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Meandering of laminar channels
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A two dimensional model for the erosion generated by viscous free-surface flows, based
on shallow-water equations and the lubrication approximation is presented. It has a
family of self-similar solutions for straight erodible channels of invariant section, with
an aspect ratio that increases in time. It is also shown, throught a simplified stability
analysis, that a laminar river can generate meander-like and braid-like instabilities very
similar to those observed in natural rivers. This supports the idea that meanders and
braids do not require turbulence to develop. Finaly, we propose a simple interpretation
for the transition between patterns observed in experimental erodible channels.

1. Introduction

Natural rivers seldom form straight beds. Instead, they usually develop braids or mean-
ders as a consequence of current-induced sediment transport. The understanding of river
sedimentation mechanisms can help to characterize the spatial heterogeneity of alluvial
rocks, which is a key parameter when simulating aquifer flows or oil traps inpetroleum
reservoirs (de Marsily et al. (2005)). The theoretical work of Reynolds (1965), Hansen
(1967) and Callander (1969) introduced among geomorphologists the fruitful idea that
such patterns may originate in the linear instability of the bed. Two-dimensional turbu-
lent shallow water equations associated with a simple sediment transport law are able
to predict the formation of alternate bars in channels of constant width, and it has been
commonly accepted as a first approximation that such bars may generate braids and
meanders (Parker (1976)). Numerous refinements of this theory may be found in the
litterature: Engelund & Skovgaard (1973) performed the bar stability analysis in three
dimensions, while Parker (1976) focused on the differentiation between braids and mean-
ders. Later Ikeda et al. (1981) and Blondeaux & Seminara (1985) relaxed the rigid-banks
hypothesis, and more recently Schielen et al. (1993) modelled the non-linear evolution
of free bars. All these works (and to our knowledge, every study in this field) considered
turbulent flows, which is entirely legitimate as far as natural rivers are concerned (the av-
erage Reynolds number of the Seine river in Paris is about 106). However, one should not
conclude from this ubiquity of turbulence that braiding and meandering are inherently
turbulent phenomena. Malverti et al. (2006) very recenlty accumulated experimental ev-
idence showing that laminar flumes may generate all patterns created by real rivers. In
particular, the constant flow of a thin liquid film down an homogeneous granular bed
initially crossed by a straight channel exhibits rather complex pattern dynamics as the
flume widens through erosion†. The present study investigate the theory of laminar rivers

† Personnal communication from E. Lajeunesse and F. Métivier
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Figure 1. Sketch of a riverbed.

stability. Our objective is to support theoretically the idea that laminar flumes may be
considered as models of their turbulent counterpart.

In a first section, a two-dimensional evolution model for laminar flumes is presented.
It is mostly based on the assumption that the velocity profile is of Poiseuille’s type, and
that the shallow-water theory holds. The following sections are devoted to two simple,
analytically tractable cases: the translation invariant straight river with erodible bed,
and the linear stability of a channel of constant width.

2. A two-dimensional model

Let us consider an experiment during which an initial channel incised into a uniform
and non-cohesive sand layer is eroded by a viscous flow. If the slope of the sand bed
remains small enough, one may use two-dimensional equations to model both the water
flow and the sediment transport. A rather general and commonly used assumption for
morphogenesis consists in the time-scale separation between the flow and erosion process:
the bed evolves slowly enough for the flow to be quasi-static(see Parker (1976), Callander
(1969), Engelund & Skovgaard (1973) and Blondeaux & Seminara (1985)). In the present
article the following notations are used (see also figure 1):
• x and y are the coordinates in the plane of the experiment, the first aiming toward

the main slope. z is the coordinate normal to the plate;
• h is the elevation of the sand surface and d is the water depth (h + d is thus the

water level);
• u = (u, v) is the vertically averaged water velocity, the horizontal water flux com-

ponents being ud and vd;
• S is the plate tilt;
• g is the magnitude of gravity, and ν is the kinematic viscosity of water.

2.1. Water flow

For sufficiently low values of the Reynolds number, one may consider that the flow is close
to Poiseuille’s one. The water velocity is thus represented by a parabolic velocity profile
which adapts instanteanously to the topography (this corresponds to the lubrication
approximation). Secondary currents are thus neglected, although many authors believe
they strongly influence erosion in developped meanders (see for example Blankaert &
de Vriend (2004)). For viscous flumes however, this is probably not an essential feature.
The vertical integration of the Navier-Stokes equations leads to the viscous shallow water
equations:

6

5
(u · ∇)u = g (−∇(d + h) + Sex) −

3ν

d2
u, (2.1)
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∇ · (ud) = 0, (2.2)

where ex is the unit vector parallel to the x-axis. These equations are very similar to
those used for turbulent rivers, except for the friction terms (proportional to |u| /d2 in

the present case, and to |u|2 /d in the turbulent case).

2.2. Sediment transport

The river bed evolves under the influence of both erosion and avalanches. In the present
context erosion consists of flow-induced entrainement of sand grains. On the other hand,
avalanches are collective phenomena triggered by an excess slope of the sand surface.
The continuous model here developped can only handle the average effects of erosion and
avalanches. This approximation allows for the definition of a total sediment flux q(x, y, t)
integrated along the vertical direction. Considering the strong time scale separation be-
tween erosion and avalanches, one may assume that the associated flux (respectively qe

and qa) are independant. The continuity equation for sand then reads:

∂h

∂t
= −∇ · q, (2.3)

where q = qe + qa. Closure relations derived on dimensional and empirical grounds
link (2.3) to the flow equations. Most of the relations between the sediment flux and the
flow are proposed in the litterature as functions of the Shields number θ, which expresses
the ratio between hydrodynamic forces exerted on a grain to its apparent weight :

θ =
|τ |

(2r)(ρg − ρw)g
, (2.4)

where r, ρw, ρg and τ are respectively the typical particule radius, the density of water,
the density of a grain and the bottom shear stress. We follow Balmforth & Pronvenzale
(2001) who propose the following expression as a classical relationship for small slope:

qe = φ(θ)

(

τ

|τ |
−G · ∇h

)

, (2.5)

where φ is a growing function that may include a threshold value, and G is a diagonal
operator. On the basis of his experiments in the viscous flow regime, Charru et al. (2004)
suggests that φ(θ) ∝ θ(θ − θc) above the threshold value θc. Such a threshold may
control the shape of equilibrium river bed (see section 3). However, this threshold is
hardly distinguished experimentally from a continuous decay of φ. A simpler relation
such as φ(θ) = φ0θ

β (where φ0 and β are empirical constants) may fit satisfactorily the
same data (for instance with β = 5 which is the value used by Schielen et al. (1993)).
The second term in (2.5) reproduces the slope-induced deviation of the sediment flux.
Schielen et al. (1993) set G = γI where γ is a constant of order one. This term is
essential to cut-off short wavelength instabilities (see Section 4.2). In the frame of the
laminar Saint-Venant approximation, the above sediment transport equation becomes

qe = Ee

(

|u|

d

)β (

u

|u|
− γ∇h

)

, (2.6)

with Ee = φ0(3ρwν/((2r)(ρg − ρw)g))β .
The full dynamics of avalanches is far out of the scope of this study. Instead, we may

propose a simple model which reproduce the following features:
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• the sand mass is conserved through the avalanche process;
• there are no avalanches under a critical slope α;
• above the critical angle, qa is directed toward the main slope and increases with the

slope value.
Considering these criteria, we propose the following expression :

qa = −EaF (|∇h|)
∇h

|∇h|
, (2.7)

where F(·) = (·−α)H(·−α), H stands for the Heavyside function and Ea is a constant.

2.3. Boundary conditions

Flow equations (2.1) and (2.2) together with sediment transport equations (2.3), (2.6)
and (2.7) form a closed system. To solve this system in the fixed domain Ω, conditions
must be specified on its boundary ∂Ω. Their general form is

λud + µuu · n = πu, λhh + µhq · n = πh, (2.8)

where λu, µu, πu, λh, µh and πh are functions to be specified. n is the unit vector
normal to ∂Ω, aiming outward. In the general case, Ω may include sub-domains where
q = 0. In such domains, the evolution equation becomes ∂h/∂t = 0.

If one wants to restrict the analysis to the active sub-domain Ω+(t) where q 6= 0, the
conditions to be imposed on its mobile boundary ∂Ω+(t) are

u · n = 0, q · n = c(h+ − h−),
dh+

dt
= −∇ · q+ + c (n · ∇h+ + n · ∇h−) . (2.9)

In the above equations, c is the normal velocity of the ∂Ω+(t), the subscripts a and b
denotes quantities evaluated respectively inside and outside Ω+(t). d/dt is the convective
derivative at a point of ∂Ω+(t) moving with velocity cn. The first boundary condition
reflects the time scale separation between flow and erosion. The following ones correspond
to the sediment mass conservation equations integrated over a small domain crossed
by ∂Ω+(t). A special case of these boundary conditions has been derivated by Kovacs
& Parker (1994). The classical conditions for non-erodible and impermeable banks are
obtained by setting c = 0.

3. Prismatic channels

For a straight (that is, x-invariant) river, the equations derived in section 2 be-
come a one dimensional non-linear diffusion equation which admits self-similar solutions.
The reader interested in the problem of realistic river cross-section, a complex two-
dimensionnal problem in the general case, may refer to Parker (1978a), Parker (1978b),
Kovacs & Parker (1994), Paquier & Khodashenas (2002) and Stark (2006) among others.

3.1. A non-linear diffusion equation

Any quantity may only depend on time and the transverse coordinate: h = H(y, t),
d = D(y, t), u = U(y, t) and v = V (y, t). The flow equations (2.1) and (2.2) thus give

U =
gS

3ν
D2, V = 0, D + H = η(t). (3.1)

In the last equation, the water level η is a function of time only. The water discharge
Qw =

∫

∞

−∞
UDdy is usually controlled in laboratory experiments, which governs the
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evolution of η(t). For the sake of simplicity, we will consider in what follows that η is
a constant (this case represents a river supplied by an infinite reservoir; this arbitrary
constant is set to zero). In that case the sediment transport equations (2.3), (2.6) and
(2.7) lead to

∂D∗

∂t∗
= γ

∂

∂y∗

(

Dβ
∗

∂D∗

∂y∗

)

−
1

εa

∂

∂y∗

(

F

(∣

∣

∣

∣

∂D∗

∂y∗

∣

∣

∣

∣

)

sign

(

∂D∗

∂y∗

))

. (3.2)

In the above equation, the starred quantities are dimensionless. The initial width W
and depth D0 of the river are respectively horizontal and vertical characteristic lengths.
T = (3ν/(gS))β/(EeD

β−2
0 ) is the typical widening timescale. εa = Ea/(TD2

0) is a non-
dimensional number which compares typical avalanches flux to erosion ones, and may be
considered very small.

3.2. Self-similar solutions

If the transverse slope of the channel ∂H/∂y remains smaller than the critical slope α,
no avalanche occurs. This particular case has simple self-similar solutions of the form

D∗(y∗, t∗) =
1

t
1/(β+2)
∗

f(χ). (3.3)

where χ = y∗

t1/(β+2) . (3.2) leads to

∂

∂χ

(

γfβ ∂f

∂χ
+

χf

β + 2

)

= 0. (3.4)

If fs is a simmetrical solution to (3.4) (that is, if dfs/dχ = 0 at χ = 0), then integration
of (3.4) gives

fs(χ) =

(

A −
β

2γ(β + 2)
χ2

)1/β

, (3.5)

where A is a constant. Only for β = 1 does D∗,s behave regularly at the banks. In that
case, the river cross-section is a parabola. It width increases as t1/3 while it shallows as
t−1/3. This widening corresponds to the behaviour of laboratory rivers (for example in
the experiments of Nakagawa (1983) and Federici & Paola (2003)) . If the initial shape
is flat enough to avoid avalanches, this condition holds at any time. Unfortunately this
case cannot model erosion patterns formation, for it is uncondionally stable (see section
4).

On the other hand, if β > 1 (this is usually the case, see section 2.2), the picture
is quite different. The continuous widening process still holds (although with different
power laws), but the bed slope dD∗,s/dy∗ diverges at the banks. Thus avalanches must
occur at the banks, and the self-similar solution fails. This behaviour is observed in
laboratory experiments (see Nakagawa (1983) among others), and was already pointed
out by Kovacs & Parker (1994). The effect of bank avalanches is uneasy to quantify
analyticaly. According to numerical simulations however (see figure 2), they do not seem
to influence strongly the bed evolution far enough from the banks. Consequently one may
still use the results of the self-similar theory as good approximations of true solutions.

4. Linear stability

Experimental channels such as the one of Federici & Paola (2003) often remain stable
for a while, then develop meanders which in turn are followed by more complex braided-
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Figure 2. Widening of a straight laminar channel through erosion, modelled with (3.2). Param-
eter values are εa = 0.1, α = 0.8 and γ = 1. Solid lines: numerical solutions of (3.2) at different
times. Dashed line: self-similar solution (without avalanches, see section 3.5) at t = 100. The
presence of avalanches (solid lines) seems not to influence much the evolution of the profile.

like patterns. This scenario of transitions (sometimes called ageing) may be interpreted as
the successive dominance of different unstable modes. If the widening process presented
in the previous section is slow enough, Ds∗ may be choosen as a quasi static base state for
a stability analysis. In what follows, we will disregard any interaction between widening
and instabilities.

4.1. Derivation of the dispersion relation

In order to present the simplest stability model which keeps the essential features of
channel stability, we will consider a rectangular base state with solid-wall boundaries, of
width W and depth D0 (its aspect ratio is thus R = W/D0). The boundary conditions
at the bank are u ·n = 0 and q ·n = 0. The water velocity is uniform and parallel to the
x-axis (U0 = gSD2

0/(3ν)), and so is the basic sediment flux (Q0 = Ee(U0/D0)
β). Let us

seek travelling-wave perturbations of this base state:

ϕ(x, y, t) = ϕ0 + εϕ∗

( y

W

)

ei(kx/W−ωt/(TR)), (4.1)

where ϕ = (u, v, h, d, qx, qy). The base state corresponds to ϕ0 = (U0, 0,−D0, D0, Q0, 0)
and the perturbation is ϕ = (U0u∗, U0v∗, D0h∗, D0d∗, Q0qx,∗, Q0qy,∗). T = D0W/(RQ0)
is a characteristic time for erosion (see section 3.1) and ε is a small dimensionless ampli-
tude of the perturbation. k is a real dimensionless wavenumber whereas ω is complex in
the general case. (2.1), (2.2), (2.6) and (2.3) lead to the following system:

(

6

5
F 2ik + RS

)

u∗ + ikh∗ + (ik − 2RS)d∗ = 0, (4.2)

(

6

5
F 2ik + RS

)

v∗ +
dd∗
dy

+
dh∗

dy
= 0, ik(d∗ + u∗) +

dv∗
dy

= 0, (4.3)

−iωh∗ + ikqx,∗ +
dqy,∗

dy
= 0, qx∗ = βu∗ −

ikγ

R
h∗ − βd∗, qy∗ = v −

γ

R

dh∗

dy
. (4.4)
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In the above sytem, F = U0/(gD0)
1/2 is the Froude number of the unperturbed chan-

nel. This system may be reduced to

d4h∗

dy4
+ A

d2h∗

dy2
+ Bh = 0,

d3h∗

dy3

(

1

2

)

=
dh∗

dy

(

1

2

)

=
d3h∗

dy3

(

−
1

2

)

=
dh∗

dy

(

−
1

2

)

= 0.

(4.5)
In the above equation,

A =
(

36F 4k3γ + 30F 2k
(

− 2k2γ − ikR(1 + β + 4Sγ) + iRω
)

+

25RS
(

2ik2γ + kR(−3 + β − 3Sγ) + Rω
))

/
(

5
(

6F 2k − 5iRS
)

γ
)

, (4.6)

B =
1

γ

(

k

(

k3

(

γ −
6F 2γ

5

)

+ ik2R(2β + 3Sγ)+

1

5
i
(

− 5 + 6F 2
)

kRω + 3R2Sω

))

. (4.7)

Let s be a solution of the characteristic equation attached to (4.5). Applying the
boundary conditions leads to s = inπ, where n is an integer. Finally, one may derive the
dispersion relation from (4.5) :

ω =
(

5kR
(

5iRS
(

− n2π2(−3 + β) + 2k2β
)

− 6F 2k
(

2k2β + n2π2(1 + β)
))

−

i
(

k2 + n2π2
)(

6F 2k − 5iRS
)((

− 5 + 6F 2
)

k2 − 5n2π2 − 15ikRS
)

γ
)

/
(

R
(

6F 2k − 5iRS
)((

− 5 + 6F 2
)

k2 − 5n2π2 − 15ikRS
))

. (4.8)

4.2. Results interpretation

The linear stability of a channel depends on the sign of the maximum growth rate over
n and k, respectively the transverse and longitudinal wavenumbers. We will thus focus
on the imaginary part σ of ω in what follows. Let σm be the maximum growth rate, and
km and nm the corresponding wavenumbers (i.e. σm = σ(km, nm) = maxk∈R,n∈N(σ)).
The transverse wavenumber n characterizes the instability pattern: n = 0 for y-invariant
dunes (this mode can also initiate step-pool instability), n = 1 for meanders and n > 1 for
braided patterns. The present theoretical frame fails to predict the step-pool instability
often observed in narrow channels (Giménez (2003)), as σ is always negative for n = 0.
This is not surprising for the phase-shift between the bed deformation and the water shear
stress is neglected here (this phase shift controls sand ripple formation, see Kouakou &
Lagrée (2006)). The fluid and sediment choices determine parameters γ and β. Both
parameters are crucial to the present model, although a change in numerical values
does not lead to a major qualitative change in the results. The diffusion term which is
proportional to γ stabilizes the high n modes. Without it, the higher n, the higher σm.
As in Schielen et al. (1993), we take γ = 1 in the following. If β = 1, that is if the
sediment flux is proportional to the shear stress, then no instability ever appears (again
σ is always negative in that case). Instability may occur only if β > 1. β = 5 is choosen
hereinafter as an illustrative case (see section 2.2).

Figure 3 illustrates the transition to bed instability as the aspect ratio is increased,
for constant tilt and Froude number. A deep and narrow (R = 8) channel is stable, as
for no values of n and k can σ be negative. A shift to R = 20 allows for the n = 1 mode
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Figure 3. Linear growth rate σ of bed instability in a laminar river, versus the corresponding
non-dimensional wave number k. The parameters values are F = 1.5, β = 5, γ = 1, S = 0.0524.
For each value of the aspect ratio, both the modes n =1 and 2 are represented. Solid curves:
R = 8; short dashes: R = 20; long dashes: R = 40. As the aspect ratio is increased, the most
instable mode switches from n = 1 to n = 2. This behaviour provides an interpretation for the
transition in patterns observed in some experiments.

to be unstable. For a still wider channel (R = 40), both n = 1 and n = 2 modes are
unstable, but the latter grows faster. These transitions can be summarized in a three-
dimensional phase diagram, with coordinates R, F and S. A constant S slice of this
diagram is presented in figure 4. Such a diagram provides a crude interpretation for the
ageing of laminar laboratory rivers. Let us consider for example the case of section 3,
for which the mean water level is fixed, while its bed and banks are freely eroded. The
tilt S remains constant troughout the experiment whereas, in accordance with (3.5), the
Froude number and aspect ratio evolve as follows:

R ∝ t2/(β+2), F r ∝ t3/(2(β+2)). (4.9)

This parameterized curve correspond to F = F0(R/R0)
3/4 in the stability diagram

(the subscript 0 denotes initial conditions). In most cases this curve comes successively
through the three stability domains of figure 4. If the water output is conserved instead
of the water level (this conditon is more common in experiments), the straight channel
evolution is characterized by F = F0(R/R0)

−3/8. Again, for realistic initial conditions
(typically R0 = 5, F = 1.5), the river undergoes different instability regimes as it ages. If
a threshold is introduced in the erosion law, the river eventually reaches an equilibrium
state. The position of this equilibrium in the stability diagram is an indication about
the instability patterns the river will preferentially develop. For instance, we may expect
that a river will develop meanders if its equilibrium state lies in the domain where the
n = 1 mode is the most instable one.

5. Conclusion

The present paper demonstrate that viscous flows are able to generate braids and
meanders, as turbulent rivers do. This statement, first suggested by Malverti et al. (2006),
supports experimental stability studies on small-scale rivers. Also, it discharges models
with the complexity of turbulence models. This may facilitate the examination of some
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Figure 4. Stability diagram for a laminar channel. The domains (separated by solid lines) are
named after the most instable mode nm. “Straight”: no instable mode; “Meanders”: nm = 1;
“Braids”: nm > 1. The parameters values are β = 5, γ = 1 and S = 0.0524. The dashed lines
represent the evolution of a straight river when the water level is imposed (F = F0(R/R0)

3/4)

or when the outflow is imposed (F = F0(R/R0)
−3/8).

remaining difficulties of the problem, such as non-linearities or bank evolution. Hence in a
first attempt to develop viscous channel stabilty models, we presented a two dimensionnal
shallow-water model. A very simplified analytical approach based on this model was
sufficient to describe qualitatively the ageing process observed in some experiments. A
diagram presenting the dominant unsable modes with respect to the channel tilt, Froude
number and aspect ratio was obtained (figure 4), which shows a large domain of existence
for the meandering mode (n = 1) at small Froude number. This suggests that developped
meanders might be obtained experimentally when reducing the Froude number without
changing the tilt and aspect ratio (for instance by using liquids more viscous than water).

It is our pleasure to thank B. Andreotti, P. Claudin, A. Fourrière, E. Lajeunesse, D.
Lhuillier, L. Malverti, F. Métivier and G. Parker for inspiring and stimulating discussions.
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