Morphodynamic modeling of erodible laminar channels
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A two-dimensional model for the erosion generated by viscous free-surface flows, based on the
shallow-water equations and the lubrication approximation is presented. It has a family of self-
similar solutions for straight erodible channels, with an aspect ratio that increases in time. It is
also shown, through a simplified stability analysis, that a laminar river can generate various bar
instabilities very similar to those observed in natural rivers. This theoretical similarity reflects the
meandering and braiding tendencies of laminar rivers indicated by F. Métivier and P. Meunier,

(Journal of Hydrology, 27 1, pp. 22-38 (2003)).

Finally, we propose a simple scenario for the

transition between patterns observed in experimental erodible channels.

PACS numbers:

I. INTRODUCTION

Natural rivers seldom form straight beds. Instead, they
usually develop braids or meanders as a consequence of
current-induced sediment transport. The understanding
of such river sedimentation mechanisms can also help to
characterize the spatial heterogeneity of alluvial rocks,
which is a key parameter when simulating aquifer flows
or oil traps in petroleum reservoirs [1]. The theoretical
work of [2], [3] and [4] introduced among geomorpholo-
gists the fruitful idea that such patterns may originate in
the linear instability of the flow, bed and bank system.
Two-dimensional turbulent shallow water equations as-
sociated with a simple sediment transport law are able
to predict the formation of alternate bars in channels of
constant width. Such bars have been commonly accepted
as a key phenomenon for braids and meander formation
[5]. Numerous refinements of this theory may be found in
the literature: [6] performed the bar stability analysis in
three dimensions, while [5] focused on the differentiation
between braids and meanders. Later [7] and [8] relaxed
the rigid-banks hypothesis. [9] and more recently [10]
modeled the non-linear evolution of free bars. All these
works (and to our knowledge, every study in this field)
considered turbulent flows, which is entirely legitimate as
far as natural rivers are concerned (the average Reynolds
number of the Seine river in Paris is about 10°). However,
one should not conclude from this ubiquity of turbulence
that braiding and meandering are inherently turbulent
phenomena. [11] very recently accumulated experimental
evidence showing that laminar flumes may also generate
many patterns created by real rivers. In particular, the
constant flow of a thin liquid film down an homogeneous
granular bed initially crossed by a straight channel ex-
hibits rather complex pattern dynamics as the flume is
deformed by erosion (see [12]). First, the channel widens
while remaining straight. Then a meander-like instabil-
ity develops, which deforms both the bed and the banks.
Eventually, more bars develop in the middle of the chan-
nel and the river starts to braid [? ]. This behavior is

qualitatively comparable to the one of larger channels, at
higher Reynolds number (see the two meters-wide exper-
iment of [13]). To our knowledge, no quantitative exper-
imental results have been published about river erosion
instabilities in the laminar regime. As a consequence, the
results presented here can only be compared to the quali-
tative evolution described in [12]. Reference to turbulent
experiments can only illustrate the sound similarity with
the laminar case.

Our objective is to comfort the idea that micro-rivers
can be an intermediate step toward the understanding of
natural rivers morphodynamics. We do not claim that
quantitative results from micro-rivers could be extrapo-
lated to field results (see section ITA). We are rather
convinced that such small-scale experiments share with
larger ones many features still under investigation (non-
linearity of the flow-sediment interaction, equilibrium
shape of the bed, behavior and influence of the bank).
Such laminar flow approach can also help to disentangle
the role of the turbulence in the river morphodynamics.
Moreover, theoretical as well as numerical river models
could be easily tested against micro-rivers data, before
adding the complexity of turbulence and switching to
larger experiments and natural rivers.

In a first section, a two-dimensional evolution model
for laminar flumes is presented. It is based on the as-
sumption that the velocity profile is close to Nuflelt’s one.
A rather general erosion law is then discussed and com-
pared to the experiments of [14]. The following section
is devoted to the study of a straight river widening pro-
cess, and an analytical solution is proposed in a simple
case. In the third section, the linear stability analysis of
a straight laminar flume with solid banks is presented.

II. A TWO-DIMENSIONAL MODEL

Let us consider an experiment during which an ini-
tial channel incised into a uniform and non-cohesive sand
layer is eroded by a viscous flow. If the slope of the sand
bed remains small enough, one may use two-dimensional



FIG. 1: Sketch of a riverbed: h is the elevation of the sand
surface and d is the water depth. The axes x and z are tilted
with respect to horizontal. The Saint-Venant approximation
is used for the velocity field u = (u,v).

equations to model both the water flow and the sediment
transport. A rather general assumption (commonly used
in river mechanics) consists in the time-scale separation
between the flow and erosion process: the bed evolves
slowly enough for the flow to be quasi-static (see [5], [4],
[6] and [8]). Of course, this hypothesis fails during such
violent events as roll-waves .

In the present article the following notations are used
(see also figure 1):

e z and y are the coordinates in the plane of the
experiment, the first aiming toward the main slope.
z is the coordinate normal to the plate;

e /1 is the elevation of the sand surface and d is the
water depth (n = h + d is thus the water level);

e u = (u,v) is the vertically averaged water velocity,
the horizontal water flux components being ud and
vd,

e S is the plate tilt;

e g is the magnitude of gravity, and v is the kinematic
viscosity of water.

A. Water flow

The present micro-river model requires that the wa-
ter flow is laminar, so that it can be approximated by a
vertical velocity profile of Nuflelt type. For this assump-
tion to hold, the Reynolds number Re = wugdy/v must
remain low enough (dy and wug are the typical height and
velocity scales respectively). The water velocity u is thus
approached by a parabolic velocity profile which adapts
instantaneously to the topography:

u(z,y,z,t) ~ 35(2 = (ulz,y,1),v(x,9,1),0), (1)

where £ = (z — h)/d. This method corresponds to the
lubrication approximation. Different approaches may be
found in [15] or [16], though in one dimension. Equation

(1) allows us to define the horizontal shear stress vector
T at the bed surface:

ou u
— ~ 3pwlV— 2
oz, 3pwr (2)

z

T = pwV

Secondary currents are thus neglected, although many
authors believe they strongly influence erosion in devel-
oped meanders (see for example [17]). The effect of sec-
ondary currents is sometimes taken into account in the
shallow water framework by mean of an ad hoc term in
sediment transport equations (see [8]). Since the present
study is restricted to straight channels, we will here-
after assume that the curvature of the flow remains small
enough for the secondary currents to remain negligible
(this argument is developed by [18]). This approxima-
tion is actually correct for any curvature, provided the
Reynolds number is low enough.

The vertical integration of the Navier-Stokes equa-
tions, associated with (1), leads to the viscous shallow
water equations (sometimes named the Saint-Venant’s
equations):

6 3v

—(u-Vyu=g(-V(d+h)+ Se;) — 2w (3)

V- (ud) = 0, (4)

where e, is the unit vector parallel to the xz-axis. These
equations are very similar to those used for turbulent
rivers. The only differences lie in the coefficient 6/5 which
becomes 1 in the turbulent case, and in the friction term
—3vu/d? which becomes —C|lullu/d (C being a fric-
tion coefficient, related to the Chézy coefficient). One
cannot thus expect micro-rivers to be scaled models for
natural ones, since the laminar flow equations cannot be
reduced to the classical turbulent ones. On the other
hand, it is interesting to point out similarities and differ-
ences between these two different (although not too far)
cases, turbulent and laminar.

B. Sediment transport

The river bed evolves under the influence of both ero-
sion and avalanches. In the present context erosion con-
sists of flow-induced bed-load transport of sand grains.
On the other hand, avalanches are collective phenomena
triggered by an excess slope of the sand surface. In the
continuous model developed here, we can only handle
the average effects of erosion and avalanches. This ap-
proximation allows for the definition of a total volumic
sediment flux q(z,y,t) integrated along the vertical di-
rection. Assuming a strong time scale separation between
erosion and avalanches, one may consider the associated
fluxes (respectively q. and q,) as independent. The con-
tinuity equation for sand then reads:

Oh
— =_-V.q, (5)



where q = qe¢ + qo. Finally, closure relations have to
be deduced, either on dimensional, physical or empirical
grounds in order to link (5) to the flow equations.

Erosion contribution. Most of the relations between
the sediment flux and the flow are proposed in the litera-
ture as functions of the Shields number 6, which expresses
the ratio between hydrodynamic forces exerted on a grain
to its apparent weight :

licdl

=—-"11
ds(pg — pw)g

(6)

where d, py, pg and T are respectively the typical parti-
cle diameter, the density of water, the density of a grain
and the bottom shear stress. As suggested by [19], we
propose the following expression as a classical relation-
ship (see the review of [20]) for small slope:

ae = 9(0) <i -G w) , (7)

lidl

where ¢ is a growing function that may include a thresh-
old value, and G is a diagonal operator.

To determine a plausible form for ¢(0) we shall use re-
cent experimental results obtained by Charru, Mouilleron
and Eiff for grain transport in the viscous flow regime[14].
Their results on grain transports are partially reproduced
on figure 2 and these authors suggest then the following
transport law :

Npds

S

=0.856(6 — 0.12)H(6 — 0.12), (8)

where N, is the particle flux, and V; is the Stokes set-
tling velocity of a particle (Vs = gd2(ps — pw)/(18Vpw)).
‘H is the Heavyside function. IV, is linked to ¢ through
g = NpV, where V is the volume filled by a particle in
the sediment layer. According to this expression, no sed-
iment is transported at Shields number values below a
threshold. However, [14] indicates that some particles
remain in motion at Shields numbers lower than 0.12 dur-
ing a transition regime, and will eventually settle after an
“armoring time [...] very large compared to the hydrody-
namic time scales”. Maybe due to this armoring time %,
their measurements of the sediment flux do not exactly
vanish below the threshold (see figure 2). According to
[14], a typical dimensionless value for ¢, is 10°. In the
present notations, the ratio between the erosion typical
time scale T' defined in section IIT A reads

B
ta '7V Pw dO
< =10° —S5— 9
T dsd(2) (ps - Pw ds) ’ ( )

which is typically much larger than one. The armoring
phenomenon is a possible explanation for thresholds in
transport laws. Since it occurs at time scales much larger
than the erosion ones, it is tempting to use a pure power
law function instead of formula (8), as already proposed
earlier to model sediment transport under turbulent flow

(such as [10] for instance). Such a law may be adjusted
to fit the data of [14] (see again figure 2) and it gives:

N,d?

S

=5.136%7. (10)

Relations (8) and (10) cannot be in fact clearly separated
by the experiments of [14]. Thus, for simplicity reasons,
we will use the second one in what follows. This choice
will be discussed again in sections III and IV.

The above discussion suggests that the sediment trans-
port measurements proposed by [14] should be used with
great care when dealing with erosion patterns formation
by laminar flows: equilibrium state may not be reached
if erosion is intense enough. This question also arises in
the study of real rivers, but transient sediment transport
is far out the scope of the present study. The general
form of the erosion law is then taken as:

$(0) = ¢o0”, (11)

reminding that ¢o &~ 5.13 VV;/d? and (3 ~ 3.75 to fit the
data of [14]. These values are fixed only as an illustrative
case in the sequel.

The second term in (7) reproduces the slope-induced
deviation of the sediment flux. [10] sets G = I where v
is a constant of order one. This isotropic approximation
is questionable, but should not influence qualitatively the
results. This term is mathematically essential to cut-off
short wavelength instabilities (see Section IV B). Accord-
ing to the definition of the bottom shear stress (2), the
sediment transport equation (7) becomes

qc = B, (%)B (ﬁ = Wh) : (12)

with Ee = ¢o(3puwr/(291(pg — pw)))”-

Awalanches. The full dynamics of avalanches is far out
the scope of this study. Instead, we may propose a simple
model which reproduces the following features:

e the sand mass is conserved through the avalanche
process;

e there are no avalanches under a critical slope «;

e above the critical angle, q, is directed toward the
main slope and increases with the slope value.

Considering these criteria, we propose the following ex-
pression :

Vh
do = —E.F (||VR]]) VAl (13)

where F(-) = (-—a)H(-—a) and E, is a constant. Indeed,
a similar law has been successfully employed for aeolian
dunes by [21].

Finally, it is important to notice here that these fluxes
d. and g, do not account for the saltating grain dynam-
ics. In a simplified approach, the grains motions would
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FIG. 2: Different transport laws compared with the ex-
perimental results obtained by [14]. The grains are trans-
ported by a viscous flow in a circular Hele-Shaw cell. N, is
the particle flux, and Vs is the settling velocity of a parti-
cle. Dashed : threshold law proposed by [14], Npds/Vs =
0.85 6(6 — 0.12)H(6 — 0.12). Solid line : power-law fit,
Npds/Vs =5.13 637 . This law will be used as an illustrative
case in the present study.

end up into a settling distance at which the fluxes develop
(see [22] and references herein for a discussion of these
terms). It manifests in the dynamics through a phase
shift between the shear stress and the fluxes. By sake
of simplicity, we do not take into account such a term
although it could be implemented easily. Such approxi-
mation corresponds somehow to a limit where the density
ratio between grains and water is high. In the following,
it is in fact remarkable that the instability exists without
such phase shift.

C. Boundary conditions

Flow equations (3) and (4) together with sediment
transport equations (5), (12) and (13) form a closed sys-
tem. To solve this system in the fixed domain €2, condi-
tions must be specified on its boundary 0f2. Their general
form writes

Aud+ ppu-n=my,, Aph+ ppq-n=my, (14)

where Ay, fy, Ty, A\n, pp and 7, are functions to be
specified. n is the 2D unit vector normal to J€), aiming
outward. In the general case, 2 may include sub-domains
where q = 0. In such domains, the evolution equation
becomes Oh /0t = 0.

If one wants to restrict the analysis to the active sub-
domain 4 (t) where q # 0, the conditions to be imposed
on its mobile boundary 9§24 (t) are

u-n=0, qy -n=clhy—h),

dhy  dh_
ot = Viartcm Vhi+n-Vho). (15)

In the above equations, ¢ is the normal velocity of the
frontier 94 (t), the subscripts + and — denotes quanti-
ties evaluated respectively inside and outside Q4 (¢). d/dt
is the convective derivative at a point of 92, (t) moving
with velocity e¢n. The first boundary condition reflects
the time scale separation between flow and erosion (so
that the condition for the normal velocity of the bound-
ary is zero instead of ¢). The following ones correspond
to the sediment mass conservation equations integrated
over a small domain crossed by 924 (¢). A special case
of (15) has been derived by [23].

The classical conditions for non-erodible and imperme-
able banks are obtained from (15) by setting ¢ = 0. In
that case, and for turbulent flow, bar instabilities may
develop (see [10] for stability analysis and weakly non-
linear theory of bars). The present paper shows that
bar instabilities of the same nature may also develop in
laminar conditions. To switch from bars to meanders
and braids, the condition ¢ = 0 must be relaxed. In a
seminal paper, [8] used an empirical estimation of ¢ as
a function of the additional stress induced by secondary
flows. They also implicitly assumed that the bank ma-
terial input due to erosion had no influence on the bed
evolution (they set q -n = 0 despite a finite value for c).
They showed that meandering results from the interac-
tion between alternate bars instabilities and the so-called
bend instability, which results from the curvature of the
bank. For micro-rivers, their hypothesis would not hold,
since bed and banks are of the same granular material.
The elaboration of a bank evolution law able to model
the effect of avalanches is the subject of on-going work.
The present stability analysis (section IV) is restricted
to channels with rigid banks (¢ = 0), as were the first
equivalent studies in the case of real rivers (see [4]). On
the other hand, in the case of a prismatic river (section
III), equations are solved on the whole © domain, and
thus no boundary conditions are required. For the full
determination of the solution moreover one has to pre-
scribe global boundary conditions on the upstream and
downstream fluxes of water.

III. PRISMATIC CHANNELS

For a straight, z-invariant river, the equations derived
in section II turn into a one dimensional non-linear dif-
fusion equation which admits self-similar solutions. The
reader interested in the problem of real turbulent river
cross-section, a complex two-dimensional problem in the
general case, may refer to [23-27] among others.

A. A non-linear diffusion equation

For a prismatic river, any quantity only depends on
time and the transverse coordinate y. The flow equations



(3) and (4) thus become

S
u(y,t) = Ld(y, 1),

=0
3v v ’

d(y,t) + h(y, t) = n(t). (16)

The water discharge

Qu= [ (wnay (17)

— 00

is usually fixed in experiments, and thus governs the evo-
lution of n(t). For the sake of simplicity, we will consider
a different case in what follows. If 7 instead is fixed, this
arbitrary constant may be set to zero (and thus h = —d).
This case represents a river supplied by an infinite reser-
voir. The sediment transport equations (5), (12) and (13)
lead to

oh o0 oh
* - Ié; *
Ot 0y« (( h*) ay*)

LR () m() o

In the above equation, the starred quantities are dimen-
sionless. The initial depth dj is the characteristic length.
The typical widening time scale is defined by

_ d_% ds(pg _pw))ﬁ
T_v%( puSdy ) (19)

The non-dimensional number ¢, = d3/(TE,) compares
typical avalanches flux to erosion ones. It will be consid-
ered very small in what follows.

The non-linear diffusion equation (18) may be solved
numerically. A classical first-order finite-volume scheme
leads to the solution presented in figure 3 at different
times. The initial width is w. o = 2.5, and ¢, is fixed
to 0.1. The value of ¢, has a weak influence on the
result, provided it is small (the same computation per-
formed with ¢, = 0.01 gives similar results). However,
the Courant, Friedrichs, and Levy condition imposes a
numerical time step smaller and smaller as the value of ¢,
is reduced. The erosion law is fixed by setting 8 = 3.75.
The influence of any other parameter of the problem,
such as the Froude number or the channel slope is em-
bedded in the definition of the time and space scales.

Trough erosion, the river widens and gets shallower,
while its cross-section area remains constant. This is
in qualitative accordance with experiments during which
the water outflow was fixed, instead of the water level
in the present theory (see [12], [28], [7] and [29]). Since
the erosion law (10) presents no threshold, this widening
process will never stop in the framework of this model,
which may seem unreasonable. Some authors ([7], [29])
managed to reach an equilibrium width, but in most ex-
periments ([12], [13]) the channel invariance along the

z-axis falls before any equilibrium can be reached, due
to bar instabilities ([7] and [29] removed the meander-
ing tendency by using a half-river). To our knowledge,
no river-widening experiment where carried out in the
laminar regime at a fixed water level.

B. Self-similar solutions

If avalanches are neglected, or if the transverse slope
of the channel Oh/Jy can remain always smaller than
the critical slope a (so that no avalanche occurs), the
last term of (18) drops. This particular case has simple
self-similar solutions of the form

1
P (Ysr ts) = tl/(Tg)f(X)' (20)

where x = y*/ti/(ﬁ+2). Then (18) leads to

0 s0f xS\ _
" ((—f) o+ m) 0. (21)

If fs is a symmetrical solution to (21), dfs/dy = 0 at
x = 0, and thus integration of (21) gives

fs(X) =

B 1o 2(3+2)

0 elsewhere,
(22)

where A is a constant. Let A, be the (non-dimensional)
area of the cross-section. Then

A / (Y, i) Ay

[ (awe

Thus when avalanches can be neglected, (18) admits a
set of self-similar solutions parameterized by their cross-
section area. The solution corresponding to A, = —2.5
is represented on figure 3. Despite its rectangular initial
cross-section, the numerical solution converges towards
its self-similar counterpart. This behavior seems quite
general: it very weakly depends on the initial conditions
or the value of .

Onuly for 8 =1 (that is for an unrealistic linear erosion
law) does the self-similar solution behave regularly at the
banks. In that case, the river cross-section is a parabola.
It width increases as t'/3 while it shallows as t~1/3. If the
initial shape is flat enough to avoid avalanches, this con-
dition holds at any time. Unfortunately this case cannot
model erosion patterns formation, since it is uncondition-
ally stable (see section IV).

On the other hand, if § > 1 the picture is quite dif-
ferent. The continuous widening process still holds: the

1/B
_ _Al/ﬁ+1/2 52 _ 1> dé- (23)

0



FIG. 3: Widening of a straight laminar channel through ero-
sion, modeled with (18). Parameter values are ¢, = 0.1,
a = 0.8, and 8 = 3.75. Solid lines: numerical solutions of (18)
at different times (with avalanches). Dashed line: self-similar
solution (without avalanches, see section I1IIB) at t. = 10,
t« = 100 and ¢, = 1000. The presence of avalanches seems to
influence only a small zone near the bank. The main part of
the river section tends to the self-similar solution in any case.

width increases as t'/(#+2) while the depth decreases as
t=1/(F+2) | However, in that case the bed slope dh. /dy.
diverges at the banks. Thus avalanches must occur at the
banks, and the self-similar solution fails. This tendency is
observed in laboratory experiments (see [30] among oth-
ers), and was already pointed out by [23]. The effect of
bank avalanches is difficult to quantify analytically. Ac-
cording to numerical simulations in the case § = 3.75
however (see figure 3), they do not seem to influence
strongly the bed evolution far enough from the banks.
Consequently one may still consider the results of the
self-similar theory as a good approximation of the full
system solutions.

IV. LINEAR STABILITY

Experimental channels such as the one of [12] or [13]
often remain stable for a while, then develop meanders
which in turn are followed by more complex braided-like
patterns. This scenario of transitions (sometimes called
ageing) may be interpreted as the successive dominance
of different unstable modes. If the widening process pre-
sented in the previous section is slow enough, a straight
river may be chosen as a quasi static base state for a
stability analysis. This is what we will assume in the
following, so we will disregard any interaction between
widening and instabilities.

A. Derivation of the dispersion relation

In order to present the simplest stability model which
keeps the essential features of channel stability, we will

consider a rectangular base state with solid-wall bound-
aries, of width wy and depth dy (its aspect ratio is thus
R = woy/dp). The boundary conditions at the bank are
u-n=0and q-n =0. The basic water velocity is uni-
form and parallel to the z-axis (ug = gSd3/(3v)), and so
is the basic sediment flux (go = FE.(uo/do)”). Let us seek
traveling-wave perturbations of this base state:

(p(;p, Y, t) = o + €px <wi0> ei(kz/ﬂ)o?wt/(’YTR)), (24)

where ¢ = (u,v,h,d, gz, qy). The base state corre-
sponds to @9 = (ug, 0, —do, do, go,0) and the perturba-
tion is ¢u = (UoUs, UoVx, doh, dods, QoG+ G0y x)- T =
dowo /(yRqo) is the characteristic erosion time defined in
section IIT A, and € is a small dimensionless amplitude of
the perturbation. k is a real dimensionless wave-number
whereas w is complex in the general case. (3), (4), (12)
and (5) lead to the following system:

(gFQik + RS) Uy + ikhy + (ik — 2RS)d. =0, (25)

6 dd dh
—F%k+ RS | v, + — * =0, 26
(52+ >v+dy+dy (26)
dv,
ik (dy + us =0, 27
ik(de + us) + Q (27)
. . dqy «
—iwhy + ik . + —2= =0, 28
» (28)
ik
Goe = Bus — —Lh, — Bd., (29)
R
v dh.

In the above system, F' = ug/(gdg)*/? is the Froude num-

ber of the unperturbed channel. Parameters F';, S and R
may be varied independently in experiments. Indeed, if
Q. is the water outflow of the river, then

_ (3 2\
" ((T) ;> | o

9F8y5>1/3

e (32)

Qw—3R<

The full (F, R, S)-space may be explored by tuning the
slope of the apparatus, the initial width of the channel
and the water outflow. Of course, the validity of the
present theory requires the parameters to satisfy some



conditions. First, the flow has to be laminar. The low
Reynolds number condition can be easily checked:
uodo 3F2

Re = =5 (33)
Capillarity can also cause the failure of the theory[? ].
Near the banks of the channel, capillarity generates a
meniscus of characteristic size l. (I. = (I'/(pg))'/?, where
T is the surface tension). The quantity of water flowing
through the meniscus zone should remain negligible as
compared to the total outflow. As a crude approxima-
tion, the outflow in the meniscus zone Q) is evaluated
by Poiseuille’s formula : Q. ~ gSI2/v. The condition
Qu > Qu,m thus reads

ne (L) o

The ratio of the water depth versus the capillary length
is given by

doi 2/3 1/6 (P 12 (Fv 2

Consequently, (34) may be satisfied for any values of R, F’
and S provided the viscosity of the fluid is high enough[?
]. Typical parameters values during the experiment of
[12] (carried on with pure water) are Q,, = 13- 1076 m3
s 5 = 0.088 and wy = 0.1 m. The non-dimensional
number of the experiment thus are R =~ 130, F ~ 2,
Re ~ 130 and dp/l. ~ 0.3. Condition (34) was not sat-
isfied in this experiment. However, we expect that the
error resulting from this failure should only affect the
evaluation of non-dimensional parameters from the ex-
perimental data, but the qualitative behavior predicted
by the theory should hold.

If the linearized transport equations (29) and (30) are
used to remove g, . and gy . from the mass conservation
equation (28), equations (25) to (28) become a system
of four equations with unknowns us, v., ds and h,. The
velocities u, and v, may then be expressed as functions
of d, and h, through the momentum equations (25) and
(26). The conservation of water and sediment mass thus
become a system with unknowns d, and h., which in turn
can be reduced to

4 2
dh. 4
dy* dy?

In the above equation,

+ Bh, = 0. (36)

A= (36F'k>y + 30F%k( — 2k
— ikR(1+ B+ 457) + iRw) + 25RS (2ik>y
+kR(=3+ 3 —3S7) + Rw))/(5(6F2k — 5iRS)~),

1 F?
B = 5 (k <k3 (7 - GTW) +ik*R(26 4 357)+

1
i( =5+ 6F?)kRw+ 3R2Sw) > (37)

The boundary conditions state that both the water ve-
locity and the sediment flux vanishe at the bank. Thus
equation (30) implies that

ah (1) _ dh- (—3) =0. (38)
dy \ 2 dy 2

Equation (26) then leads to dd./dy = 0 at the banks.
Equation (25) implies in turn that du./dy = 0 at the
banks. Due to equations (29) and (27) respectively,
dge«/dy = 0 and d*v,./dy> = 0 at the banks. The
sediment mass conservation (28) finally imposes that

d2qy7>k /dy? = 0 at the banks. One may then deduce from
the second derivative of equation (30) that

d*n, (1 d®h, (1

— | =] =——|—-=) =0. 39

dy? (2) dy? ( 2) (39)
Let s1, s9, —s1 and —so be the four solutions of the

characteristic equation attached to (36), namely

s* 4+ As? + B=0. (40)

Then, if C; 4, C1,—, Ca 4+ and Cy _ are four independant
constants,

h* = OLJreSly + 011,6751‘7!
+ 027+652y —+ 021,6752y (41)

is a solution of (36). Such a solution must satisfy the
boundary conditions (38) and (39), that is

S1 (0174_651/2 _ 017_6_51/2) +

59 (02)4_682/2 _ 02)_6—52/2) -0
S1 (ClereiSl/Q _ 0177651/2) +

S9 (02)4_6_82/2 _ 02)_652/2) -0
S? (CLJresl/Z _ 01776751/2) +

S% (02#652/2 _ 02176752/2) -0
S? (Cl7+€_51/2 _ 017_681/2) +

53 (Copem /2 = Cy _e%/?) =0

(42)

The determinant of the system 42 reads
4s7s3 (s5 — 33)2 sinh(s1) sinh(sz), (43)
and vanishes only if s = inw, where n is an integer (pro-
vided s? and s are distinct). The integer n corresponds
to the number of roots of h, in the width of the river.
One may then derive the dispersion relation from (36):
w = (5kR(5iRS( — n*7*(=3 + B) + 2k*B)

— 6F?k(2k*B + n*7*(1 4 B))) — i(k* + n’x?)
(6F%k —5iRS)(( — 5+ 6F°)k* — bn’r”
—15ikRS)v) /(R(6Fk — 5iRS)

((=5+6F%)k* — 5n’n® — 15ikRS)). (44)
If A2 = 4B, then the roots s; and s, are equal. Similarly,
if A =0, s; is the opposite of s5. In both cases however,

the boundary conditions impose again s = inm, and the
dispersion equation (44) is still valid.
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FIG. 4: Linear growth rate o of bed instability in a laminar
river, versus the corresponding non-dimensional wave num-
ber k. The fixed parameters values are 3 = 3.75, v = 1,
S = 0.0875. The Froude number and aspect ratio are varied
according to a straight river widening (see section IV B and
points ¥; on figure 5). Above : R; = 20.3 and Fy = 3.94;
middle : Rz = 35.0 and F»> = 3.21; below : R3 = 55.0 and
F3 = 2.71. For each set X; = (R;, F;), the solid curve cor-
responds to the mode n = 1, whereas the dashed one cor-
responds to the mode n = 2. The successive dominance of
modes provides an interpretation for the transition from al-
ternate bars to braids observed experimentally by [12].

B. Results interpretation

The linear stability of a channel depends on the sign of
the maximum growth rate over n and k, respectively the
transverse and longitudinal wave-numbers. We will thus
focus on the imaginary part ¢ of w in what follows. Let
0m be the maximum growth rate, and k,, and n,, the
corresponding wave-numbers (i.e. o = 0(kpm,nm) =
maxger,nen(0)). The transverse wave-number n char-
acterizes the instability pattern: n = 0 for y-invariant
dunes (this mode can also initiate step-pool instability),
n = 1 for meanders and n > 1 for braided patterns. The
present theoretical framework fails to predict the step-
pool instability often observed in narrow channels [31],
as o is always negative for n = 0. This is not surpris-
ing for the phase-shift between the bed deformation and
the water shear stress is neglected here (this phase shift
controls sand ripple formation, see for instance [22]). For

higher modes, on the other hand, a positive growth rate
is possible (see figure 4), despite the lubrication approx-
imation. This indicates that the instability mechanism
governing bars formation is different than the phase shift
induced by the advection term in the case of dunes and
ripples.

The fluid and sediment choices determine parameters
v and 3. Both parameters are crucial to the present
model. The diffusion term which is proportional to v
stabilizes the high n modes. Without it, the higher n,
the higher 0,,. As in [10], we take v = 1 in the following.
If 8 =1, that is if the sediment flux is proportional to the
shear stress, then no instability ever appears (again o is
always negative in that case). Instability may occur only
if 8 > 1. 8 = 3.75 is chosen hereinafter as an illustrative
case (see section II B).

Figure 4 illustrates the transition to bed instability as
the aspect ratio is increased, for constant tilt and Froude
number. A deep and narrow channel is stable, as for no
values of n and k can o be negative. A shift to a larger as-
pect ratio value allows for the n = 1 mode to be unstable.
For a still wider channel, both n = 1 and n = 2 modes
are unstable, but the latter grows faster. These transi-
tions can be summarized in a three-dimensional phase
diagram, with coordinates R, F' and S. A constant S
slice of this diagram is presented in figure 5. The bor-
ders between domains are characterized by the following
relations (o, 5 is the maximum growth rate correspond-
ing to mode n):

® 0,1 = 0 between the stable domain and the mode
1 domain;

® 0,1 = Om,2 between the mode 1 domain and the
mode 2 domain;

® 0,2 = 0 between the stable domain and the mode
2 domain.

Each point of the curves represented on figure 5 was ob-
tained by numerical maximization of the dispersion equa-
tion.

The most surprising feature appearing on the diagram
of figure 5 is that bars can be unstable even for vanishing
Froude number (and thus for vanishing Reynolds num-
ber). In that case, inertia is completely neglected. In
other words, bars may develop in a purely viscous flow,
which is impossible for dunes and ripples. Since a purely
viscous flow can present no transverse recirculation, the
above statement proves that neither turbulence nor re-
circulation are inherently linked to bar formation.

The same diagram also provides a crude interpreta-
tion for the aging of laminar laboratory rivers. Let us
consider for example the case of section III, for which
the mean water level is fixed, while its bed and banks are
freely eroded. If we assume a quasi-static evolution of
the bed width so that the stability analysis for fixed wall
can be roughly used, we can draw a schematic scenario
for the river deformation. Thus, the tilt S remains con-
stant throughout the experiment whereas, in accordance



with (22
follows:

), the Froude number and aspect ratio evolve as

Roc t¥/(B+2) | o ¢3/(2(5+2)) (45)
This parameterized curve correspond to F =
Fo(R/Ro)®/* in the stability diagram (the subscript 0
denotes initial conditions). In most cases this curve
comes successively through the three stability domains
of figure 5, allowing for the successive development of
different bars modes . If the water output is conserved
instead of the water level (this condition is more com-
mon in experiments), the straight channel evolution is
characterized by

F = Fy(R/Ro)™"/*. (46)

Again, for realistic initial conditions (Ryp = 20.3 and
Fy = 3.21 in the experiment of [12]), the river undergoes
different instability regimes as it ages. The three points
¥; drawn on figure 5 would then represent three different
states of the same experiment, extrapolated from the ini-
tial condition using (46). The corresponding growth rate
are plotted in Figure 4. When the highest growth rate of
the first mode crosses zero, alternate bars appear, even-
tually replaced by higher order modes, leading to braided
patterns.

If a threshold is introduced in the erosion law, the river
eventually reaches an equilibrium state. The position of
this equilibrium in the stability diagram is an indication
about the instability patterns the river will preferentially
develop. For instance, we may expect that a river will de-
velop meanders if its equilibrium state lies in the domain
where the n = 1 mode is the most unstable one.

V. CONCLUSION

The present paper demonstrates that the equations
governing the evolution of laminar micro-rivers are very
similar to their counterpart in the turbulent case. Ex-
perimental evidence of this similarity are collected in
[11]. This results suggests that micro-rivers could fa-
cilitate the examination of some remaining difficulties of
river morphodynamics, such as non-linearities or bank
evolution. In a first attempt to develop viscous chan-
nel widening and stability theory, we presented a two
dimensional shallow-water model. A very simplified an-
alytical approach based on this model was sufficient to
describe qualitatively the aging process observed in some
experiments. A diagram presenting the dominant un-
stable modes with respect to the channel tilt, Froude
number and aspect ratio was obtained (figure 5), which
shows a large domain of existence for the meandering

mode (n = 1) at small (or even null) Froude number.
This illustrates the sound difference between bars and
dunes or ripples, which need inertia to grow.

The use of a fluid more viscous than water in exper-
iments would allow to reach very low Froude numbers,

4,

F2b

0 50 100 150
R

FIG. 5: Stability diagram for a laminar channel. The domains
(separated by solid lines) are named after the most unstable
mode between n = 1 and n = 2. The parameters values
are 0 = 3.75, v = 1 and S = 0.0875. The dashed lines
represent the evolution of a straight river when the water level
is imposed (F = Fy(R/Ro)*'*) or when the outflow is imposed
(F = Fo(R/Ro)~*®). The three points X; correspond to the
three cases presented in figure 4.

while reducing the perturbing effect of capillarity. The
consecutive reduction of the Reynolds number would pre-
vent recirculation, thus allowing the experimental sepa-
ration between the effects of recirculation and bars insta-
bility.

The relaxation of the rigid banks hypothesis requires
the development of bank erosion models, able to take
avalanches into account. Such an improvement, asso-
ciated with numerical simulation, would allow to test
the laminar Shallow-water theory against experiments in
conditions closer to natural rivers.
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