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Abstract. The present paper is devoted to the formation of sand patterns by laminar flows. It focuses on the rhomboid beach
pattern, which may be formed during the backswash. The full incompressible Navier-Stokes equations, with a free surface are
coupled with an erodible bed with a bedload transport model,based on a moving-grains balance. A linear stability analysis
then shows the simultaneous existence of three types of instabilities, namely ripples, bars and longitudinal striations. The
comparison of the bar instability characteristics with laboratory rhomboid patterns indicates that the latter could result from
the non-linear evolution of unstable bars.
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INTRODUCTION

On the sea shore (see figure 1) or in sand-bed rivers,
one can observe various erosion structures. In many
experimental setups (water channels flowing over a
bed of small glass beads or sand grains) one can ob-
serve the same patterns. For example similar patterns
were experimentally obtained by Daerr et al. ([3]),
when withdrawing a plate covered with a granular ma-
terial from a bath of water, at constant angle and velocity.

Shapes are similar even if the flow is laminar instead
of turbulent. Some of those structures (see figure 2)
are perpendicular to the stream, they are called ripples
(and may be considered as two dimensional). Others
structures are transverse to the stream (and are then three
dimensional), they are diamond-shaped and are called
rhomboid erosion patterns. Longitudinal striations may
also exist and are parallel to the stream.

The ripple and rhomboid patterns migrate slowly
downstream. We claim that most of those structures may
be explained by a coupled instability. It means that the
fluid flow and the erodible bottom are coupled trough
a relation between the shear tress of the fluid (Shields
number) and the flux of sediments (this is the erosion
law and Exner equation). This erosion flux relation is the
least know in the literature, especially over a wavy bed.
Depending on the control parameters (Froude Number,
slope and aspect ratio of the channel, Shields parameter),
and on the chosen erosion law, we show by a linear sta-
bility analysis the transition from ripples to various bar
instabilities.

FIGURE 1. Typical see shore diamond-shaped erosion pat-
terns

Finally, we propose experimental evidences of the va-
lidity of the theory. The experimental setup consists of a
two-meters long inclined channel, which bottom is cov-
ered with silica beads. Discrepancies between theory and
experiments are discussed. They are mainly due to the
lack of any reliable two-dimensions erosion law able to



describe the granular flow.

GENERAL MODEL

Fluid flow: full equations

We aim here to study the linear stability of an initially
flat sediment layer, as a laminar and steady film of water
flows over it. For simplicity, we assume an infinite sys-
tem both in the directionx of the main slope and in the
transverse directiony. The flow in the bulk is given by
the stationary and incompressible Navier-Stokes equa-
tions in three dimensions,

uk∂kui = −
1
ρ

∂i p+gi + ν∂kkui , ∂kuk = 0, (1)

whereu, p andν are respectively the velocity, pressure
and viscosity of water, andg is the acceleration of grav-
ity. The use of stationary flow equations is a common hy-
pothesis in geomorphology, which relies on the idea that
the sediment transport time scale is much larger than the
flow one. If we neglect both the velocity of the upper lay-
ers of grains and the velocity of water through the same
layer we may impose the classical no-slip boundary con-
dition at the sediment bed surface inz= h the thickness
of the sediment layer. At the free surface, which eleva-
tion is denoted byη , both a classical kinematic and a
dynamical boundary conditions are imposed.

Sediment transport

We have to write here the conservation law of moving
materials due to erosion and sedimentation. This problem
has received a large interest recently (Lagrée [6], Valance
& Langlois [7]). Basically, one has to write the conser-
vation of mass and momentum for the moving grains,
both are reduced in a single conservation equation. As
much as possible, we use the notations of Charru [2] in
the following. Let us denote byn the density of trans-
ported particles per unit surface, then the grains balance
in the bedload layer reads :

∂n
∂ t

= ṅe− ṅd−
∂qx

∂x
−

∂qy

∂y
, (2)

where the deposition rate is ˙nd = cdUsn/ds with cd =
1/15 an empirical constant,Us is the Stokes settling ve-
locity Us = (ρs−ρ)gd2

s/(18ρν) (ρs density and diame-
ter ds of grains). We then assume that the erosion rate ˙ne

is proportional to(cgθ − θt) with cg = 0.1. The Shields

number is generalized as the ratioθ = ||ft ||
| f n| whereft is

the tangential andf n the normal component of the force

f. This is the total force (viscous force from the flow plus
weight) acting on a surface of small area of thickness of
the moving grains layer (saycgds which is supposed con-
stant). With these notations, the threshold value remains
the one proposed by Charru [2], namelyθt = 0.091. The
choice of the dimensional pre-factors then fixes the em-
pirical constantce = 0.0017. In the above relation, the
slope influence on the tangential shear stress is embed-
ded into the definition ofθ . To evaluate the flux, we again
follow Charru who observed tha the average particle ve-
locity is proportional to the vertical gradient of the hori-
zontal velocity, times the average flight height. The flux
is then obtained by multiplying this average velocity with
the suspended particles concentrationn:

qx = ncuds
∂ux

∂z
, qy = ncuds

∂uy

∂z
, (3)

wherecu = 0.1 is the third and last empirical parameter
of the sediment transport law. We end up with the well-
known Exner equation (Exner 1925):

C
∂h
∂ t

= −
πd3

s

6
(

∂qx

∂x
+

∂qy

∂y
), (4)

whereC is the bed compactness. One should bear in
mind that the above equation is a balance for the immo-
bile grains and that it should be used in association with
(2).

The above system, from equation (1) to equation (4)
could be solved without further assumption. However,
to remain consistent with the stationary flow model, we
must drop the time derivative in the sediment balance
equation (2) but not in (4) as this equation controls the
slow topography evolution.

The following section is devoted to the stability anal-
ysis of a flat bed within this framework.

Stability

The simplest base state for our system consists in a
flat (but tilted) sediment bed, over which flows a uniform
layer of water. For low enough values of the Reynolds
number (laminar régime), and if we assume that the
water velocity vanishes at the granular bed surface, this
equilibrium profile driven by the small slope tilt angleS
is a parabola:

u = U
3
2

z−h
D

(

2−
z−h

D

)

, (5)

whereu, z, h and d are the water velocity, the bed el-
evation and the flow depth andU = gSD2/(3ν). This
configuration is known as the Nußelt film. The Shields



parameter of this basic flow is denotedΘ.
To describe the flow, the classical non dimensional pa-
rameters are introduced: Froude,Fr, BondBo, Reynolds
Re, they are based on the preceding values.
A normal mode decomposition is done, whe seek for so-
lutions of the formf̄ (z̄)ei(k̄cos(φ)x̄+k̄sin(φ)ȳ−ω̄ t̄) wherek̄, φ
and ω̄ are respectively the wave-vector norm, its angle
with respect to thex axis, and the pulsation of the pertur-
bation. The non-dimensional wave vector is nor- malized
by D. In the same fashion, the time-scaleT for the pul-
sation is given by the Exner equation:

T =
6CD2

πℓdcdUsd2
sN

, N =
18ce

cdd2
s
(cgΘ−θt), ℓd =

3cuUds

cdUsD
,

whereℓd and N are respectively the deposition length
(defined by Charru [2]), and the suspended concentra-
tion of the base flow. The deposition length, which cor-
responds to the order of magnitude of the average flight
length of a particle, introduces a space gap between the
sediment flux and the shear stress that generates it. This
delay stabilizes the perturbations at short wavelengths
(see Andreotti et al. [1]; Lagrée [6]).

RESULTS AND DISCUSSION

The sediment transport law employed here is a gen-
eralization in three dimensions of the model proposed
by Charru [2]. The parameters of the erosion law are
provided by this article. We used the flow parameters
measured during the experiments for the stability anal-
ysis. No additional free parameter was required for
our analysis. Solving the dispersion relation gives pre-
dictions (pattern angle and wavelength) that are easily
measured experimentally. On figure 3 left we plot a
typical example of growth rate issued from the numerics.
The existence of three distinct maxima is the most
striking feature of this dispersion relation. This is not
always the case. For other values of the parameters, any
association of these three types of maxima is possible,
which can makes the distinction uneasy. From these
maxima, we will recognize the following patterns:
- Longitudinal striations correspond to maximum nearest
to φ = π/2 (the mode (a) on figure 3 left). These struc-
tures are aligned with the flow, we did observe those
structures (though they are not visible on figure 2);
- Ripples correspond to a growth rate maximum lying
on thek axis, that is, forφ = 0 (the mode (c) on figure 3
left). These structures are perpendicular to the flow (see
figure 2 bottom);
- Bars correspond to any other maximum (the mode
(b) on figure 3 left). These structures are inclined with
respect to the flow direction, they evolve in diamond
patterns.

The value of the angleφ usually allows to discriminate
between bars and longitudinal striations, the latter being
always unstable (in a reasonable range of parameter
values).

On figure 3 right we plot an example of compar-
ison with the experimental results of Devauchelle et
al. [5]. The comparison concerns the opening an-
gle α = π/2− φ (in degrees) of the rhomboid pattern.
The solid line corresponds to the one-to-one relationship.

This global 3D approach allows to understand how
simplified theories may model the flow. For exam-
ple, on the one hand, there is a large literature on the
shallow-water approximation. These equations, named
after Adhémar-Jean-Claude Barré de Saint-Venant,
are very often implemented in fluvial geomorphology.
In fact, these equations do not allow to obtain ripple
instabilities but they allow to obtain bar instabilities
[4]. A numerical simulation of a reduced linear Saint
Venant model for the flow with a non-linear erosion law
can be performed. And we can show that this model
reproduces the alternate bar instability and leads to the
rhombus-shaped pattern. On the other hand, there exists
as well a large literature on the stability of erodible beds
in a shear flow. In this case, one obtains only transverse
ripples ([6],[7]). This present theoretical study provides
the bridge between those two simplified approaches.
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FIGURE 2. Various bedform observed in our experiment. The width of theflume is 10 cm. (a) Large rhom- boid pattern (Fr =
1.76,S= 0.03,Bo= 1.31 andΘ= 0.616). (b) Small rhomboid pattern (Fr = 0.95,S= 0.015,Bo= 3.25 andΘ= 0.485). (c) Rhomboid
pattern mixed with ripples (Fr = 1.01,S= 0.015,Bo= 3.50 andΘ= 0.504.
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FIGURE 3. Left: Growth rateIm(ω̄) of the tree-dimensional instabilities of a granular bed submitted to erosion by a laminar
flow, as a function of the wave-vector norm̄k, and angleφ with respect to thex direction. The blank domain corresponds to
negative values of the growth rate, that is, stable modes. Inthis typical example, three types of instabilities of different geometrical
characteristics can develop: (a) longitudinal striation,which maximum growth rate lies at angle close toπ/2; (b) bar instability,
which can occur at any value of the angleφ ; (c) ripple instability, which crests are perpendicular tothe main flow direction, that is,
φ = 0. The bar instability is probably responsible for the initiation of rhomboid patterns. In this example, the parametershave values
Fr = 0.90, S = 0.015, Bo = 2.77 andΘ = 0.448.Right: Comparison between the three-dimensional model of the present paper, and
the experimental results of Devauchelle et al. [5]. The comparison concerns the geometrical characteristics of the rhomboid pattern:
opening angleα = π/2−φ (in degrees).


