect, we see that, for a negative j, there is a
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decrease of skin friction and a positive displacement � ~A; so an increase of the boundary
layer. The Fourier transform of the new pressure displacement relation reads:

~p = (j�j+ ~J) ~A: (13)

Then we deduce, for the pressure at the top of the lower deck, the following expression:

~p =
(j�j+ ~J)

1� (j�j+ ~J)��
(j�j � ~F ): (14)

This expression will be used to compute the linearized response of the strati�ed bound-
ary layer to a bump or/and a thermal spot as we will see in section 3.7.

On the other hand, the linear approach gives the behaviour for x ! �1: In the
case of cold wall, (p = �A) we recover the same behaviour as in hypersonic 
ows
(Brown et al. (1975) and Gajjar & Smith (1983)), thus, the Lighthill eigenvalue (from
the growing exponential) may be found, which shows that there is upstream in
uence:
p = aekx; with k = (�3Ai0(0))3: This upstream in
uence may describe the phenomenon
of "blocking" which is observed in strati�ed 
ows.

Note that in Daniels & Gargaro (1993) breakdown, in the vicinity of the singular
point, the perturbed quantities behave with a p = �A law.

3.6. Stability

Classical triple deck technique is applied, and we �nd that the hot wall case (p = A)
is linearly unstable and marginal stability curve is given by ! = 2:29�2=3 and ~J =
1:001 ��1=3 � j�j (by analogy with Tollmien- Schlichting waves with triple deck scales
deduced by Smith (1979)), so there is a non viscous mode for ~J negative and large,
and a viscous mode of large wave length for ~J positive and large (which corresponds to
p = A).

3.7. Numerical results

The behaviour, computed with those relations will be shown in the case of a bump
or a spot of shape (1� x2)2, with various values of ~J . It shows upstream in
uence (as
predicted), that may be interpreted, in strati�ed 
ows (Tritton (1988)), as "blocking",
and downstream we observe small oscillations, interpreted as "lee waves", positive values
of ~J show indeed lowering and cancelling of upstream in
uence (see �gure 1 and 2). Non
linear results are presented on �gure 3 and 4.

4. Single deck interaction?: the J � 1 r�egime

Numerical calculations have clearly shown that there is a singularity in the self
interaction of the boundary layer at J = O(1). We believe that this singularity is
similar to the "branching solutions" obtained in supersonic inviscid- viscous interacting

ows (Le Balleur (82)). An over simpli�cation of the problem with integral methods,
may be done as follow. First, let us suppose that the pressure is averaged through the
boundary layer, p � 1 � JRe1=2Æ1� (introducing an integral parameter � � 1:7 for
J = 0). Second, the classical K�arm�an momentum equation with standard notations
reads:

U2
0 (

d(Æ1=H)

dx
) + Æ1(1 +

2

H
)U0

dU0

dx
=

f2H

ReÆ1
U0: (15)
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Combining those two equations, and without forgetting that H may be written as
a function of �1 = Æ21Re

dU0

dx
, the Pohlhausen description (near the Blasius solution

(Æ0Re
�1=2; Æ0 � 1:7)) gives H � H0 �Hp

dU0

dx , with H0 � 2:58, & Hp � 0:533(1:7)
2
. We

obtain:

J�Æ0
Hp

H2
0

d2Æ1
dx2

+
dÆ1
dx

(
1

H0
+ J�Re1=2Æ1(1 +

2

H0
)) =

f20H0

ReÆ1
: (16)

This development is exactly Schneider & Wasel (1985) ones, however we have added
the second derivative term which is the most dominant one coming from the derivative
@(1=H)=@x. When this term is omitted is easy to see that the forward integration
leads to a singularity at a �xed abscissa whose value xs = (6H4

0 (�J)
2(1+2=H0)

2f20)
�1

is not so bad an estimation. But the forgotten second derivative term means, in our
opinion, that another boundary condition must be imposed. This equation may be
solved without diÆculty with Æ1 prescribed at each boundary of the domain. This
over simpli�ed heuristical approach may be a guideline for the numerical resolution of
the single deck equations: they must be solved with a global technique with the two
end values prescribed (work in this direction is in progress, Bowles (1994)), not by a
marching technique from downstream to upstream.

5. Conclusion

We have presented the response of a boundary layer with small buoyant e�ects
to a thermal spot or a bump. This is an extension of the triple deck approach, and
we have seen that if the Richardson number is large enough, this is a double deck
interaction. Stability and the understanding of the singularity could be investigated.
We did not clear the singularity up, but we have shown that even at small values of J
there is upstream in
uence (from downstream) and self induced solutions which may be
interpreted as birth of some thing being downstream which may be simply seen on the
over simpli�ed partial equation.

Note

Recently, H. Steinruck ("Mixed convection over a cooled horizontal plate: non-
uniqueness and numerical instabilities of the boundary layer equations", J. Fluid Mech.,
vol 278, pp. 251-265) has shown that the mixed convection problem presents branching
solutions (when numericaly solved in marching from up to downstream) associated to
an unbounded sequence of eigenvalues that he found by asymptotic expansion (the one
he obtains for small x, is exactly the Lightill eigenvalue coming from p = �A).
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4. Single deck interaction?: the J � 1 r�egime

Numerical calculation have clearly showed that there is a singularity in the self inter-
action of the boundary layer at J = O(1). We believe that this singularity is similar
to the "branching solutions" obtained in supersonic inviscid- viscous interacting 
ows.
It means that there is some upstream in
uence. An over simpli�cation of the problem
with integral methods (in the "before triple deck"spirit of the explanation given to the
"branching solutions "problem), may be done as follow: suppose that the pressure is
averaged through the boundary layer, p � 1 � JRe1=2Æ1� (introducing an integral pa-
rameter � � 1:7 for J = 0, because this parameter is simply int1� f 0 in the case of
Blasius boundary layer with forced convection ). Then the classical K�arm�an momentum
equation with standard notations (see SCHLICHTING or COUSTEIX) reads:

U2
0 (

d(Æ1=H)

dx
) + Æ1(1 +

2

H
)U0

dU0

dx
=

f2H

ReÆ1
U0:

Combining those two equations, and without forgetting that H may be written as a
function of �1 = Æ21Re

dU0

dx , near the Blasius solution (Æ0Re
�1=2; Æ0 � 1:7) the Pohlhausen

description gives H � H0 � Hp
dU0

dx
, with H0 � 2:58, & Hp � 0:533(1:7)2. We obtain,

after forgetting some terms:

J�Æ0
Hp

H2
0

d2Æ1
dx2

+
dÆ1
dx

(
1

H0
+ J�Re1=2Æ1(1 +

2

H0
)) =

f20H0

ReÆ1
:

This development is exactly SCHNEIDER & WASEL (1985) ones, however we have
added the second order derivative term coming from the derivative @(1=H)=@x. With-
out this term it is easy to see that the forward integration leads to a singularity at a
�xed abscissa whose value xs = (6H4

0 (�J)
2(1 + 2=H0)

2f20)
�1 is not so bad an estima-

tion. This value is independent of R. But the forgotten second order derivative term,
proportional to J , means, to our opinion, that another boundary condition must be
imposed. This equation may be solved without diÆculty with Æ1 prescribed at each
boundary of the domain, this is in fact a problem of singular perturbation. This over
simpli�ed heuristically approach may be a guideline for the numerical resolution of the
single deck equations: they must be solved with a global technique with the two ends
values prescribed (work in this direction is on progress, BOWLES (1994)), not by a
marching technique from downstream to upstream.
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