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Introduction

Aim: find out simplier equations than Navier Stokes

Well adapted for ”real time simulations” / image processing

Starting from Navier Stokes (Axi)

• we simplify NS to a Reduced set of equations

– which contains the physical scales,
– the most important phenomena

• much more simple set of equations: Integral equations (1D)

• cross comparisons in some cases of NS/ RNSP/ Integral
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272LORTHOISetal.

volumeresultinginsignalenhancementandhighvesselto
backgroundcontrastandonvelocity-compensatedgradi-
entechosequencestoretainalltransversemagnetization.
Unfortunately,thistechniquerequireslongrepetitiontimes
inordertoavoidbloodsignalsaturation,whichmakesit
difficulttoreduceflowartifacts.Toachievegoodvessel
contrastwithashortrepetitiontime,acontrastagent,such
asgadolinium,canbeusedtoreducethelongitudinalre-
laxationtimeT1ofblood.Inordertoachievetheveryshort
echotimesneeded,novelocitycompensationisusedinthe
gradientechosequences.Vesselcontrast,inthisso-called
contrast-enhancedMRAtechnique(CE-MRA),isthendue
toT1effectsinsteadofinfloweffectsasinTOF.Qualitative
comparisonsofthesimulatedMRAswithMRphantom
experimentsperformedincomparableconditionswillbe
presented.

METHODS

SeverelyStenoticCarotidArteryBifurcationModel

Surgicaltreatmentofcarotidarterydiseaseinvolves
openingthearteryandremovingtheplaqueliningtheves-
selwall,aprocedureknownasanendarterectomy.Oneof
theplaqueswasresectedenblocinoneintactpieceatthe
SanFranciscoVAMedicalCenter[specimenprovidedby
Dr.JosephRapp,AssociateProfessorofVascularSurgery,
UCSF/VAMedicalCenter,totheauthor(DS)].Thisspec-
imenwasimagedusingMagneticResonanceImagingat
highresolution(200µm3)andthelumenalcontourwas
obtainedbyimagepostprocessing.

Becauseofthecomplexityofthegeometryinvolved,
onlyatwo-dimensionalmodelbasedononecoronalplane
ofthethree-dimensionalcontourhasbeenconsidered
(Fig.1).Thissimplificationisconsistentwiththenumerical
analysisofflowthroughthesametwo-dimensionalstenotic
bifurcationperformedbyStroudetal.,23whichaimedto
supplementMRandotherinvivodiagnostictechniquesto
provideanaccuratepictureoftheclinicalstatusofparticular
vessels.

Inaddition,aphantom,i.e.,athree-dimensionaltrue-to-
scalephysicalmodelwithnearlyrigidwall,wasconstructed
insilicone(silastic)rubber(Fig.2.)inordertomakequalita-
tivecomparisonsbetweenMRsimulationsandexperiments
performedinequivalentconditions.26

SimulationofMagneticResonanceAngiographies

SimulationofMRAsbymeansoftheEulerianap-
proachrequiresthecalculationofthevelocityfieldin
thegeometrydescribedabove.Thiscalculationhasbeen
previouslyreported.23Briefly,theincompressible,steady
Navier-StokesequationsforaNewtonianfluidaresolved
usingafinite-volumeCFDsoftwarepackage(FromCFD
ResearchCorporation,Hunstville,AL)onthegriddis-
playedonFig.1.Theboundaryconditionsareuniform

FIGURE1.ModelGeometry:Two-dimensionalstructuredgrid
(9040vertices,8775quadrangularelements)usedinCFDcom-
putations(scaleinmeters).(i,j,k)isthelaboratoryframeof
referenceandkdefinesthelongitudinaldirection.Whenphase
encodingisalignedwiththemain-flowdirection,thenex=i
andey=j;whenphaseencodingisperpendiculartothemain-
flowdirection,thenex=jandey=i.

FIGURE2.ModelGeometry:PhantomusedinMRexperi-
ments.
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straight pipe, smooth walls, symmetry 
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• simplified set

• deduced from orders of magnitude
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Boundary conditions

Rigid wall: u = v = 0
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Boundary conditions

First given profile:



  

Boundary conditions

First given profile:

marching procedure

distribution of pressure is a result



  

−∆P

Boundary conditions

or given pressure drop
by Newton iteration on the entrance flux



  

Numerical resolution

finite differences, 
implicit in time
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Newton on the pressure to obtain the boundary condition 



  

Pressure is a result of the computation
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Integral resolution

 - integral system (1D) is included in RNSP

- we compute a more real profile
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Integral resolution 1D equations

need of profile



  

Integral resolution 1D equations

“usual” 1D equations are a simplification of RNSP
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Numerical resolution:
finite differences
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IBL is included in RNSP



  

Interactive Boundary Layer



  

Interactive Boundary Layer



  

Interactive Boundary Layer



  

Interactive Boundary Layer



  

Ideal fluid region
flat profile

Interactive Boundary Layer



  

Ideal fluid region
flat profile

Viscous region: boundary layer

Interactive Boundary Layer



    

Ideal fluid region
flat profile

Viscous region: boundary layer

Interactive Boundary Layer



  

Integral resolution

  

Ideal fluid region
flat profile

Viscous region: boundary layer



    

Ideal fluid region
flat profile

∂u
∂x

+
∂rv
r∂r

= 0

∂u
∂t

+u
∂
∂x

u+ v
∂
∂r

u =− ∂p
ρ∂x

+ν ∂
r∂r

r
∂u
∂r

0 =− ∂p
ρ∂r

Interactive Boundary Layer



    

Ideal fluid region
flat profile

∂u
∂x

+
∂rv
r∂r

= 0

∂u
∂t

+u
∂
∂x

u+ v
∂
∂r

u =− ∂p
ρ∂x

+ν ∂
r∂r

r
∂u
∂r

0 =− ∂p
ρ∂rX

Interactive Boundary Layer



    

Ideal fluid region
flat profile

∂u
∂x

+
∂rv
r∂r

= 0

∂u
∂t

+u
∂
∂x

u+ v
∂
∂r

u =− ∂p
ρ∂x

+ν ∂
r∂r

r
∂u
∂r

0 =− ∂p
ρ∂rX

Interactive Boundary Layer

X

steady/ or large convective acceleration



    

Ideal fluid region
flat profile

Interactive Boundary Layer

UeS = cst



    

∂u
∂x

+
∂rv
r∂r

= 0

∂u
∂t

+u
∂
∂x

u+ v
∂
∂r

u =− ∂p
ρ∂x

+ν ∂
r∂r

r
∂u
∂r

0 =− ∂p
ρ∂r

Interactive Boundary Layer

X

steady/ or large convective acceleration

Viscous region: boundary layer

δ



    

∂u
∂x

+
∂rv
r∂r

= 0

∂u
∂t

+u
∂
∂x

u+ v
∂
∂r

u =− ∂p
ρ∂x

+ν ∂
r∂r

r
∂u
∂r

0 =− ∂p
ρ∂r

Interactive Boundary Layer

X

steady/ or large convective acceleration

Viscous region: boundary layer

δ

U2
0

λ
ν

U0λ
1
δ2

U2
0

λ
ν

U0λ
λ2

δ2
U2

0
λ



    

∂u
∂x

+
∂rv
r∂r

= 0

∂u
∂t

+u
∂
∂x

u+ v
∂
∂r

u =− ∂p
ρ∂x

+ν ∂
r∂r

r
∂u
∂r

0 =− ∂p
ρ∂r

Interactive Boundary Layer

X

steady/ or large convective acceleration

Viscous region: boundary layer

δ

U2
0

λ
1

Re
λ2

δ2
U2

0
λ



    

∂u
∂x

+
∂rv
r∂r

= 0

∂u
∂t

+u
∂
∂x

u+ v
∂
∂r

u =− ∂p
ρ∂x

+ν ∂
r∂r

r
∂u
∂r

0 =− ∂p
ρ∂r

Interactive Boundary Layer

X

Viscous region: boundary layer

δ

U2
0

λ

δ∼ λ
Re1/2

1
Re

λ2

δ2
U2

0
λ



0 =−∂p
∂n

    

Interactive Boundary Layer

X

Viscous region: boundary layer

δδ∼ λ
Re1/2

∂u
∂x

+
∂v
∂n

= 0

u
∂
∂x

u+ v
∂
∂n

u =−∂p
∂x

+
∂2

∂n2u



0 =−∂p
∂n

    

Interactive Boundary Layer

∂u
∂x

+
∂v
∂n

= 0

u
∂
∂x

u+ v
∂
∂n

u =−∂p
∂x

+
∂2

∂n2u

Matching of velocity
from invicid/ viscous

δ



    

Interactive Boundary Layer

Matching of velocity
from invicid/ viscous

δ

δ

Ue at the wall



    

Interactive Boundary Layer

Matching of velocity
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δ

Ue at the wall

u(x,∞)is the velocity at the edge of the boundary layer
at “infinity”
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Choice of the family of  simple profiles

In a steady flow it is natural to use Falkner Skan



  

Interactive Boundary Layer

IBL is included in RNSP 



  

RNSP includes usual 1D equations
RNSP includes Womersley profiles
RNSP includes Boundary Layer Theories (IBL)
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experiments



flow in arteries
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specific integral system improved compared 
to the classical ones
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Figure 1: The displacement of the wall (h(x, t = 2.5)) as a function of x is plotted here
at time t = 2.5. The dashed line (wom3(x,2.5)) is the Womersley solution (reference),
the solid line (B.L.) is the result of the Boundary Layer code and the dots (intg) are the
results of the integral method (α = 3, k1 = 1, k2 = 0 and ε2 = 0.2).
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- axial symmetry (∂ru = 0 and v = 0 at r = 0),

- no slip condition at the wall (u = v = 0 at r = 1− f(x)),

- the entry velocity profiles (u(0, r) and v(0, r)) are given

- no output condition in xout = x∗out
R0Re

- streamwise marching, even when flow separation.
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Application 1/3: Flow in an arterial stenosis
collaboration with S. Lorthois IMFT
(F. Cassot & M.-P. Vergnes, INSERM, + B. de Bruin RuG)
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Boundary Layer/ Perfect Fluid



Boundary Layer/ Perfect Fluid

d1

The boundary layer is generated near the wall
δ1 is the displacement thickness.
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Boundary Layer/ Perfect Fluid

d1

The displacement thickness acts as a ”new” wall!
→Interacting Boundary Layer (IBL)
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IBL integral: 1D equation
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δ̄1ūe
,

ūe =
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(R2 − 2(λ/Re)−1/2δ̄1)
.

To solve this system, a closure relationship linking H and f2 to the velocity and the
displacement thickness is needed.

Defining Λ1 = δ̄2
1

dūe
dx̄ ,

the system is closed from the resolution of the Falkner Skan system as follows:

if Λ1 < 0.6 then H = 2.5905exp(−0.37098Λ1), else H = 2.074.

From H,f2 is computed as f2 = 1.05(−H−1 + 4H−2).
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The overall model performance for all assessed minimum 

apertures (1.45, 1.90, 2.30, 3.00 mm), at positions Pl, P2 and 

P3 for Thwaites and RNSP, is detailed in Table 2. The 

overall model accuracy is expressed by the mean coefficient 
2 

of  determination R defined in (9), averaged for all minimum 

apertures and the indicated ranges of  volume flow velocities 

extending from 5 1 min -1 to, respectively, ~< 30, ~<60, ~< 80, 

~< 100 and ~< 120 1 min -1. The covered ranges allow us to 

evaluate the predictive value for distinct Reynolds numbers 

R e  = 4 ) / W v ,  with v being the kinematic viscosity coefficient 

and W and q5 as defined previously. For all five cases, the 
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model performance of  both Thwaites and RNSP at the position 

of  minimum constriction Rp23 is excellent (R 2 > 0.97). Further, 
2 2 P3 R2 

it can be seen that, in general, Rpl ~ Rp2 <~ RSp3" Thus and 
therefore the prediction performance increase approaching the 

position of  minimum aperture. This finding stresses the import- 

ance of validating the pressure predictions at different sites 

along the replica to compare and evaluate flow predictions if 

the pressure distribution is of  interest. 

From Table 2, it follows that the model performance sig- 

nificantly increases for Reynolds numbers below _+2500. 

Reynolds numbers below 2500 are characteristic of  laminar 

flows. Higher values of the Reynolds number indicate the 

transition from laminar to turbulent flows. As the applied 

bidimensional flow predictions are laminar flow models, the 

flow behaviour was expected to be most accurately described 

within the laminar range, as is the case. Furthermore, the 

predictive value of  RNSP slightly exceeds the Thwaites pre- 

dictions for low-volume flow velocities in the laminar range. 

The volume flow velocities involved during OSA are below 

30 1 min -1 (FISHMAN et  al. ,  1986). Therefore, in the case of  

OSA, the predictive value of  RNSP exceeds slightly the predic- 

tive value of  the Thwaites method, and RNSP prediction is 

favoured to acquire the pressure distribution. This holds in par- 

ticular for the position Pl, where the influence of  the asymme- 

try is largest, although it can be seen that areas with the largest 

pressure drop will most contribute to the origin of  OSA. 

Consequently, an accurate pressure prediction at the level of  

Pl is least critical. 

The present study experimentally confirms the numerical 

study reported in SHOME e t  al. (1998) for a rigid pharyngeal 

geometry and, in particular, the crucial effects of  geometrical 

Medical & Biological Engineering & Computing 2005, Vol. 43 169 
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• non symetrical case
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Figure 4: Comparison of integral IBL and NS pressures. The IBL approach
well predicts the over pressure on the flat wall and the positions of the
minima of of the pressures after the throat.
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Figure 5: Skin friction, comparison of integral IBL and NS. The integral IBL
over predicts the maximum of skin friction but well predicts the position of
the point of separation. The incipient separation before the bump is well
predicted.
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• Aneurysm



  

Up to now, the wall was rigid

  



  

we use a simple elastic model

  



        

we use a simple elastic model



        



  



        



  



        



Example 5

• Flow in a collapsible tube

• unsteady, elastic wall, no inertia

  



    

Collapsible tube



    

Rn gives pn+1



    

Rn gives pn+1 pn+1 = k(Rn+1−1)
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RNSP + Ansys
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Conclusion
• starting from Navier Stokes

• set of simple equations RNSP

• set of more simple equations Integral

• Good agreement with full Navier Stokes

• “explain” the features of the flow

• boundary conditions for full NS

• real time simulation

  



  

Aneurysm: 

OSA:

 

Perspectives



  



• Use Acrobat Reader 7.05 to see animations

• Updated version may be found here.
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