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Abstract. We propose a simple continuum model to interpret the shearing motion of dense, dry and
cohesion-less granular media. Compressibility, dilatancy and Coulomb-like friction are the three basic
ingredients. The granular stress is split into a rate-dependent part representing the rebound-less impacts
between grains and a rate-independent part associated with long-lived contacts. Because we consider
stationary flows only, the grain compaction and the grain velocity are the two main variables. The
predicted velocity and compaction profiles are in apparent qualitative agreement with most of the
experimental or numerical results concerning free-surface shear flows as well as confined shear flows.

PACS. 45.70.Ht Avalanches 45.70.-n Granular systems 83.70.Fn Granular solids

1 Introduction

The mechanical behaviour of a flowing granular mate-
rial depends strongly on the grain volume fraction. While
dense granular media usually exhibit relatively slow mo-
tions with predominance of friction, less dense ones are
usually found in vigorous motions with predominance of
two-particles collisions. The collision-dominated regime is
well described by kinetic theory, with the concepts of gran-
ular temperature and inelastic collisions. On the contrary,
the current description of dense granular flows is not so
fully satisfactory. It must be understood that we are not
questioning the description by soil mechanics of quasi-
static and highly stressed granular materials, but the de-
scription of flows with relatively low stress levels encoun-
tered, for example, in avalanches down an inclined plane.
Several recent works (see e.g. [1–3]) presented mitigated
opinions about the possibility of describing dense granular
flows within the realm of continuum mechanics. In fact,
the experimental observation that many dense flows dis-
play a typical thickness of a few grain diameters must not
be a factor of pessimism. We know from several examples
in suspension mechanics that the continuum approach can
cope with high velocity gradients in one direction, pro-
vided one has some statistical homogeneity in the other
two directions. This situation is exactly the one met in
sheared granular media, provided we discard transient ef-
fects and focus on the final stationary state.

Once the principle of a continuum mechanical descrip-
tion is accepted, the number of relevant field variables
must be decided. There is no doubt that the grain ve-
locity is relevant but it is not less clear that the grain

volume fraction is also a pertinent variable. In fact the
widely used assumption of an incompressible medium is
not tenable. It contradicts the dilatancy concept and, as
will be seen below, the transport coefficients of a dense
granular medium display enormous variations with only
tiny modifications of the compaction. Our aim is thus to
propose a model for dense and stationary shear flows in
which the grain compaction and the grain velocity are
the two fundamental variables. One could also suggest
the fluctuational kinetic energy of the grains (the gran-
ular ”temperature”) as a third variable. The main issue
concerning the temperature of dense granular media is its
dependance on the mean angular velocity of the grains,
besides the more traditional fluctuations of their transla-
tional velocity. The description of non stationary flows of
dense media requires not only the resolution of the angular
momentum conservation equation but also the resolution
of an equation for the fluctuations of angular velocity. To
bypass these complex issues, we focus henceforth on sta-
tionary flows and assume the equality between the mean
angular velocity of the grains and the angular velocity of
the granular medium as a whole. As a consequence, the
generalized granular temperature is no longer an indepen-
dant state variable, but a function of the solid fraction
and of the symmetric velocity gradient only.

The role of the embedding fluid will be neglected ev-
erywhere, and for these ”dry” granular media, the main
issue is to propose a constitutive relation for the granu-
lar stress. To compare with previous works on dense flows,
we can say we adopt a phenomenological description some-
what similar to that proposed two decades ago by Savage
[4] and by Johnson and Jackson [5]. Like these authors,
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we introduce a stress tensor split into a frictional and a
collisional contribution. However, the collisional contribu-
tion is concerned with rebound-less impacts characteristic
of high grain concentration, and is free of any restitution
coefficient [2]. Our constitutive relation for the particulate
stress has a form somewhat similar to that proposed by
Ancey and Evesque [6], the main differences concerning
the explicit role of the grain compaction and a more de-
tailed expression of the granular pressure. Our model also
shares some common features with the model proposed
by Bocquet et al. [7] and by Louge [8], but instead of ex-
tending the kinetic theory approach to large compaction,
we prefer here to develop a model specifically devoted to
dense media. In other words, we share with Bocquet et
al. the opinion that high-density granular materials need
a special expression for the viscosity coefficient. But we
claim with Savage and Johnson and Jackson that dense
granular materials also need a special expression for the
grain pressure in order to mimic the role of contact forces
between grains. Moreover, the model we propose is quite
simple in so far as it denies any special role to the com-
paction gradient [9] and avoids the non-locality concept
[10].

Discarding two-particles collisions and any restitution
coefficient means that our model is restricted to volume
fractions in the range between φm and φM . The maximum
grain compaction φM corresponds to the highest possi-
ble random packing (with φM ' 0.80 for two-dimensional
flows and φM ' 0.65 for three-dimensional ones) while φm

is the smallest compaction compatible with the existence
of a continuous network of contacts between grains. As
suggested by Azanza [1], one can define φm as the min-
imum compaction for which the two-particle distribution
function exhibits some swelling at a distance of two diam-
eters. With this definition, φm ' 0.70 for two-dimensional
flows while φm ' 0.50 for three-dimensional ones.

A phenomenological order parameter description of gran-
ular media was recently proposed [11]. We acknowledge
this approach looks efficient and we agree with Volfson
et al. that the fraction of solid contacts is a possible or-
der parameter but we also pretend that a much simpler
order parameter exists which is the reduced compaction
(φ−φm)/(φM −φm). And since the solid fraction φ obeys
a conservation equation, we don’t have to worry about the
Ginzburg-Landau equation. Stated differently, we consider
the solid fraction as a pertinent variable (or the reduced
compaction as a pertinent order parameter) and we want
to present the potentialities of such an assumption.

The description of stationary free-surface shear flows
is given in section 2 while that of confined shear flows
is presented in section 3. Section 4 compares the model
predictions with experimental and (or) numerical data.
The final section insists on the limitations and necessary
improvements of the proposed model, which must be con-
sidered as a minimal one.

2 Free surface shear-flows

As a prototype of shear flow with free surface, we con-
sider the gravity-induced chute (over a heap or an inclined
plate, see Figure 1) with an angle θ relative to the hor-
izontal plane. The mean grain velocity is parallel to the
x-axis, V = V ex, while V and the solid fraction φ depend
only on z, the distance to the free surface. The granular
stress tensor is noted τ and the equations of motion are:

0 = −
∂τxz

∂z
+ φρgsin(θ) , 0 = −

∂τzz

∂z
+ φρgcos(θ) (1)

where ρ is the constant mass per unit volume of the grain
material and g is the acceleration of gravity.

For dense granular media, the granular stress is a con-
sequence of long-lived contacts and bounce-less impacts
between grains. Long-lived contacts result from compres-
sive forces acting towards the boundaries of the granular
medium. In the geometry considered, they take part in
τzz since z is the direction of main compression. Whether
gravity is responsible for compressive forces or not, we
choose to scale the compressive stress with ρgD where D
is the grain size. The compressive stresses are related to
the grain volume fraction as ρgDF (φ), where dF/dφ is
the non-dimensional rigidity of the granular medium. In
free-surface shear flows, gravity is the only source of com-
paction and the magnitude of the compressive stress will
also depend on θ. It is clear that the compressive role of
gravity is maximum when the compression axis z is verti-
cal while this role vanishes when gravity is orthogonal to
it. Consequently, the general form of the gravity-induced
compressive stress is ρgDF (φ)f(θ) with f(0) = 1 and
f(π/2)= 0. The exact expression of f(θ) is not important
because, as will soon be seen, the stationary flows exist in
a very limited range of θ only. One of the simplest function
of θ which meets the above requirement is cos(θ), and we
assume henceforth that the contribution of long-lived con-
tacts to τzz can be written in the form ρgDF (φ)cos(θ). To
this gravity-induced contact stress must be added a rate-
dependent impact stress. On purely dimensional grounds,
this second contribution cannot be but Bagnold-like and
the full normal stress finally appears in the form:

τzz = ρD2µN (φ)

(

dV

dz

)2

+ ρgDF (φ)cos(θ), (2)

where µN (φ) represents the compaction-dependent inten-
sity of the normal stress induced by the shear rate. Con-
cerning the shear stress of the flowing granular medium,
we assume it is made of a Coulomb-like contribution with
a friction coefficient µ(φ) completed by a Bagnold-like
contribution involving a coefficient µT (φ) representing the
compaction-dependent intensity of the shear stress induced
by the shear rate

τxz = ρD2µT (φ)

(

dV

dz

)2

+ µ(φ)τzz , (3)

The model expressions (2) and (3) contain four functions
of the grain compaction. Before giving them some explicit
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(and tentative) expressions, let us comment on their ex-
pected general behaviour. These four functions are char-
acteristic of the dense regime and have a meaning in the
range φm ≤ φ ≤ φM only. We expect F , µT and µN to
become infinite when φ = φM , because no motion nor ex-
tra compaction is expected above the maximum random
packing. We also expect F and µN to vanish for φ = φm,
because the normal stresses must vanish for the most tenu-
ous contact network. Concerning the friction coefficient µ,
it is the only coefficient which remains finite when φ = φM

and it presumably increases [12] for smaller compactions.
In short, the three scalars F , µN and µT are strongly in-
creasing functions of the compaction, while µ has a much
smoother behaviour.

Since we neglect the role of the embedding fluid, the
granular stress must vanish at the free surface and con-
sequently τxz = tan(θ)τzz everywhere. In this case, when
solving the equations of motion (1) with the model ex-
pressions (2) and (3), one arrives at a compaction profile
and a velocity profile which are solution of:

D
dφ

dz
=

φ

∂

∂φ
[

F

1− (µN/µT )(tan(θ)− µ)
]

(4)

and

(

D

g

)1/2
dV

dz
= −

(

F (sin(θ)− µcos(θ))

µT (1− (µN/µT )(tan(θ) − µ))

)1/2

.

(5)
At the free-surface the solid fraction is φm (remember
we limit the description to the dense regime and discard
all phenomena acting for solid fractions less than φm).
According to (4) the solid fraction increases towards its
maximum value φM over a depth which scales with the
grain diameter but depends on θ if µN/µT is different
from zero. Hence µN/µT represents the relative magni-
tude of Reynold’s dilatancy. Concerning the velocity pro-
file, its characteristic value scales like (gD)1/2 and accord-
ing to (5) its solution exists for any angle θ verifying the
inequality µ(φ) ≤ tan(θ) ≤ µ(φ) + µT (φ)/µN (φ). For cer-
tain values of θ this inequality is possibly satisfied in a
part only of the full range φm ≤ φ ≤ φM .

It is obviously not evident to deduce four functions
of the compaction from the rather scarce experimental
or numerical results on stationary shear flows. We as-
sume henceforth that µ and µT /µN are independent of
the grain compaction. Then, a stationary solution is pos-
sible in a well-defined angle range θmin ≤ θ ≤ θmax, with
tan(θmin) = µ and tan(θmax) = µ + µT /µN . To obtain
more quantitative results we consider separately the chute
over a heap from that over an inclined plane.

2.1 Heap flows

In the heap case, provided µ and µN/µT are independant
of the solid fraction, one can deduce from (4) and (5) the

total granular flux flowing down the heap Qheap:

Qheap

D
√
gD

=
(sin(θ)− µcos(θ))1/2

(

1− µN

µT
(tan(θ) − µ)

)5/2

∫ φM

φm

(

F 3

µT

)1/2
∂F

∂φ

dφ

φ

(6)
the grain velocity Vheap(0) at the free surface

Vheap(0)
√
gD

=
(sin(θ)− µcos(θ))1/2

(

1− µN

µT
(tan(θ)− µ)

)3/2

∫ φM

φm

(

F

µT

)1/2
∂F

∂φ

dφ

φ

(7)
and the relative velocity profile

Vheap(z)

Vheap(0)
=

∫ φM

φheap(z)

(

F
µT

)1/2
∂F
∂φ

dφ
φ

∫ φM

φm

(

F
µT

)1/2
∂F
∂φ

dφ
φ

(8)

Since the free-surface velocity and the flux are expected
to have finite values for θmin < θ < θmax, the two func-
tions F (φ) and µT (φ) must be such as to guarantee the
convergence of the above integrals. In this case Vheap(0)
and Qheap are function of θ with numerical prefactors de-
pending on one’s peculiar choice for F and µT . In what
follows we adopt the simple expressions

F = F0Log

(

φM − φm

φM − φ

)

and µT = µT0

(

φM − φm

φM − φ

)2

.

(9)
The same expression for F was already proposed by Sav-
age [4,13] and we comment it in Appendix 1. A more gen-
eral expression for µT and its consequences are described
in Appendix 2. The above expression for F leads to a solid
fraction profile which increases exponentially with depth:

φheap(z, θ) =
φM

1 + (φM

φm
− 1)e−z/L(θ)

(10)

where

L(θ) =
F0D

φM (1− µN

µT
(tan(θ) − µ))

(11)

represents the typical thickness of the layer flowing down
the heap. The relative velocity profile deduced from the
above expressions for F and µT is exponential-like for

z
L(θ)

>∼ 2 (see figure 2) but displays a Bagnold-like re-

gion of inverse concavity for z
L(θ)

<∼ 0.2 (see figure 3). In

fact, our numerical solution for the relative velocity profile
is quite well fitted by the analytical expression

1−
Vheap(z)

Vheap(0)
=

(

φheap(z)− φm

φM − φm

)
3

2

=

(

1− e−z/L(θ)

1 + (φM

φm
− 1)e−z/L(θ)

)
3

2

.

(12)
With φm = 0.5 and φM = 0.65 the total flux flowing down
the heap is

Qheap

D
√
gD

= 1.4
F

5/2
0

µ
1/2
T0

(sin(θ)− µcos(θ))1/2

(

1− µN

µT
(tan(θ) − µ)

)5/2
.
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The dependence on θ of L and Qheap are represented in
Fig. 4, with µ = 0.36 and µN/µT = 4.7.

2.2 Chute on rough plates

The flows over inclined rough plates are more difficult to
handle because the constitutive equations (2) and (3) hold
in the bulk only of the dense granular medium and are
likely to be modified close to the rough plate. Since the role
of the plate rugosity is difficult to assess quantitatively, we
discard the description of the ”basal layer” close to the
plate [6,8] and assume a slip velocity Vs at some distance
δ above the rough plate. Then we apply (2) and (3) to a
layer of thickness h, so that the free surface is located at
a distance h + δ above the rough incline. In the layer of
thickness h, the solid fraction increases from φm at the
free surface to the value φheap(h) at a distance δ from
the rough plate where the velocity is Vs. The total flux
through the core region is now given by:

Qplate

D
√
gD

=
F (φheap(h))

1− µN

µT
(tan(θ)− µ)

Vs√
gD

+

+
(sin(θ) − µcos(θ))1/2

(

1− µN

µT
(tan(θ)− µ)

)5/2

∫ φheap(h)

φm

(

F 3

µT

)1/2
∂F

∂φ

dφ

φ
.(13)

A rough plate is likely to slow down the core region
more efficiently than a heap would do and we expect Vs ≤
Vheap(h). As a consequence, Qplate(h, θ) as given in (13)
is not expected to exceed Qheap(θ) given in (6). When
forcing a flux Qplate to flow down a rough plane inclined
at angle θ, two different situations are encountered: when
Qplate is larger than Qheap(θ), the granular medium will
rearrange so as to flow down over a heap of angle θ + α
with Qplate = Qheap(θ+α). This gives a possible explana-
tion for the “immature sliding flows” that were observed
in some experiments [3,4]. Due to the very large increase
of Qheap with θ (see figure (4)) and because the experi-
mental flux is limited to some maximal value, immature
sliding flows were observed for small angles close to θmin

only. Conversely, when Qplate is smaller than Qheap(θ) the
whole layer of thickness h is in motion with a velocity ev-

erywhere larger than Vs. Moreover, when h/L(θ)
<∼ 0.2,

the Bagnold-like velocity profile (which could hardly be
observed in heap flows, see fig. (3)) is now invading the
whole core region. In fact, when expressions (9) are taken

for granted and h/L(θ)
<∼ 0.2, the total flux (13) has the

special form

Qplate

D
√
gD

=
φmVsh

D
√
gD

+
2

5
φ3/2

m

(

(sin(θ)− µcos(θ))

µT0

)1/2(
h

D

)5/2

.

(14)
When the role of the velocity slip can be neglected, the
second contribution gives a h5/2 scaling law for the grain
flux down a rough incline. Note that this scaling stems
from our particular choice (9). The consequences of a dif-
ferent choice for µT are analyzed in Appendix 2.

3 Confined shear flow

In the two-dimensional shear flows we will consider, the
pressure load exerted on the boundaries of the granular
medium is supposed to be applied along direction z, which
is thus the direction of main compression. Because gravity
plays a minor role concerning the compressive forces, the
constitutive relation for τzz is simply (compare with (2))

τzz = ρD2µN (φ)

(

dV

dz

)2

+ ρgDF (φ), (15)

whatever the angle θ between the z axis and gravity. The
flow is along the x axis and the constitutive relation for the
shear stress τxz is still given by (3), without any change
as compared to the free-surface case.

3.1 Plane shear flow

As a first type of confined shear flow, we consider the pla-
nar shear of an infinite horizontal granular layer bounded
by two plates separated by a fixed distance h. The pressure
load and the gravity are both oriented along the direction
z and the flow is along direction x (see figure 5). The equa-
tions of motion result in a constant shear stress S and a
variable normal stress:

τxz = S and τzz(z) = P (0) + ρg

∫ z

0

φ(ξ)dξ

where P (0) is the pressure load exerted on the upper plate
z = 0 (z = h stands for the lower plate). We will dis-
tinguish the situation without and with gravity, the first
case corresponding to numerical simulations and the sec-
ond one to experiments.

3.1.1 Without gravity

In this case the normal stress is also a constant P all over
the granular layer and the constitutive equations (15) and
(3) give:

ρD2µT (φ)

(

∂V

∂z

)2

= S − µ(φ)P

ρD2µN (φ)

(

∂V

∂z

)2

= P − ρgDF (φ) (16)

Depending on the sign of S−µ(φ)P , we will have a static
or a moving medium. In the static case the pressure load is
noted P0 and the shear is such that S ≤ µ(φ0)P0 where φ0

is the constant compaction of the medium related to the
pressure load through P0 = ρgDF (φ0). In the dynamic
case, the compaction is still a constant and because of
mass conservation, this constant is nothing but the static
value φ0. The shear S is now larger than µ(φ0)P0. The
velocity gradient is constant:

ρD2

(

∂V

∂z

)2

=
S − µ(φ0)P0

µT (φ0) + µ(φ0)µN (φ0)
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Due to dilatancy effects the pressure load exerted on the
plates is necessarily larger than in the static case, follow-
ing:

P (S) = P0 +
S − µ(φ0)P0

µ(φ0) + µT (φ0)/µN (φ0)
.

As a consequence the effective friction coefficient is a func-
tion of φ0 and P :

S

P
= µ(φ0) +

µT (φ0)

µN (φ0)
(1−

ρgD

P
F (φ0)).

3.1.2 With gravity

In this case the normal stress increases in the downward
direction so that the constitutive equation (3) results in

ρD2µT (φ)

(

∂V

∂z

)2

= S − µ(φ)P (0)− µ(φ)ρg

∫ z

0

φ(ξ)dξ

It is then clear that the gravity-induced extra compaction
possibly induces shear localization because the right-hand
side can have a different sign in different parts of the flow.
To simplify this issue we will now introduce the same
assumptions we have previously used in the free-surface
shear flows, namely that µ and µT /µN do not depend on
φ while F (φ) and µT (φ) are given by (9). We will first
describe the static case before considering grain motions.
Because the compaction on the upper plate is nesessar-
ily different in the static and the dynamic cases, we define
P0(0) as the pressure load exerted on the upper plate when
the granular medium is motionless and φ0(z) as the static
compaction profile. As long as S ≤ µP0(0), the granu-
lar slab is motionless, the compaction φ0(0) at the upper
plate satisfies P0(0) = ρgDF (φ0(0)) and the compaction
profile is:

φ0(z) =
φM

1 +
(

φM

φ0(0)
− 1
)

e−z/L0

with L0 =
F0

φM
D

When the granular medium is flowing, the compaction
profile φ(z) displays larger gradients and becomes

φ(z) =
φM

1 +
(

φM

φ(0) − 1
)

e−z/L
with L =

L0

1 + µµN

µT

where φ(0) is the new compaction at the upper plate. Since
mass conservation requires

∫ h

0

[φ(z)− φ0(z)]dz = 0,

it is clear that the inequality L < L0 implies φ(0) < φ0(0)
and φ(h) > φ0(h). The compaction of the moving medium
is thus reduced at the upper plate as compared to its static
value while it is enhanced at the lower plate.

The velocity profile is then deduced from the com-
paction profile

(

1 + µ
µN

µT

)

D

g

(

∂V

∂z

)2

=
S∗ − µF (φ)

µT (φ)

where S∗ is the dimensionless shear S
ρgD . Let us define

the volume fraction φ∗ such that S∗ = µF (φ∗). It is clear
that φ∗ > φ0(0) because S > µP0(0). The above equa-
tion implies that motion exists for compactions less than
φ∗ only. This condition leads to check the self-consistency
relation φ(z) < φ∗ for 0 < z < h. This condition is au-
tomatically satisfied in the upper part of the flow since
φ(0) < φ0(0) < φ∗. But it may be not in the lower part,
thus leading to a shear localization. This bulk localiza-
tion is here depending on S∗ and h/L. Fig (6) shows the
compaction and velocity profiles for two different values
of φ∗(S∗) representing the two different situations : shear
localization or flow over the whole layer.

3.2 Vertical chute flows

A second type of confined shear flow is the chute between
two vertical plates (see figure 7). The compaction is due to
a pressure load P exerted on the two plates along direction
z. The flow and the gravity are oriented along direction x.
The equations of motion result in a constant normal stress
and a variable shear stress, by contrast to the preceding
case:

τzz = P and τxz = ρg

∫ z

0

φ(ξ)dξ,

where z = 0 corresponds to the symmetry plane located
between the two plates at which the shear stress vanishes.
The constitutive relation (3) implies

ρD2µT (φ)

(

∂V

∂z

)2

= ρg

∫ z

0

φ(ξ)dξ − µ(φ)P.

Either the right-hand side is everywhere negative (due to
a very high pressure load) and the medium is motionless
or there is a central region of the flow in which the shear
stress does not exceed µP and consequently where the
strain rate vanishes. In this plug flow regime the solid
fraction is a constant φ∗ related to the pressure load as
P = ρgDF (φ∗). The thickness z∗ of the plug flow depends
on φ∗ (hence on the pressure load)

z∗

D
=
µ(φ∗)

φ∗
F (φ∗).

Close to the vertical plates, there is a shear layer where the
velocity decrease to Vw dependent on the plate roughness.
In this parietal shear layer, the constitutive equations (15)
and (3) imply:

(

D

g

)1/2
∂V

∂z
= −

(

F (φ∗)− F (φ)

µN (φ)

)1/2

(17)
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and

D
∂φ

∂z
=

φ

∂
∂φ

[

(µ+ µT

µN
)F (φ∗)− µT

µN
F (φ)

] . (18)

To obtain more definite results we again consider the as-
sumptions already made for gravity-driven and plane shear
flows, namely that µ and µN/µT are independant of the
solid fraction while F (φ) and µT (φ) are given by (9). Then,
the compaction profile in the shear layer z∗ < z < zw is:

φ(z) =
φM

1 +
(

φM

φ∗ − 1
)

e
z−z∗

L∗

(19)

where L∗ is the typical shear layer thickness:

L∗

D
=

µTF0

µNφM
.

For the flow to be dense up to the vertical plates, the wall
compaction φw must be larger than φm and the shear layer
thickness is

zw − z∗

L∗
= Log

(

φM

φw
− 1

φM

φ∗ − 1

)

.

As a consequence, the distance 2zw between the two plates
is a function of φ∗ (hence of P ) and of φw (hence of
the plate roughness). Concerning the velocity, it increases
from a value Vw at the wall to a value Vplug in the central
part. The computed relative velocity field is represented
in Fig (8) together with the fit

V (z)− Vw

Vplug − Vw
= 1−

(

φ∗ − φ(z)

φ∗ − φw

)3/2

. (20)

4 Qualitative comparison with experimental
and (or) numerical data

Since many experimental and numerical data were re-
viewed in [16], we will often use this reference where the
original works are quoted therein. Moreover the compari-
son between the model predictions and the experimental
or numerical data will be qualitative only, our aim being
to test the potentialities of the model rather than to give
definite values to parameters such as F0 or µT0.

4.1 Plane shear flow

Neglecting the influence of gravity (as was done in most
numerical simulations) our model leads to a uniform solid
fraction and to a uniform velocity gradient, in conformity
with results presented in figures 5b and 5c of [16] for the
dense flow regime. When gravity is taken into account, a
shear localization is possible, depending on the magnitude
of the pressure load as well as on the thickness of the gran-
ular layer. Unfortunately, we are unaware of experimental
or numerical data with which the predictions of Fig. (6)
could be tested.

4.2 Vertical chute flow

The uniform solid fraction and the uniform velocity in the
core region are correctly reproduced by the model. Con-
cerning the sheared regions closed to the vertical bound-
aries, the relative velocity profile (20) and the compaction
profile (19) are quite similar to results gathered in fig. 7b
and 7c of [16].

4.3 Heap flow

The solid fraction profile (10) and the velocity profile (12)
are quite close to those represented in fig.9b and 9c of
[16] and in fig.9a and 9b of [17]. In particular, the ve-
locity profile displays a Bagnold-like profile very close to
the free-surface (z < 0.2L(θ)), a quasi-linear profile in the
central part of the flow (0.2 < z/L(θ) < 2) and finally an
exponential tail for the deepest parts of the flow, as ob-
served in [18]. At variance with confined flows for which
the shear was localized in boundary layers with thickness
of the order of a few grain diameters, heap flows are char-
acterized by a thickness L(θ) of a few grain diameters
when θ is slightly larger than θmin but which increases to
quite large values when θ is close to θmax. A similar unlim-
ited increase of the grain flux Qheap is observed for θ close
to θmax, as seen in fig. 4. Such a behaviour is difficult to
observe experimentally due to the limited values of Qheap

that can be achieved in usual laboratory devices. Accord-
ing to (6) and (11), our model predicts L ∼ (Qheap)

2/5

when θ is not too close to θmin, a result slightly different
from the scaling L ∼ (Qheap)

1/2 suggested by fig.9j of [16].

4.4 Rough inclined planes

We explained the appearance of the so-called ”immature
sliding flows”: they develop when the imposed flux Qplate

over a plate with inclination θ is larger than the flux
Qheap(θ) which would fall down a heap with the same
slope. Since Qplate is experimentally limited to some max-
imum value, immature flows are observed for θ close to
θmin only. When θ comes close to θmax, the thickness h of
the granular layer flowing over the rough incline becomes
much smaller than the thickness of the grain layer which
would flow down a heap with similar slope. And when
h is less than 0.2L(θ), the Bagnold-like velocity profile
is invading the whole flowing layer, with the h5/2 scaling
for the flux Qplate as a direct consequence (provided the
first contribution to (14) is negligible). A different scaling,
h(5−γ)/2, is obtained with a different expression for µT as
discussed in Appendix 2. The main drawback of our model
is its inability to explain the quantity hstop(θ) introduced
by Pouliquen [15] and which was confirmed in numerical
simulations [14]. The first reason is that we assumed the
friction coefficient µ to be independent of the solid frac-
tion. As a consequence θmin is a constant and hstop van-
ishes as soon as θ > θmin. A second reason is the possible
inadequacy of our model close to the rough incline. In this
basal or frictional layer [6,8], the particle rotation plays
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an important role, the grain stress tensor is possibly non-
symmetric and the solid fraction has a perturbed profile.
All these phenomena would require a specific modelling.
In fact the explanation of hstop(θ) proposed by Mills et
al. [?] involves constitutive relations which are different
close to the boundaries from those holding in the bulk.
Concerning the solid fraction profile, the present model
predicts a profile given by (10), gradually increasing from
φm at the free surface to φheap(h/L(θ)) close to the rough
plate. This prediction is in rather good agreement with
the experimental profiles of Ancey [19] but is in contra-
diction with the simulations of Silbert et al. [14] who found
a completely flat profile depending on θ but independent
of z, hence of h.

4.5 Annular shear

This special kind of shear flow was not considered here
because to describe it, we would need a constitutive equa-
tion for the τxx component of the granular stress, besides
those for τxz and τzz. This will be done in future work.

5 Conclusion

We proposed a model for dense shear flows which considers
the solid fraction as the main microstructural parameter.

The granular stress is partitioned in a way similar to
that proposed by Savage [13,4]. One of the distinctive fea-
tures is a completely explicit expression for the contact
stress which involves a function F (φ) of the solid frac-
tion. The solid fraction profile mainly depends on the com-
pressibility dF/dφ while the velocity gradient is bound to
F (φ)/µT (φ) where µT (φ) is somehow analoguous to the
effective viscosity used by Bocquet et al. [7]. In principle
the complete model contains two more functions of the
solid fraction (µ(φ) and µN (φ)) but we strived to show
that not so bad predictions could be obtained after as-
suming the friction coefficient µ and the dilatancy ratio
µN/µT to be independent of the solid fraction. Obviously,
these are simplifying assumptions which can be released
and improved. We also checked that the tentative (and
simple) expressions (9) for F (φ) and µT (φ) led to sound
predictions for the velocity and solid fraction profiles with
one exception only, the compaction profile in flows down
rough inclines.

The main drawback of constitutive equations (2) (or
(15)) and (3) is their possible failure in a thin layer close to
rough boundaries, i.e. at places where a couple stress and
a relative angular velocity are likely to exist [20]. Their
main advantage is to contain all the ingredients necessary
to interpret the bulk shear-localization phenomenon, and
to be able to explain in a qualitative way the quite different
velocity profiles appearing in the stationary shear flows of
dense granular materials.

Appendix A : granular pressure

Close to the maximum compaction φM , the compress-
ibility of the granular medium stems from a purely geo-
metric effect, the number of different ways the grains can
be distributed in space for a given volume fraction. This
is reminiscent of the situation described by the cellular
lattice-gas model. Starting from its free-energy per unit
volume

ψlg = νkBT [φ̃Logφ̃+ (1− φ̃)Log(1− φ̃)]

one deduces the lattice-gas configuration pressure

Plg =
∂ψlg

∂φ̃
= νkBTLog(

φ̃

1− φ̃
)

where ν is the number of cells per unit volume and φ̃ is
the fraction of cells occupied by particles. For granular
materials, the thermal energy is replaced by the mechani-
cal energy F0ρpgD and φ̃ is replaced by φ/φM . The main
difference between the contact pressure and the lattice-
gas pressure is that the contact pressure vanishes for φ
smaller than φm, hence our expression (9) for F (φ). The
analogy with the lattice-gas model is far from perfect and
to improve the expression of F (φ) one can address to more
sophisticated approaches such as the one developped by
Blumenfeld and Edwards [21].

Appendix B : influence of µT (φ) on scaling laws

The behaviour of µT (φ) close to the lowest compaction
φm has a large influence on the predicted velocity profiles
close to the free-surface. Keeping the same expression 9
for F (φ), let us use a more general expression for µT in
the form

µT = µT0(φM − φm)2−γ (φ− φm)γ

(φM − φ)2

with a positive exponent γ because µT is not expected to
diverge for φ = φm. The compaction profiles of heap flows
are unchanged but the velocity profiles close to the free-
surface now depend on exponent γ. Our numerical results
for the velocity profiles can be fitted with a very good
accuracy by an expression which generalizes 12

1−
Vheap(z)

Vheap(0)
=

(

φheap(z)− φm

φM − φm

)

3−γ

2

=

(

1− e−z/L(θ)

1 + (φM

φm
− 1)e−z/L(θ)

)

3−γ

2

. (21)

A region of inverse concavity exists close to the free-surface
when γ is less than one but it is only when γ is null that
this region of inverse concavity has a Bagnold-like profile.
When γ = 1 the velocity profile is quasi-linear up to the
free-surface [17,2] and when 1 < γ < 3 there is no change
of concavity but a large increase of the velocity close to the
free-surface [6]. A second consequence concerns flows over
rough plates. When h < 0.2L(θ), result 14 is transformed
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into

Qplate

D
√
gD

=
φmVsh

D
√
gD

+

+
2

5− γ
φ3/2

m

(

(sin(θ)− µcos(θ))

µT0

)1/2

(

L(θ)φM

Dφm

)

γ

5

(

h

D

)

5−γ

2

. (22)

Measurements of Qplate(h) by Ancey [19], Rajchenbach [2]
and Pouliquen [15] respectively suggest that γ = 3, γ = 1
and γ = 0. The issue is far from being settled.

References

1. Azanza E., “Ecoulements granulaires bidimensionnels sur
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