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Stability of bedforms in laminar flows
with free surface: from bars to ripples
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The present paper is devoted to the formation of sand patterns by laminar flows.
It focuses on the rhomboid beach pattern, formed during the backswash. A recent
bedload transport model, based on a moving-grains balance, is generalized in three
dimensions for viscous flows. The water flow is modelled by the full incompressible
Navier–Stokes equations with a free surface. A linear stability analysis then shows
the simultaneous existence of two distinct instabilities, namely ripples and bars. The
comparison of the bar instability characteristics with laboratory rhomboid patterns
indicates that the latter could result from the nonlinear evolution of unstable bars.
This result, together with the sensibility of the stability analysis with respect to the
parameters of the transport law, suggests that the rhomboid pattern could help
improving sediment transport models, so critical to geomorphologists.

Key words: absolute/convective, lubrication theory/thin films, sediment transport

1. Introduction
When water flows above a granular layer, the interaction between sediment

transport and the fluid motion often leads to instability patterns such as ripples,
dunes and bars (see Allen 1982). This is well known in rivers, where the flow is
turbulent, but this is true as well at lower Reynolds number. The most widespread
example of a sediment pattern generated by a laminar flow is the ubiquitous rhomboid
beach pattern (see Woodford 1935; Devauchelle et al. 2009). One can observe the
formation of these diamond-shaped structures after the swash, when water returns
to the sea through a thin film covering the sand. The rhomboid pattern has been
found also in geological records (Thompson 1949; Singh 1969), where it may be
misinterpreted as the crossing of two successive sets of ripples (Williamson 1887).

Rhomboid beach patterns are generally associated with stationary gravity waves
in supercritical inviscid flows. Woodford (1935) first suggested that the sand simply
could be marked by such waves, thus neglecting the coupling between the sediment
transport and the flow. This theory provides a relationship between the pattern
angle α and the Froude number Fr , namely α = arcsin(1/Fr). Most subsequent
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contributions on the subject (Chang & Simons 1970; Allen 1982) are based on the
same idea. However, Devauchelle et al. (2009) showed experimentally that Woodford’s
law strongly overpredicts the pattern angle. Ikeda (1983) proposed that the rhomboid
pattern might result from the association of antidunes and longitudinal striations.
This idea will be addressed in the present paper (see § 3.3).

After their own experimental observations, Karcz & Kersey (1980) concluded that
a homogeneous rhomboid pattern forms spontaneously over an initially flat bed, thus
suggesting an absolute instability. In a first attempt to perform the stability analysis
of a granular bed submitted to erosion by a laminar film, we have used the Saint-
Venant approximation to model the water flow. This model was expected to generate
a rhomboidal pattern under laminar conditions, as it does under turbulent ones (see
Defina 2003; Hall 2006). And indeed the shallow-water theory for laminar flows
does predict that a bar instability should develop. In turn, this instability leads to
diamond-shaped structures after saturation, due to nonlinear effects. In that sense, the
rhomboid beach pattern can be related to alternate bars in rivers (Callander 1969).

However, the Saint-Venant equations fail to predict the pattern angle better than the
Woodford’s law does. Contrary to the latter, the Saint-Venant model underpredicts
the pattern angle by a factor of about 3. The results are even worse regarding
the wavelength, but the theory at least qualitatively agrees with the observation of
Karcz & Kersey (1980) that a uniform wavelength spontaneously emerges.

The main flaw of the classical Saint-Venant equations regarding bedforms is that
they cannot represent the phase lag between a bed perturbation and the velocity profile
above it. When establishing the Saint Venant equations, one supposes that this profile
remains parabolic (Poiseuille flow). However, due to the acceleration over the crest of
the ripple, the velocity profile changes near the bed. This effect is responsible for the
formation of ripples (see Kennedy 1963; Charru & Mouilleron-Arnould 2002; Lagrée
2003), which appeared regularly during the experiments of Devauchelle et al. (2009)
(see also figure 1). This observation suggests that the shallow-water approximation
is inappropriate under such experimental conditions, at least in its simplest form. In
the present contribution, we replace this approximation by the full Navier–Stokes
equations in three dimensions.

An alternative method would consist in replacing the standard shallow-water
equations by the more elaborate but still two-dimensional model of Scheid, Ruyer-
Quil & Manneville (2006), which keeps track of the vertical flow motion. However,
for the linear stability analysis presented here, the full Navier–Stokes equations are
of much simpler use.

Coupling the water flow to the bed evolution requires a sediment transport model.
As long as bedload is the main transport mode, the grains motion is driven by the
water shear stress on the sediment surface only. Transport laws are generally written
as functions of the Shields parameter, which compares the tangential shear applied to
the bed to its normal counterparts (usually the weight of the upper grains layer, see
Shields 1936). However, in order to avoid the instability of short-wavelength bedforms,
one has to introduce a stabilizing mechanism. This can be achieved by taking into
account either the bed slope effect or the distance required for the particles flux
to reach equilibrium (Lagrée 2000; Charru, Mouilleron & Eiff 2004; Charru 2006;
Charru & Hinch 2006). The present paper generalizes the model proposed by Charru
(2006) to three dimensions, thus retaining both saturation mechanisms. As the full
Navier–Stokes equations are employed, no strong approximation about the flow
remains. For this reason, the rhomboid pattern can provide an experimental test for
sediment transport models.
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Figure 1. Various bedforms observed on the granular bed of a a laminar flume (Devauchelle
et al. 2009). The flow is from right to left. The pattern, observed through the water
surface, is enhanced by skimming light. The angle and wavelength of the rhomboid pattern
varies with the experimental parameters ((a) and (b)). Under certain conditions, ripples can
coexist with a rhomboid pattern (c). The width of the flume is 10 cm. (a) Large rhomboid
pattern (Fr = 1.76, S = 0.03, Bo = 1.31 and Sh = 0.616). (b) Small rhomboid pattern (Fr = 0.95,
S = 0.015, Bo = 3.25 and Sh = 0.485). (c) Rhomboid pattern mixed with ripples (Fr = 1.01,
S = 0.015, Bo = 3.50 and Sh =0.504). The definitions of the parameters are provided in § 3.2.

2. General model
We aim here to study the linear stability of an initially flat sediment layer, as a

laminar and steady film of water flows over it. Our primary objective is to derive a
model of the experiments presented in Devauchelle et al. (2009). Nevertheless, since
the rhomboidal pattern observed in the laboratory is extremely similar to natural
rhomboid patterns, chances are that the present model would also describe some
of them. Besides the laminar flow assumption, we also require that the flow is not
influenced by the roughness of the granular bed. In other words, the typical grain size
must remain negligible with respect to the water film thickness. This was true during
the experiment, performed with a 75 μm sand. Stauffer, Hajnal & Gendzwill (1976)
report natural rhomboidal patterns on beaches where the typical grain size ranges
from 100 μm to more than 1 mm. The applicability of the present model to natural
patterns depends on the flow depth, which is not easily measured on the field.

For simplicity, we assume an infinite system both in the direction x of the main
slope and in the transverse direction y (see figure 2). This is consistent with the usual
configuration of sand beaches where rhomboid patterns form, where the horizontal
dimensions (say a few metres) are far larger than the typical depth D of the backswash
film (a few millimetres). It may however be a crude representation of the experiments
of Devauchelle et al. (2009), performed in a 10 cm wide channel.

2.1. Water flow

The main flow direction is denoted x, and its transverse and vertical counterparts
are y and z respectively. The sediment surface is represented by h(x, y, t), and the
fluid free surface by η(x, y, t). The whole frame is tilted with respect to gravity in
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Figure 2. Schematic of the system and associated notations. A film of fluid with a free surface
flows over a granular layer. In § 3, the stability of a perturbation with wave vector k is analysed.

the x direction, so that the gravity acceleration g has components (gx, gz, 0) with
−gx/gz = tan S, thus defining the slope S.

The flow in the bulk is given by the stationary and incompressible Navier–Stokes
equations in three dimensions,

uk∂kui = − 1

ρ
∂ip + gi + ν∂kkui, ∂kuk = 0, (2.1)

where u, p and ν are respectively the velocity, pressure and viscosity of water, and
g is the acceleration of gravity. The use of stationary flow equations is a common
hypothesis in geomorphology, which requires that the bedform-evolution time scale be
much larger than the flow one (see Colombini & Stocchino 2005). As a consequence
of this hypothesis, the characteristic time scale (which will be defined in § 3) is based
only on the sediment transport.

If we neglect both the velocity of the upper layers of grains and the velocity of
water through the same layer, we may impose the classical no-slip boundary condition
at the sediment bed surface. This assumption is reasonable in the experiments. It has
been evaluated by comparing the measured flow depth to Nußelt’s prediction for a
given water discharge. Then,

ui = 0 at z = h, (2.2)

where z is the direction perpendicular to the (x, y) plane, which is slightly tilted in the
x direction (hereafter named vertical ), and h is the thickness of the sediment layer. At
the free surface, which elevation is denoted by η, both a kinematic and a dynamical
boundary conditions are imposed:

uz = ux∂xη + uy∂yη at z = η, σiknk = γ κni at z = η, (2.3)

where γ and n are respectively the surface tension of the fluid, and the unit vector
normal to the surface and pointing outwards. The free-surface curvature is referred
to as κ , which is linked to the surface elevation through the relation

κ =
∂xxη

(1 + (∂xη)2)3/2
+

∂yyη

(1 + (∂yη)2)3/2
. (2.4)
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The stress tensor is denoted by σ , whereas τ is its viscous component only:

σik = τik − pδik, τik = ρν (∂iuk + ∂kui) . (2.5)

The flow model presented above is rather general for gravity-driven and laminar
films. The stability of such films, without any sediment transport, has been intensively
studied, and they were proven generally unstable with respect to long-wavelength
perturbations (Yih 1963), leading to the formation of Kapitza waves (Kapitza 1948).
Such films present a wide variety of unstable waves, stationary or not. Indeed, Kapitza
waves are linearly unstable in two dimensions, but one can expect three-dimensional
structures to be also linearly unstable (Lin & Chen 1997). One could claim that
such purely hydrodynamic waves generate the rhomboid pattern, in what would be
an extended version of the theory of Woodford (1935). However, the present flow
model is stationary, and thus cannot describe any purely fluid instability. Only in
the next section on sediment transport will time enter the picture. Consequently, the
stability analysis of the present paper can only account for a fully coupled sediment-
flow interaction. During their experiments, Devauchelle et al. (2009) observed both
stationary and travelling hydraulic waves. None of them seemed to interact much with
the sediment patterns, which grew at a much slower time scale and with a different
angle than these waves.

2.2. Sediment transport

Various sediment transport models based on a grains balance in the moving sediment
layer have been proposed, both for liquid flows (Lagrée 2000) and for air flows
(Valance & Rioual 1999; Sauermann, Kroy & Herrmann 2001; Andreotti, Claudin &
Douady 2002; Hersen 2004), and widely developed for viscous flows by Charru
et al. (2004). The latter authors were able to measure the individual grains velocities
during bedload transport. Their model for averaged transport is thus supported
experimentally at each step of its derivation. The last version of this theory has been
adapted to gently sloping beds (Charru 2006; Charru & Hinch 2006). Values are
provided for the empirical coefficients of the theory, that allow to fit the experimental
data of Coleman & Eling (2000). In the present section, we aim to generalize
this model in three dimensions, by following the reasoning of Charru (2006). We
will end up with the remarkable result that no additional coefficient is required to
do so.

Let us denote by n the density of transported particles per unit surface. Then the
grains balances in the bedload layer and for the motionless grains read

∂n

∂t
= ṅe − ṅd − ∂qx

∂x
− ∂qy

∂y
, C∂th = −πd3

s

6
(ṅe − ṅd), (2.6)

where ṅe, ṅd and q denote respectively the rate of grains erosion from the fixed
layer, the deposition rate to the fixed layer and the horizontal grains flux. The bed
compactness is denoted by C. At first order, and for small bed slopes, this equation
does not differ from the flat-bed case, even though the direction of q no longer
belongs to the (x, y) plane. For bedload on an arbitrary sediment surface, the flux q is
tangent to the surface. Its horizontal components qx and qy only must be considered
in the Exner equation.

If we assume that the moving layer is dilute enough for the grain–grain interaction
to be negligible, then the deposition rate is proportional to the number of suspended
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particles times the Stokes settling velocity Us:

ṅd = cd

Us

ds

n, Us =
(ρs − ρ)‖g‖d2

s

18ρν
, (2.7)

where cd is an empirical constant, set to 1/15 after Charru (2006).
Originally, the Shields parameter was designed to compare the weight of a sediment

particle (corrected by its buoyancy) to the shear stress exerted by the fluid (Shields
1936), that is

Sh =
ρ‖τ h‖

(ρs − ρ)‖g‖ds

, (2.8)

where ds is the typical diameter of a sediment grain, and ρs is the density of the
sediment. The tensor τ h represents the horizontal viscous stress. Now, if the local
tilt of the sediment bed is to be considered, one has to compare the normal stress
component to the tangential one instead. It is the purpose of the following.

If nb is the unit vector normal to the sediment surface, then the viscous force
exerted on a surface of small area ε of the sediment surface reads

f ν
i = τikn

b
kε. (2.9)

If the pressure field is uniform at the grain scale, gravity is the only other force acting
on the moving grains layer, the thickness of which is denoted by cgds:

f
g
i = (ρs − ρ)giεcgds. (2.10)

The total force f = f ν + f g may then be separated into its normal and tangential
components:

f n = fkn
b
k, f t = f − f nnb. (2.11)

Note that f n is a negative quantity. In this frame, the natural generalization of Shields
parameter consists in writing

θ = −‖ f t‖
f n

. (2.12)

Through this definition of the Shields parameter, one recovers the two-dimensional
theory of Charru (2006) when considering a two-dimensional problem in the (x, z)
plane. In that sense, the present model is a generalization of the latter. The hypothesis
that θ only controls the intensity of the sediment flux relies on two basic assumptions:

(i) the effect of slope is isotropic with respect to x and y;
(ii) the thickness cgds of the moving grains layer is constant.

The first assumption is reasonable in general, whereas we are not aware of any direct
evaluation of the moving-grains layer thickness. Charru (2006) makes the second
assumption when stating that cg is a constant. As long as the bed is perfectly flat,
the moving-grains layer thickness itself can be a function of the Shields parameter as
usually defined (i.e. by (2.8)), and thus the intensity of the transport is a function of Sh
only. As soon as some slope is considered, it enters the picture as a new independent
parameter, and the above reasoning should not hold. However, Charru (2006) showed
that treating cg as a constant can lead to good results. We do the same here.

We usually consider that the erosion rate ṅe vanishes below a threshold value of
the Shields parameter, denoted by θt . Above this value, the simplest model consists
in assuming that the number of particles suspended by unit time and surface is
proportional to the excess Shields parameter Sh − θt . If we apply this idea to the
generalized Shields parameter, we thus assume that ṅe is proportional to cgθ − θt . The
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constant cg appears only due to our definition of θ . Indeed, cg sets the thickness of
the moving layer, and thus has an impact on the normal to tangential forces ratio.
As it varies and it is hard to measure, this quantity has been removed traditionally
from the definition of the Shields parameter, and embedded in the transport law.
We cannot use such a simplification here. With these notations, the threshold value
remains the one proposed by Charru (2006), namely θt ≈ 0.091. The choice of the
dimensional prefactors then fixes the empirical constant ce:

ṅe =
18ceUs

d3
s

(cgθ − θt ). (2.13)

Charru (2006) fixes ce to 0.0017, but we will see that this value has no impact on the
pattern shape in the linear theory. In the above relation, the slope influence on the
tangential shear stress is embedded into the definition of θ .

While they are detached from the bed, the grains are transported by the water flow,
thus generating a horizontal sediment flux q. The order of magnitude of the flow
velocity near the bed scales with the diameter of the grains and the shear ds∂zux . The
flux is then proportional to the concentration of moving particles n times this typical
velocity:

qx = ncuds

∂ux

∂z
, qy = ncuds

∂uy

∂z
, (2.14)

where cu ≈ 0.1 is the fifth and last empirical parameter of the sediment transport
law. This hypothesis can be understood as a simplified version of Bagnold’s model of
sediment transport by rivers (Bagnold 1977).

In order to remain consistent with the stationary flow model (see § 2.1), we must
drop the time derivative in the sediment balance equation (2.6). Thus, the particle flow
is considered stationary as well and we end up with the well-known Exner equation
(Exner 1925):

C∂th = −πd3
s

6
(∂xqx + ∂yqy). (2.15)

One should bear in mind that the above equation, a balance for the immobile grains,
does not replace the balance (2.6) for mobile grains. The latter is required to determine
the moving particle density n, even under the quasi-stationary approximation. In brief,
one can determine the concentration of moving particles using (2.6) with the quasi-
stationary approximation ∂n/∂t = 0. Then, (2.15) controls the topography evolution.

The Exner equation terminates the definition of our sediment transport model,
and the following section is devoted to the stability analysis of a flat bed within this
framework.

3. Stability analysis
The present section aims to demonstrate that, under the experimental conditions

where rhomboid patterns where observed by Devauchelle et al. (2009), the model
proposed above is unstable. As stated in the introduction of this paper, it is our claim
that the rhomboid pattern can maintain its basic features (angle and wavelength)
during its development. In other words, we believe (but do not prove) that the
nonlinear effects allowing for the bed perturbations to saturate do not modify
significantly theses features. If this is true, the results of the stability analysis can be
compared to measurements (see § 4), even though the latter concerns fully developed
bedforms rather than infinitesimal perturbations.
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3.1. Base state and dimensions

The simplest base state for our system consists in a flat (but tilted) sediment bed, over
which flows a uniform Nußelt film of thickness D. This roughly corresponds both to
the experiments (a rake was drawn over the granular bed before each run), and to the
natural initial condition on beaches (each swash event erases the remaining patterns
before the backswash). Assuming the grain size is small enough to do so, we neglect
the bed roughness here.

The Nußelt film above the bed reads

u0
x =

gx

ν

(
zD − z2

2

)
, p0 = −ρgz(D − z), (3.1)

where the subscript 0 refers to the base state. The water velocity vanishes in both the
y and the z directions. If U, D and P respectively refer to the typical scales of the
water velocity, depth and pressure, we define

U =
gx

3ν
D2, D = D, P = −ρgzD. (3.2)

The non-dimensional base state then reads

u0
x = UU

(
z

D

)
, p0 = PP

(
z

D

)
(3.3)

with

U (z̃) =
3z̃

2
(2 − z̃), P (z̃) = (1 − z̃). (3.4)

The tilde here denotes a non-dimensional height. In the following, all quantities are
non-dimensional, and the tilde will be dropped for clarity.

3.2. Perturbations

Let f refers to any quantity of interest for our problem (u, p, h, η and q). Decomposing
it into a base-state component F and a sine-wave perturbation of complex amplitude
f ∗(z) leads to

f (x, y, z, t) = F (z) + f ∗(z)ei(k cos ϕ x+k sin ϕ y−ωt), (3.5)

where k, ϕ and ω are respectively the wave-vector norm, its angle with respect to the
x axis, and the frequency of the perturbation. The non-dimensional wave vector is
normalized by D. In the same fashion, the time scale T for the frequency ω is given
by the Exner equation (2.15):

T =
6CD2

πldcdUsd2
s N

, (3.6)

where ld and N are respectively the deposition length defined by Charru (2006), and
the suspended concentration of the base flow:

ld =
3cuUd2

cdUsD
, N =

18ce

cdd2
s

(cgΘ − θt ). (3.7)

The deposition length, which corresponds to the order of magnitude of the average
flight length of a particle, introduces a space gap between the sediment flux and
the shear stress that generates it. This delay stabilizes the perturbations at short
wavelengths (Andreotti et al. 2002; Charru & Mouilleron-Arnould 2002; Lagrée
2003). Its relationship with the saturation length used in dune models is discussed
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by Charru (2006). With these notations, one recovers the steady state sediment flux
(saturated flux )

qs = cudsN∂zux. (3.8)

3.2.1. Linearized flow equations

For small perturbations, the momentum- and mass-conservation equations for the
fluid (2.1) read

Fr2(iUk cos ϕ ux + U ′uz) = −ik cosϕ p +
S

3
(u′′

x − k2ux), (3.9)

Fr2iUk cos ϕ uy = −ik sinϕ p +
S

3
(u′′

y − k2uy), (3.10)

Fr2iUk cos ϕ uz = −p′ +
S

3
(u′′

z − k2uz), (3.11)

u′
z + ik(cos ϕ ux + sinϕ uy) = 0, (3.12)

where Fr = U/
√

−gzD is the Froude number. The prime denotes derivation with
respect to the non-dimensional height z. The no-slip boundary condition (2.2) at the
bed surface in turn reads

ux + 3h = 0, uy = 0, uz = 0. (3.13)

At the free surface, the kinematic boundary condition imposes

uz =
3

2
ik cos ϕ η, (3.14)

whereas the dynamic boundary condition reads

−3η + u′
x + ik cos ϕ uz = 0, ik sinϕ uz + u′

y = 0, η − p +
2

3
Su′

z = − k2

Bo
η, (3.15)

where Bo = −gzρD2/γ is the Bond number.

3.2.2. Linearized sediment transport equations

Combining the definition of the concentration scale N with the linearized grains
balance relation for stationary sediment transport (2.6) leads to

Θ

Θ − θt/cg

θ∗ − n∗ − cuU
cdUs

(
ds

D

)2

ik(cos ϕ (3n∗ + u∗
x

′
) + sin ϕ u∗

y

′
) = 0, (3.16)

where the generalized Shields parameter for the base state Θ reads

Θ =
Sh

cg

+ S =
3Uνρ

cgd|gz|D(ρs − ρ)
+ S. (3.17)

The perturbation θ∗ for the Shields parameter is given by (2.12):

θ∗ =
1

3

(
2

(
Sh

cg

)2

(u∗
z

′ − 3ih∗k cos ϕ) − 3ih∗k cos ϕ (1 + S2)

+
Sh

cg

(u∗
x

′
+ 2Su∗

z

′ − 3h∗(1 + 3ik cos ϕ S))

)
. (3.18)

Finally, the Exner equation (2.15) allows to close the linear system, as did (2.15) for
the complete model:

ωh∗ = k(cos ϕ (3n∗ + u∗
x

′
) + sinϕ u∗

y

′
). (3.19)
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Figure 3. Growth rate Im(ω) of the three-dimensional instabilities of a granular bed submitted
to erosion by a laminar flow, as a function of the wave-vector norm k, and angle ϕ with respect
to the x direction. The blank domain corresponds to negative values of the growth rate, that is,
stable modes. As the parameters vary (here only the Froude number does), the bar instability
(a) and the ripple instability (b) alternatively dominate the system; and their coexistence
is exhibited (c). In this example, the flow parameters have values S = 0.02, Bo = 1, Sh = 0.5
and Ud2

s /(UsD2) = 0.05. The transport law parameters are set to θt = 0.091, cu/cd = 1.5 and
cg = 0.11.

In this linear theory, only three out of five coefficients need to be fixed in order to
define the sediment transport law (θt , cu/cd and cg). The two remaining parameters
are embedded into the definition of the characteristic time T.

3.3. General features of the bed stability

The system of ordinary differential equations (3.10)–(3.12) is linear. For any wave
vector k, it can thus be solved numerically by means of the linear shooting method
to fit the boundary conditions (3.13)–(3.15). Likewise, once the sediment transport
law is defined by its empirical parameters θt , cu/cd and cg (respectively 0.091, 0.9 and
0.108 in the present case), one can derive the complex frequency ω from (3.16), (3.18)
and (3.19). Finally, for a given set of experimental parameters S, Fr , Bo and Sh , the
dispersion relation of our system is obtained.

3.3.1. Ripples and bars

The dispersion relation for the bed perturbation provides informations about both
the velocity of sand waves and their stability. In the present paper, we will focus on
stability issues, since the associated predictions (pattern angle and wavelength) are
easily measured experimentally.

The growth rates of three typical examples are plotted on figure 3. In the range
of parameters that we have explored, the system is typically unstable. The relation
dispersion always presents at least one positive maximum, and sometimes two. The
position, existence and relative importance of these maxima depend strongly on all
the flow parameters, and in a non-trivial way. The simultaneous existence of two
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Figure 4. Influence of the free surface on the ripple instability (Re = 27 and S = 0.01 for both
plots). (a) The flow has a free surface, with vanishing surface tension (Bo → ∞). (b) The flow
is covered with a rigid lid, at z̃ = 2, so that the base-flow profile is the complete Poiseuille
parabola, which lower half corresponds exactly to the Nusselt film of the free-surface case.
The values of the other flow parameters are the same as in figure 3.

distinct instabilities allows us to propose the following definitions, which we think are
consistent with the common use in the literature:

(i) ripples correspond to a growth rate maximum lying on the k-axis, that is, for
ϕ = 0;

(ii) bars correspond to any other maximum.
The formation of sand ripples has received much attention, as an ubiquitous

geomorphological pattern, since the early works of Exner (1925), Kennedy (1963)
and Reynolds (1965). The mechanism leading to the ripple instability is now clearly
established. It is similar in laminar (see Charru & Mouilleron-Arnould 2002; Lagrée
2003) and turbulent flows (see Colombini 2004; Elbelrhiti, Claudin & Andreotti 2005).
Its basics can be reduced to the (x, z) plane, that is, in the main flow and vertical
directions. On the windward side of a bump, the water inertia draws the flow lines
closer together, and the velocity increases. The reverse occurs on the leeward side.
The shear stress being a combined effect of the velocity variation by the streamlines
thinning, the net effect of the flow lines squeezing is to increase the skin friction on the
windward side. Now, viscosity induces a slight asymmetry of the flow, which makes
the skin friction extremal just before the crest (Lagrée 2003). The Exner equation
(2.15) then indicates that deposition occurs just after the bump, thus growing the
perturbation and moving it forwards. This process being two-dimensional, it can
only create invariant structures in the transverse direction. The term ripples generally
implies this y invariance, at least during the initiation stage. A second characteristic
of the ripple-formation mechanism is that the velocity profile is locally strongly
accelerated near the bed and then differs from the Poiseuille flow. This cannot be
represented by the classical Saint-Venant equations (although some more subtle two-
dimensional models can (Kouakou & Lagrée 2005; Scheid et al. 2006). It explains
why any bed-stability analysis performed with the shallow-water equations predicts
stable ripples at any wavelength (Devauchelle et al. 2009). Finally, ripples can grow
in deep water or in a pipe, that is, without any free surface (see figure 4 and Kuru,
Leighton & McCready 1995).
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Figure 5. Influence of the free surface on the bar instability in a purely viscous flow (Re = 0
and S =0.02 for both plots). (a) The flow has a free surface, with vanishing surface tension
(Bo → ∞). (b) The flow is covered with a rigid lid. In figure (b) the colour scale has been
modified in order to show negative contours. The values of the other flow parameters are the
same as in figure 3.

The three criteria listed above allow one to distinguish theoretically between ripples
and pure bars. Contrary to ripples, bars can be modelled by means of the shallow-
water approximation at first order (Devauchelle et al. 2007). Their wave vector is
inclined with respect to the main flow direction (see figure 3), and thus cannot be
represented in the (x, z) plane only. As shown on figure 5, bars can exist in purely
viscous flows, for a vanishing Reynolds number. However, such viscous bars require a
free surface, and would not appear in a pipe flow. When inertia plays a role, however,
the picture is more complex: the bar instability can exist even when a rigid lid covers
the flow. This instability disappears at low Reynolds number. We are not aware of
any experimental observation of some bar-type pattern in a pipe flow.

Hereafter, the expression pure bars refers to the conceptual instability that can
develop in purely viscous flows with free surface. In this sense, bars result from
a combination of mechanisms involved in pure bar formation and mechanisms
associated to ripples. To our knowledge, the first mathematical derivation of the bar
instability is due to Callander (1969), and was soon associated to river meandering,
although this point remains controversial (Ikeda, Parker & Sawai 1981; Blondeaux &
Seminara 1985). Alternate bars in rivers are its most striking occurrence in Nature
(Knaapen & Hulscher 2003). They result from the crossing of two bars instabilities
of angle ϕ and −ϕ. It has been demonstrated, both experimentally (Lajeunesse et al.
2009) and theoretically (Devauchelle et al. 2007), that laminar flumes are also prone
to similar bars development. Langlois & Valance (2005) performed a linear stability
analysis comparable to the present one. However, their analysis was designed for a
pipe flow, and thus did not include a free surface. As a consequence, their results are
very similar to ours as far as the ripple instability is concerned, but did not show any
bar instability.

Pure bars and ripples may be distinguished as two limiting cases of sediment-flows
instability. However, in the range of parameters explored by Devauchelle et al. (2009)
when studying rhomboid patterns, the two are mixed in a bar-type instability which
presents some ripples features. Figure 6 illustrates this point. The first-order velocity
field above a wavy bed corresponding to the bar instability is far from a parabola,
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Figure 6. Complex velocities field for the bar instability. The solid line represents the real
part of the velocity perturbation, whereas the dashed line represents its imaginary part. The
shape of the perturbation in the full three-dimensional case differs significantly from the
Nußelt parabola. These velocity profiles correspond to the maximum for the bar instability of
figure 3 for F = 0.8, that is, k = 1.38 and ϕ = 0.53.

and thus could not be approached by means of the classical shallow-water equation,
due to the strong influence of inertia. Within the nomenclature of the present paper,
such bars are not pure bars.

3.3.2. Transition from bars to ripples

Figure 3 shows the evolution of bar and ripple instabilities with respect to the
Froude number. Initially (Fr = 0.4 on figure 3), the only unstable mode corresponds
to ripples. Now, if the Froude number is increased to Fr =0.8, the growth-rate
maximum leaves the ϕ = 0 axis, and consequently becomes a bar instability. Note that
the dispersion relation being symmetrical with respect to the ϕ = 0 axis, this process
splits the ripple instability into two symmetrical bar instabilities. If the Froude number
is further increased, a ripple mode becomes unstable again, this time in association
with the pre-existing bar instability. Rapidly, the maximum corresponding to ripples
dominates.

Figure 7 shows the influence of the Froude number on the instabilities in more
details. The splitting of the ripple instability described above is clearly apparent for
a slope value of S = 0.02. However, this type of transition disappears if the slope
is increased to S = 0.03. This behaviour illustrates the complexity of the parameters
influence on the dispersion relation, thus explaining why Devauchelle et al. (2009)
could not extract from the experiment a simple criterion for the transition from
rhomboid patterns to ripples.

The theory proposed by Ikeda (1983) to describe the formation of rhomboid
patterns in turbulent flumes must probably be rejected, at least in the laminar case.
Instead of the interaction of ripples with longitudinal striations, we suggest that such
pattern result from an instability which is a mixture of pure bars an ripples.

3.3.3. Sensitivity to the sediment transport law

The sediment transport law proposed by Charru (2006) involves five empirical
parameters, namely θt , cu, cd , ce and cg . Its extension to three dimensions, exposed



342 O. Devauchelle and others

0.5 1.0 1.5

0.5 1.0 1.5
F

S = 0.02

S = 0.03

0

π/4�

π/2

0

π/4�

π/2

(a)

(b)

Figure 7. Angle ϕ of the local maxima of the dispersion relation as a function of the Froude
number. The parameters other than the Froude number and the slope are those of figure 3.

in § 2.2, does not increase their number. Both θt and cuce/cd appear in the transport
rate of stationary and uniform flows. They can thus be measured rather easily
in experiments (Charru et al. 2004). Access to the others requires either direct
measurement of the particles flux (Charru et al. 2004), or the study of some bed
instability, as in the present work.

The geometrical properties of the unstable modes are fully determined by the
parameters θt , cu/cd and cg (see (3.16)–(3.19)). Figure 8 shows the theoretical variation
of the pattern angle as a function of each of them. The ratio cu/cd has a decisive
influence on the angle of the bar instability, even within the range of values proposed
by (Charru et al. 2004), namely [0.9, 2]. This result was expected, since the deposition
length ld is proportional to cu/cd (see relation (3.7)). This characteristic length is
believed to control the wavelength of ripples and dunes (Lagrée 2003; Elbelrhiti et al.
2005).

The influence of cg is far more moderate, since it must be varied by orders of
magnitude before influencing sensibly the instability pattern. Finally, the influence of
the threshold Shields parameter θt is even weaker, and can safely be neglected in the
entire possible range of this parameter (i.e. from θt = 0 to the measured value of the
Shields parameter, above which the theory becomes irrelevant).

Hereafter, both θt and cg are set to the values proposed by Charru (2006) for low
particle Reynolds numbers, namely θt = 0.09 and cg = 0.11. The ratio cu/cd is set to
1.5, an intermediate value between 0.9 and 2, which leads to better predictions than
any of the two extreme values.

4. Comparison with flume-experiments data
The experimental apparatus used to reproduce the formation of rhomboid erosion

patterns is presented in details in Devauchelle et al. (2009). The following section aims
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Figure 8. Sensibility of the bar instability mode with respect to the parameters of the
sediment transport law. The black disks indicate the angle ϕ of the maximum. The flow
parameters correspond to a real case, for which F = 0.51, S = 0.02, Bo =0.5, Sh = 0.34
and Ud2

s /(UsD2) = 0.08. The transport law parameters are set to θt = 0.091, cu/cd = 1.5 and
cg = 0.11, except naturally for the one involved in each plot.

only at a brief and general description, followed by comparison with the theoretical
results presented above.

4.1. The experimental set-up

The experiments of Devauchelle et al. (2009) were performed in a small channel of
length 240 cm and width 9.6 cm. The granular bed is made of silica beads of mean
diameter 75 μm. The slope S in the flow direction x can be freely varied, as well as the
water outflow. The flow depth never exceeds a few millimetres. The special features of
this experiment are its small size, as well as the use of a mixture of glucose and water
(the mixture viscosity ν varies between 10−6 m2 s−1 and 5.6 × 10−6 m2 s−1). These two
characteristics yields flows at low Reynolds number (generally a few tens, and always
less than 500).

The surface tension γ of the water–glucose mixture was not measured during the
experiments (the mass ratio of glucose to water was varied up to 50 %). However,
the influence of glucose on surface tension is fairly moderate (the surface tension
of a 17 % mixture increases of less than 2 %, and the surface tension of a 55 %
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Figure 9. Existence diagram for the rhomboid pattern. Grey disks: experimental observation
of a rhomboid pattern. These data correspond to a single viscosity (ν ≈ 2.0 × 10−6 m2 s−1), so
that the F and S are the only varying parameters. The solid line represents the theoretical
transition from bars to ripples. The dashed line indicates a characteristic growth time equal to
30 s for the bar instability.

water–sucrose mixture increases of about 5%, see Docoslis, Giese & van Oss 2000).
In the following, we will thus consider that the surface tension of the mixture can be
approached by the pure water value, that is, 74 × 10−3 Nm−1.

A run consisted in raking the sediment surface into a flat surface, before starting
the flow. After a few seconds, a bed pattern forms, and its characteristics are recorded.

4.2. Experimental patterns and stability results

For each experimental run, the parameters Fr , Bo and Sh can be determined from the
measured quantities (slope S, water discharge and viscosity), under the assumption of
a Nußelt base state. The associated dispersion relation is then determined as described
in § 3. Figure 9 compares the theoretical existence domain for the rhomboidal pattern
with the experiments. Only the experimental runs involving a single viscosity are
represented on this figure, in order to reduce the parameter space to two dimensions.
The experimental procedure was designed to focus on rhomboid patterns, and stable
experiments were stopped, as well as those leading to ripple formation. The parameter
space was intensely explored, and thus the absence of circle on diagram 9 indicates a
domain where either ripples dominate the system, or no instability developed.

Rhomboidal patterns developed almost only where the linear stability analysis
predicts their existence. Our stability analysis indicates that rhomboid patterns might
also exist at low Froude numbers, but the observation time chosen during the
experiment (between 30 and 60 s) kept Devauchelle et al. (2009) from recording them.

Nevertheless, rhomboidal patterns where never observed at high slope value (say
above S =0.05), even though they should exist according to the stability analysis.
Neither the failure of the laminar assumption (which would involve a critical Reynolds
number) nor the development of Kapitza wave (the system unstable with respect to
these wave in the range of parameters where rhomboidal patterns were observed, see
Yih 1963) can explain this observation. This point is still an open question.

In order to further test the predictions of the linear stability against experimental
data, we have determined for every experimental run, the position and amplitude
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Figure 10. Comparison between the model presented in this paper, and the experimental
results of Devauchelle et al. (2009). The comparison focuses on the geometrical characteristics
of the rhomboid pattern: opening angle α = π/2 − ϕ (in degrees) and non-dimensional
wavenumber k. The disks indicate a global maximum in the dispersion relation, whereas
the crosses indicate only a local maximum. The sediment transport law employed here is a
generalization in three dimensions of the model initially proposed by Charru & Hinch (2006).
We used the flow parameters measured during the experiments for the stability analysis. The
parameters of the erosion law are provided by Charru (2006). No additional free parameter
was required for our analysis. On both plots, the solid line corresponds to the one-to-one
relationship.

of the theoretical growth-rate maxima in the (k, φ) plane. Figure 10 compares these
results to the geometrical characteristics of the experimental patterns.

The opening angle prediction is rather correct, given the measurement precision
(about 10 ◦, the pattern being usually fainter than it appears on figure 1). The large
scatter (especially at high values of the angle alpha) is very likely due to inaccurate
flow-parameters measurements. Indeed, as illustrated by figure 7, a small variation
of a parameter in the neighbourhood of the ripple-bars transition can induce a large
displacement of the most unstable mode.

The stability analysis is less accurate as regards the pattern wavelength. Indeed, even
if the order of magnitude is correct, the theory predicts a rather constant wavenumber
of order one, whereas the experimental data lie regularly between 0.1 and 4. We were
not able to correct this tendency by tuning the empirical parameters of the sediment
transport law.

5. Discussion and conclusion
The present paper proposes a natural framework to model the stability of laminar

films with respect to sediment transport by bedload. It is shown that a generalization
in three dimensions of the transport law proposed by Charru & Hinch (2006) and
Charru (2006) can account for the beach rhomboid patterns initiation. It is thus fair
to say that the diamond-shaped structures commonly observed on beaches are the
laminar counterparts of alternate bars in rivers.

In return, since the rhomboid pattern is easily produced experimentally, it would be
tempting to use it as a test case for sediment transport models. Their three-dimensional
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structures add one more constraint on the bedload model (the opening angle) as
compared to ripples. Transport laws are a key issue in geomorphology, and the bed
slope influence on bedload remains a modelling challenge, especially in the transverse
direction. Such an application of the present work would require that the flow model
is correct. Such condition might not be fulfilled, especially at high values of the
Reynolds number. Indeed, some of the discrepancy observed on figure 10 might be
caused by the vorticity generated by the roughness of the sand surface, instead of
some failure of the sediment transport law (as suggested by a referee of the present
paper). In order to avoid this problem, one would have to limit the experiment to
low Reynolds numbers, and to use a bed material as fine as possible.

The sediment transport law successfully used here was derived from a grains
balance equation written for the bedload layer. This may indicates that laws for
turbulent flows similarly derived could improve our understanding of rivers bedforms
generation. This is the method used by Parker, Seminara & Solari (2003) to develop a
new bedload transport model. To the heavy experiments conduced by Francalanci &
Solari (2006) in order to evaluate the latter model, one could associate rhomboid
pattern experiments, since these structures can also develop in turbulent flows (Morton
1978; Ikeda 1983). Interpreting such an experiment would require a three-dimensional
stability analysis, with a turbulent flow and a free surface, similar to the one proposed
by Besio, Blondeaux & Vittori (2006) for marine sand banks.

A next step towards the understanding of the rhomboid beach pattern would
be to study its finite-amplitude behaviour, and particularly its saturation. Such an
effort would allow to draw two new constraints on the sediment transport laws,
namely the bedforms amplitude and velocity. As suggested by a reviewer of the
present paper, the use of two-dimensional flow models of higher order than the
Saint-Venant approximation (Scheid et al. 2006), instead of the full Navier–Stokes
equations, would certainly facilitate such development. Numerical experiments in
progress suggest that the nonlinearity in the sediment transport would be more
important than the nonlinearity in the flow itself.

It is our pleasure to thank François Métivier, Clément Narteau, Stéphane Zaleski,
Philippe Claudin and Bruno Andreotti for fruitful discussions. We also wish to
express appreciation to Antonio Vieira and Yves Gamblin for the building of the
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Academy of Science.
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