
INTRODUCTION 
 
When walking on the foreshore one may notice 

the presence of a small (a few centimeters), fine and 
regular rhomboid pattern, as the one presented on 
Figure 1. Similar patterns where experimentally ob-
tained by Daerr et al. (2003), when withdrawing a 
plate covered with a granular material from a bath of 
water, at constant angle and velocity. 

The striking regularity of the pattern may lead to 
incriminate a purely hydrodynamic instability (the 
crossing stationary gravity waves in super-critical 
flumes often result in comparable patterns). The 
sand topography deformation would then only be the 
mark of an inhomogeneous water velocity field. The 
experiments of Daerr et al. (2003) suggest that a 
transverse instability of the moving contact line at 
the intersection of water and sediments surfaces 
might be responsible for the appearance of this ero-
sion patterns. However, most experimental runs lie 
outside the existence domain of a contact line (see 
Devauchelle et al. 2007a). This invalidates the con-
tact-line instability hypothesis. 

The present paper aims to demonstrate that the 
bank instability, well-known in rivers since the work 
of Callander (1969), is a good candidate to represent 
the initial steps of rhomboid patterns development. It 
is not exceptional in Geomorphology that a large-
scale phenomenon, naturally occurring in turbulent 
rivers, has a laminar counterpart. Even if direct up-
scaling should not be expected in general, it has 
been recently demonstrated that the mechanisms of 
erosion by water flows in laminar and turbulent re-
gimes are very comparable. This statement holds in 
various situations, from alternate bars to gravity cur-
rents, including meanders and braids (Malverti et al. 
2007; Malverti et al. 2008; Métivier et al. 2005; 
Smith 1998; Devauchelle et al. 2007b). Such anal-
ogy justifies the use of small-scale experimental set-
up to better understand the fundamental features of 
erosion pattern formation. 

In the present article, a simple two-dimensionnal 
model is proposed to represent erosion by laminar  
flow. It is then analyzed to show how the non-
linearity of a classical sediment transport law may 
generate a propagating erosion front. Numerical 
analysis demonstrate that the crossing of symmetric 
fronts leads to the formation of rhomboid patterns. 
Finally, we briefly present preliminary experimental 
experiments designed to reproduce the formation of 
these patterns under controlled conditions. 
 
 

Figure 1. Erosion rhomboid pattern appearing on a beach near 
Goleta, California, USA. The mean width of a single rhombus 
is approximately 5 cm.  

1 TWO-DIMENSIONNAL MODEL 

1.1Equations 
The model presented in this section has been 

simplified as much as possible, while keeping the 
essential features of bank instability. It is directly 
inspired by those commonly used in river Geomor-
phology, and adapted to laminar flows. It can cer-
tainly be improved on many points (sediment trans-
port law, slip condition for the bottom water veloc-
ity), but our purpose here is only to demonstrate its 
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ability to represent the formation of rhomboid pat-
terns. 

The full problem consists in solving the Saint-
Venant (shallow water) equations coupled with the 
following equation of mass conservation for sedi-
ments (Exner Equation): 
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where the stared quantities are non dimensional 
and q* is the flux of mass sediments. It is linked to 
the horizontal projection of the skin friction :  
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 Where gamma determines the slope effect coeffi-
cient. The exponent beta reflects the non-linearity of 
the transport law (Shielen et al. 1993).  

The Saint-Venant equations may be linearized for 
a small perturbation of the topography as: 
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where (u,v) are the averaged linearized water veloci-
ties over the water depth, respectively in the (x,y) 
direction. The mean slope of the topography h in the 
longitudinal direction x is denoted by S. F is the 
Froude number. The surface elevation is 

! 

h . The lin-
earized skin friction reads  
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 Nevertheless we do not linearize the sediment 
equation since it is the main nonlinear effect (Hall 
2006). We only linearize its directional part. 
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2 LINEAR STABILITY 

The above sytem of equations admits a trivial 
uniform soution on the horizontal plane: 
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u  and 
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qx are equal to one, while any transverse flux van-
ishe. Sediment transport indeed occurs, but does not 
lead to any deformation of the topography as a con-
sequence of its uniformity. 

In many cases, this state is linearly unstable. If it 
is perturbed with an erosion wave of the form 

 

! 

h = e
i k"x#$t( )   (6) 

 
where k is the perturbation wavenumber, and ω its 
complex pulsation. The stability of the erosion wave 
depends on the sign of the imaginary part of the pul-
sation,

! 

" #( ). Figure 2 presents this imaginary part 
plotted under typical flow conditions. 

 
Figure 2. Bank instability growth rate 

! 

" #( )as a function of 
the wave vector k. 
 
The most instable waves are inclined with respect to 
the main flow direction (the figure is symmetrical 
with respect to the x-axis), whereas no instability can 
develop in the flow direction. This property results 
from the inability of Saint-Venant equation to repro-
duce ripple formation. In rivers, where bank condi-
tions must be imposed, the sum of two symmetrical 
erosion waves leads to alternate bars formation (see 
Callander 1969). 
 The bank instability presented on Figure 2 is not 
based on inertia. Indeed, if the Froude number F is 
set to zero in equations (3) and (4), an instable ero-
sion wave with similar characteristics can still de-
velop. This results holds for both laminar and turbu-
lent flows. 

3NON-LINEAR EVOLUTION 

 The fully non-linear versions of equations (1) to 
(5) can be numerically solved. It is thus possible to 
follow the growth of an erosion wave of finite am-
plitude. As presented on Figure 3, non-linearities 
affect the shape of a single sinusoidal wave. 



 
Figure 3. Evolution of an isolated erosion wave (numerical 
simulation). Non linear terms in the erosion equations lead to a 
steep front formation. n denotes the propagation direction.  

 
The downstream sides of the perturbation 

steepen, until an abrupt front is formed. This mecha-
nism is reminiscent of shock wave formation in 
gazes. 

As the steepness of the front increases, the sedi-
ment diffusion mechanism due to gravity, repre-
sented in Equation (2) by the term proportional to γ, 
slows down the wave growth. Eventually, an equi-
librium shape of amplitude
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is reached, which 
propagates without being deformed.  

As long as the wave amplitude remains small 
enough, the flow equations may be linearized. The 
main non-linear effect is then due to the erosion law 
(2), where β plays the role of a tuning coefficient 
controlling the non-linearity of the sediment trans-
port relation. This idea was successfully introduced 
by Hall (2006) for turbulent rivers. 

We used the same approximation to numerically 
determine the saturation amplitude of erosion shock 
waves, for different values of the β parameter. These 
results are plotted on Figure 4. Below a certain criti-
cal value
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values, an erosion wave remains stable. Above this 
value, the saturation amplitude
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grows nearly as a 
square root function of β, indicating a super-critical 
bifurcation. 
 

 
Figure 4. Saturation amplitude
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of the erosion wave vs. the 
erosion law parameter β. 

  
Here, it should be noted that even though we 

simplified the analysis through the use of a power 
erosion law, the same results could be obtained with 
a different law, provided the skin friction remains at 
a finite distance from any threshold. 

4 FORMATION OF A DIAMOND-SHAPED 
PATTERN 

4.1Numerical simulations 
 Under natural or experimental conditions, one 
cannot observe the development of a single sinusoi-
dal mode. Instead, the boundary conditions, as well 
as the initially perturbed bed topography leads to the 
co-existence of the two symmetrical modes. The 
crossing of the two shock waves issued from these 
modes forms a typical diamond-shaped pattern. 

 
This result can be reproduced numerically, as shown 
on Figure 5. The opening angle of the fully devel-
oped rhombi (about 25°) is close to the angle be-
tween the two most instable linear modes. This simi-
larity is an indication that the bank instability is re-
sponsible for the formation of rhomboid erosion pat-
terns. 

 

 
Figure 5. Numerical simulation of crossed erosion fronts under 
laminar flows conditions. Hall (2006) presented similar results 
in turbulent rivers. 
 
 Hall (2006) first proposed a similar mechanism in 
rivers, for turbulent flows at a much larger scale. 
The existence of large banks inclined with respect to 
the main flow direction was also pointed out in ma-
rine conditions by Idier & Astruc (2003). 
 We were able to reproduce experimentally rhom-
boid patterns by eroding a bed of silica power by a 
laminar flow (the Reynolds number being of the or-
der of 100). An example from these experiments is 
presented on Figure 6. As the experimental parame-
ters are varied, the size of a rhombus (that is, the 
mode of the instability) varies. This variations re-
flects the transition between the most instable modes 
of the bank instability (see Devauchelle et al. 2007). 
 



 
Figure 6. Diamond-shaped erosion pattern formed in a laminar 
experimental flume. The bed is made of silica beads which 
mean diameter is 100 µm. The width of the channel is 5 cm, 
and the flow height about 5 mm. 

 
The experimental erosion shock wave quickly 

reach an invariant shape, and propagates down-
stream. Their velocities are about 1-10 mm.s-1. 

5 CONCLUSIONS 

This study proposes a simple two-dimensionnal 
model able to reproduce, at least qualitatively, the 
diamond-shaped erosion patterns first pointed out by 
Daerr et al. (2003). The instability involved in their 
formation is that of alternate bars, which is based on 
the interaction between flow and sediment transport.  
This coupled mechanism cannot be reduced to a 
purely hydrodynamic feature, as it is often the case 
in Geomorphology, see the meandering theories of 
Ikeda et al. (1981) and Blondeau & Seminara 
(1985). 

Besides the practical interest of investigating the 
formation and displacement of sandbanks, the study 
of erosion rhomboid patterns might provide new 
tools to the query of sediment transport laws. In-
deed, the main characteristics of these patterns, 
namely their opening angle and velocity, can easily 
be measured. If the dependence of these characteris-
tics with respect to the erosion law are theoretically 
understood, they can provide additional information 
to experimentalists. As long as the amplitude of the 
erosion shock waves remains small enough, they 
will not perturb the global sediment flux of the basic 
state, which may be measured simultaneously and 
independently. 
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