Rapport de stage :
ETUDE DES PROPRIETES
DES ECOULEMENTS
GRANULAIRES PAR
EXPERIENCES NUMERIQUES

JABBOUR Soléna

Stage du 7 janvier au 1 février 2008

Institut Jean le Rond D’Alembert – Paris 6
Modélisation Mécanique

Tuteurs :
Staron Lydie
Lagrée Pierre-Yves
J’ai effectué mon stage au laboratoire de Modélisation en Mécanique, qui fait parti du groupe FCIH (Fluides Complexes et Instabilités Hydrodynamiques).

Le groupe FCIH est au sein de l’Institut Jean le Rond d’Alembert. Cette institut est un laboratoire de l’Université Pierre et Marie Curie (site de Jussieu) qui appartient au CNRS.

En premier lieu, je souhaite remercier mes tuteurs pour leur accueil, leur soutien et leur disponibilité durant ce stage :

- Lydie Staron

- Pierre-Yves Lagrée

Notre travail se situe dans le prolongement des travaux de Lydie Staron, sur la modélisation numérique de matériaux granulaires et également des travaux de Pierre-Yves Lagrée sur les milieux granulaires.
SOMMAIRE

I- INTRODUCTION GÉNÉRALE ..1
 1-Sujet et travail réalisé ..1
 2- Définitions ..1
 2-1-Coefficient de viscosité ...1
 2-2-Coefficient de restitution ...2
 2-3-Coefficient de frottement : μ ..2
 2-4-Compacité ..4

II – DISPOSITIF ...5
 1- Exposition du programme principal de simulation ...5
 2-Présentation des simulations ..6
 3- Utilisation post traitement ...7

III-ETUDES ET RÉSULTATS ...8
 A- Evolutions au cours du temps ...8
 1-Vitesse en translation suivant la direction de l'écoulement : Vx ..8
 2- Vitesse en rotation ..8
 3-Compacité au cours du temps ..9
 B- Profils ..9
 1- Vitesse en x ...9
 2-Vitesse de rotation ...12
 3- Compacité ...14
 C-Dépendance en θ : influence de la pente ...17
 1-Vitesse moyenne en x ..17
 2- Compacité moyenne ..18

CONCLUSION ..20

ANNEXE ..21
1- INTRODUCTION GENERALE

1-Sujet et travail réalisé

Etude des propriétés des écoulements granulaires par expériences numériques

Qu’ils soient sables ou sols, céréales ou granules médicamenteuses, les matériaux granulaires sont une préoccupation constante de l’industrie (agroalimentaire, pharmaceutique, chimique) et du génie civil (résistance des sols, ballasts, bétons). Ils sont par ailleurs centraux dans de nombreuses problématiques environnementales : ensablement, stockage de déchets, risques liés aux glissements de terrains.

Cela fait des matériaux granulaires un sujet de recherche extrêmement riche. Pourtant, malgré l’enjeu qu’ils représentent, ces matériaux échappent encore en grande partie à la compréhension, et partant à la modélisation. Tout en débouchant sur des applications immédiates, la recherche sur les matériaux granulaires demeure donc un enjeu théorique majeur.

Un problème aujourd’hui largement débattu est la rhéologie des écoulements ; c’est cet aspect auquel on s’intéressera dans le cadre de ce stage. La simulation numérique discrète permet de reproduire de façon réaliste le comportement de collections de grains en situation statique ou dynamique, tout en permettant la mesure de grandeurs inaccessibles aux expériences de laboratoire : vitesses des grains, forces de contact etc. Lors de ce stage, des expériences numériques d’écoulements granulaires permanents seront réalisées. Ces simulations numériques seront ensuite analysées de manière à mettre en évidence les liens entre les propriétés dissipatives de l’écoulement et d’autres caractéristiques, en particulier le profil de densité. Ces résultats seront discutés en relation avec des travaux théoriques sur la modélisation continue des matériaux granulaires.

Travail réalisé

La rhéologie est la partie de la mécanique qui se consacre à la déformation et à l’écoulement des corps en fonction des sollicitations qu’ils subissent. Durant ce stage, j’ai réalisé des analyses de simulations numériques afin d’étudier différentes quantités physiques de l’écoulement : profils de vitesses, de densité.

2- Définitions

Plusieurs propriétés des matériaux interviennent dans les simulations. Nous allons donc les définir.

2-1-Coefficient de viscosité

La viscosité par analogie aux fluides classiques est due dans les granulaires à la dissipation qui intervient aux contacts entre les grains.

Nous prenons l'exemple de l'écoulement simple de Poiseuille pour illustrer ce coefficient de viscosité. Supposons que la vitesse en tout point d'un fluide en mouvement ait la même direction. Soient deux couches parallèles du vecteur vitesse séparées d'une épaisseur dy et de surface S. Pour chaque couche, les particules du milieu ont la même vitesse en tout point.

Si les deux couches ont des vitesses différentes, elles glissent l'une sur l'autre donc des forces de résistance s'opposant à cette déformation du milieu apparaissent. v est le module de vitesse de la couche inférieure, v+dv celui de la couche supérieure. Donc dv est la vitesse relative, et les frottements créent des forces parallèles à cette vitesse.

Pour un fluide Newtonien, on a comme force de frottement pour chaque couche:
\[F_f = v_d S \frac{dv}{dy} \] (loi de Newton)
avec \(v_d \) = coefficient de viscosité dynamique

Suivant ce raisonnement, une viscosité effective peut être déterminée pour un écoulement granulaire.

2-2-Coefficent de restitution

Ce terme de restitution intervient dans la dynamique issue des chocs entre les grains. Lorsque deux grains se déplacent à des vitesses respectives \(v_1^- \) et \(v_2^- \), leurs vitesses après l'impact sont alors \(v_1^+ \) et \(v_2^+ \).

\[\begin{align*}
\text{Avant le choc} & \quad v1^- \quad \quad \quad v2^- \\
\text{Après le choc} & \quad v1^+ \quad \quad \quad v2^+
\end{align*} \]

fig.1-Vecteurs vitesses de deux grains v1 et v2 : avant le choc v1- et v2-, après le choc v1+ et v2+

On peut alors définir le coefficient de restitution \(e \) par:

\[(v_1 - v_2)^+ = -e(v_1 - v_2)^- \]
avec \(v_1 \), \(v_2 \) les vecteurs vitesses.

Il dépend des propriétés élastiques des grains entrés en collision : \(e = 1 \) pour des chocs parfaitement élastiques, et \(e = 0 \) pour les chocs parfaitement dissipatifs.
Les simulations que nous avons analysées ont été réalisées avec \(e = 0.5 \).

2-3-Coefficent de frottement : \(\mu \)

Dans la dynamique granulaire, il existe une force qui s’oppose au glissement. Cette force dépend d’un **coefficient microscopique** \(\mu \).

Prenons par exemple le cas de deux grains en contact, **fig.1-2**.

fig.1-2-Schéma des vecteurs tangential T et normal N au point de contact entre deux grains.

Loi de Coulomb : Force tangentielle \(T \) en fonction de la vitesse \(v \). Le seuil de Coulomb est atteint en

\[T = \pm \mu N \]

On illustre d’après le schéma **fig.1-2**, deux grains en contact. La force tangentielle est représentée par le vecteur \(T \) tangential aux grains, et \(N \) est le vecteur normal au point de contact entre les deux grains.

D’après le graphique, on peut dire que la force tangentielle \(T \) est comprise dans un intervalle dont
les bornes définissent le seuil de frottement de Coulomb, égal au produit de la force normale \(N \) par le coefficient de frottement \(\mu \), soit :
\[
-\mu N \leq T \leq \mu N
\]
La vitesse est nulle tant que la force tangentielle \(T \) reste en deçà du seuil de frottement de Coulomb. La loi de Coulomb nous dit donc que la résistance au cisaillement est proportionnelle à la contrainte normale. Le coefficient de frottement \(\mu \) s’oppose par conséquent au glissement des deux grains. Ce glissement est atteint au seuil de Coulomb \(T = |\mu N| \).

Par ailleurs le coefficient de frottement macroscopique (effectif) peut être estimé en dynamique granulaire. Pour l’illustrer, nous exposons l’exemple du patin.

![Diagramme du patin statique et dynamique](image)

\(T' \)

\(mg \)

\(\theta \)

Patin statique

\(T' \)

\(mg \)

\(\theta \)

Patin dynamique

fig. 1-3-Patin statique sur une pente d’angle \(\theta \), soumis à son poids \(mg \), et retenu par la force \(T' = \mu_e mg \cos \theta \)

Patin dynamique (écoulement) à vitesse \(v \) sur une pente d’angle \(\theta \): il apparaît dans ce cas la contrainte \(\sigma_{xy} \) appliquée à la surface de l’écoulement qui s’oppose à \(T' \).

Soient \(N \) la force normale, \(T \) la force tangentielle.

D’après la fig.1-3 du patin statique, on peut écrire en projetant qu’à l’équilibre :

\[
N = mg \cos \theta \\
T = mg \sin \theta
\]

Cette force \(T \) est équilibrée par la force de frottement \(T' \) définie par :

\[
T' = \mu_s N = \mu_s mg \cos \theta \\
\mu_s \sim \frac{\sin \theta}{\cos \theta} \sim \tan \theta
\]

D’après le patin dynamique de la fig.1-3, on voit apparaître une contrainte \(\sigma_{xy} \) opposée à la force \(T' \). On a alors :

\[
\sigma_{xy} = \mu_e mg \sin \theta
\]

Le patin avance par son propre poids sur le plan incliné d’un angle \(\theta \), et exerce cette contrainte \(\sigma_{xy} \) sur le plan.

On peut réaliser une analogie entre le patin (statique et dynamique) et la dynamique granulaire. Ainsi prenons une boîte remplie de grains, si on est statique les grains ne s’écoulent pas et la force de frottement \(T' \) permet de maintenir cet équilibre. Par contre si les grains s’écoulent, cela signifie qu’ils avancent par réponse à leur poids. Une contrainte \(\sigma_{xy} \), s’opposant à \(T' \), s’exerce sur le plan incliné.

On peut aussi ajouter que ce sont les grains en surface qui vont entrainer l’écoulement des grains qui leur sont inférieurs et ainsi de suite telle une chaîne.
2-4-Compacité

La compacité (ou taux de remplissage) est le taux d'occupation réel de l'espace. Elle est le rapport entre le volume des grains V_s et le volume total V_t qui contient ces grains.

Elle est donc définie par : $c = \frac{V_s}{V_t}$

La compacité est une donnée purement géométrique, la masse n’intervient pas. Dans le cas d’une structure de grain à 2D illustrée par la fig.1-4, on a un empilement de grain monodisperse hexagonal, c’est-à-dire les grains ont la même taille et sont disposés régulièrement formant des hexagones. On a alors une compacité qui est de l’ordre de 0,9.

\[\text{fig.1-4-Empilement granulaire monodisperse hexagonal} \]

Par ailleurs dans le cas d’un empilement aléatoire, on a environ une compacité de 0,6 en 3D et 0,82 à 2D.
II – DISPOSITIF

1- Exposition du programme principal de simulation

C’est à partir d’un programme existant que les simulations, mises à ma disposition dès le début du stage, avaient été générées. Il me semble donc nécessaire de vous exposer quelques éléments de ce programme, explicités plus en détail dans [1].

De façon générale, ce programme permet de simuler l’écoulement d’un empilement de grains, qui pourraient être assimilés par exemple à des grains de sable. Ensemble, ces grains interagissent, échangent et dissipent leur énergie, transmettent des contraintes. Ils constituent un milieu non homogène, désordonné.

La modélisation de ce système granulaire par une approche discrète repose sur l’hypothèse que son comportement à l’échelle macroscopique résulte des interactions à l’échelle des grains. Ainsi la modélisation discrète des milieux granulaires prend en compte l’existence individuelle de chaque grain composant l’ensemble. Ceci implique la résolution des équations du mouvement pour chaque grain et le choix de lois de contact qui décrivent correctement les chocs entre particules.

Tout d’abord l’idée est de prendre deux grains i et j, et leurs voisins respectifs

Quelque soit t, on veut connaître les vitesses \(\mathbf{v}_i \), les rayons \(\mathbf{r} \) et les forces \(\{F\} \). On cherche donc à les calculer. Les forces permettent de déterminer les positions et les vitesses. Pour cela, on écrit les équations de la dynamique :

\[
\frac{\Delta \mathbf{v}_i}{\Delta t} = F_{ij} + \sum_k F_{ik}
\]

\[
\frac{\Delta \mathbf{v}_j}{\Delta t} = -F_{ij} + \sum_l F_{il}
\]

La vitesse relative est donnée par :

\[
\Delta \mathbf{v}_{ij} = \mathbf{v}_i - \mathbf{v}_j
\]
La force de contact est alors :

\[\Delta v_{ij} = F_{ij} \left(\frac{1}{m_i} + \frac{1}{m_j} \right) \Delta t + \frac{1}{m_i} \sum_k F_{ik} - \frac{1}{m_j} \sum_l F_{il} \]

La force de contact est alors :

\[F_{ij} = \frac{1}{A} \left(\frac{1}{m_i} + \frac{1}{m_j} \right) A \Delta v_{ij} + A_{ij} \]

avec \(A_{ij} = \frac{1}{m_i} \sum_k \overrightarrow{F_{ik}} - \frac{1}{m_j} \sum_l \overrightarrow{F_{il}} \)

\[\overrightarrow{F_{ij}} = \frac{1}{\Delta t} \left(\frac{1}{m_i} + \frac{1}{m_j} \right) \left(\overrightarrow{v_{ij}} - \overrightarrow{v_{ij}^-} \right) + A_{ij} \]

avec \(\overrightarrow{v_{ij}^-} \) la vitesse avant le choc au temps \((t-1)\)

\(\overrightarrow{v_{ij}^+} \) la vitesse après le choc au temps \(t\)

Cette expression de la force de contact est affine, on a donc une infinité de solutions. La contact \(ij\) dépend de tous les autres contacts à \(t\). On a un processus itératif, et on réalise celui-ci jusqu’à ce qu’il y ait convergence de solutions.

On réalise ensuite la projection de la force \(\overrightarrow{F_{ij}}\) sur la normale \(\overrightarrow{n}\) et la tangente \(\overrightarrow{t}\), dans le référentiel des deux grains \(i\) et \(j\), qui a pour vecteur normal \(\overrightarrow{N}\) et vecteur tangentiel \(\overrightarrow{T}\) au point de contact.

On impose alors la Loi de Coulomb pour déterminer la force de contact. Nous rappelons que cette loi nous dit que la définition du frottement entre deux grains est que la force tangentielle est comprise entre \(-\mu N \leq T \leq \mu N\), et que le glissement est atteint au seuil de Coulomb \(T = |\mu N|\).

Par ailleurs il faut aussi que les grains ne s’interpénètrent pas, c’est-à-dire qu’il faut limiter la vitesse normale. Car les vitesses de \(i\) et \(j\) sont positives quand ils s’approchent l’un de l’autre, sont nulles quand ils sont en contact, mais ensuite les grains ne peuvent pas continuer à avoir une vitesse positive car ce sont des solides (ils sont indéformables). Il y a une autre loi qui est donc imposée, c’est la Loi de Signorini, fig.2-2. Celle-ci dit que la vitesse normale est positive ou nulle, la force normale au contact est positive ou nulle (le contact est non adhésif). Avec ces deux lois, on détermine la force de contact \(\overrightarrow{F_{ij}}\).

Puis à partir des lois et des graphes de contact, on peut déterminer la solution de la force de contact \(F\) pour chaque grain.

Pour obtenir ces forces de contact, ainsi que d’autres caractéristiques, ce programme de simulation est très complet et a donc un algorithme important. Mon but ici n’est pas de vous l’expliciter d’avantage en détail, mais plutôt de se pencher à présent vers l’analyse de simulations, qui constitue mon travail de stage.

2-Présentation des simulations

Il y a 21 simulations qui ont été mises à ma disposition. Toutes ces simulations ont des caractéristiques.

Tout d’abord on se situe dans le cas d’écoulements permanents périodiques à 2D. Un
empilement polydisperse de 3200 grains est disposé dans une « boîte » périodique, ce qui permet de la considérer comme infinie, fig.2-3. C’est-à-dire la configuration polydisperse est en opposition à la configuration monodisperse hexagonale exposée à la fig.1-4 précédemment : dans notre cas, les grains sont disposés de façon aléatoire et ainsi permet de reproduire un désordre géométrique plus réaliste qu’un empilement granulaire ordonné. La « boîte » est infinie ; les grains qui arrivent à la sortie (à droite) sont en fait redistribuée à l’entrée (à gauche).

![Diagramme avec axes x et y](https://via.placeholder.com/150)

fig. 2-3 – Système granulaire composé de 3200 grains.

L’ensemble des grains sont traités de la même manière. On remarque que s’ils sont proches des parois les grains ne sont pas disposés linéairement. Ainsi la position y des grains est une variable qui permet de décrire l’état du système. Lors de nos analyses, on s’intéressera à l’état des grains en fonction de leur position y.

De plus on repère sur l’axe des abscisses la longueur caractéristique de la « boîte » qui vaut 100 diamètres de grains. Et sur l’axe des ordonnées, la hauteur vaut 32 diamètres de grains.

Le coefficient microscopique μ est de 0,3, le coefficient de restitution est de 0,5 et la densité des grains =0,1. Puis la gravité est fixée à g = 9.8.

La durée totale de chaque simulation est de 5000 ms et le pas de temps est de 1e-3 s. Une seule des simulation a un temps supérieur d’une durée d’une minute et son pas est de 2 s.

La caractéristique spécifique de chaque simulation est son angle d’inclinaison θ. On ne le voit pas apparaître sur l’image mais il faut s’imaginer la « boîte » comme un plan incliné. Ainsi la première simulation a un angle de 16,5°, la 2ème 17° et ainsi de suite jusqu’à 26,5° pour la dernière.

3- Utilisation post traitement

Il s’agit de réaliser l’analyse des simulations pour étudier différentes quantités physiques (vitesses, compacité…). On passe d’un ensemble discontinu (nombre discret important de grains) à un milieu continu (système granulaire). On se ramène à des quantités moyennées de vitesses, de compacité, du milieu afin de les analyser.

Pour cela on procède toujours de la même manière. Dans un premier temps, nous réalisons les algorithmes (dans le module exe), soient par exemple iexe4 et iexe8 de l’annexe 1-1, qui sont respectivement le profil de vitesse en x à un temps t donné et moyen au cours du temps.

Dans un second temps, on choisit dans un fichier d’entrée (appelé modata) la simulation que l’on veut analyser, l’exemple que l’on veut étudier, le pas de temps, les tâches... Par exemple dans l’annexe 1-2, on a la simu32, l’exemple iexe4, un pas de temps de 1 ms et un temps de simulation de 5000 ms. Ensuite on réalise la compilation du programme et de l’exemple.

Dans un troisième temps, on analyse les résultats obtenus. Souvent ce sont des tableaux de valeurs qui nous permettent de tracer des courbes avec l’outil Gnuplot. On réalise la plupart du temps
l’analyse de chaque iexe pour plusieurs simulations, afin de comparer les résultats numériques et dégager des interprétations.
Puis enfin, on compare ces résultats aux modèles théoriques.

III-ÉTUDES ET RESULTATS

A- Evolutions au cours du temps

Le but de ces analyses est de nous permettre avant tout de se rendre compte de l’allure générale que prennent la vitesse moyenne en x, la vitesse moyenne de rotation et la compacité moyenne au cours du temps.

1- Vitesse en translation suivant la direction de l’écoulement : V_x

On se place tout d'abord dans le cas de la vitesse en x, et on analyse la simulation pour plusieurs angles (fig.3-1). Pour calculer la vitesse moyenne en x, on somme les vitesses en x de l’ensemble des particules et on divise par le nombre de particules.

La vitesse moyenne en x au cours du temps augmente avec l'angle qui augmente, et est relativement constante pour chaque angle. Ainsi les vitesses en x semblent stationnaires à quelques fluctuations près.

![Graphique de la vitesse moyenne en x au cours du temps, pour différents angles ($\theta = 17, 18, 19$ et 20°)](image)

A présent, on zoom sur le cas de la simu29 ($\theta = 17^\circ$), on observe que la courbe correspondante (annexe 2-1) est fluctuante, mais la vitesse en x oscille autour des mêmes valeurs environ 2,8 (oscillations qu'on apercevait déjà légèrement pour la vitesse en x sur la fig.3-1).

2- Vitesse en rotation

Comme pour la vitesse moyenne en x, on observe la vitesse de rotation moyenne au cours du temps. On obtient également des oscillations autour d’une même valeur -1,3 pour la simu29 d’angle
\[\theta = 17^\circ \text{ de l'annexe 2-2.} \]

On constate de plus que la vitesse moyenne en rotation est négative, cela vient du fait que les grains ne tournent pas toujours dans le sens positif. Ce sera une remarque à prendre en compte pour les prochaines analyses.

3-Compacité au cours du temps

En ce qui concerne la compacité, nous rappelons qu'elle est donnée par la relation :

\[c = \frac{V_s}{V_t} \]

C'est le rapport entre le volume des grains et le volume total.

On s’intéresse à la compacité moyenne. La courbe de l’annexe 2-3 obtenue montre que la compacité avoisine les 0.7 ce qui est cohérent, car on n'a pas une distribution hexagonale des grains exposée précédemment dans I-2-4. Ici nos grains sont de tailles différentes, notre compacité est proche du cas aléatoire maximal 2D grâce à la distribution de taille de grains, et au-dessus du cas minimum aléatoire 0,6.

Pour mieux observer et analyser l'évolution de ces paramètres, nous approfondissons notre étude.

B- Profils

Quand on réalise un profil, on regarde les différentes quantités (vitesses en x, vitesse en rotation, compacité...) en fonction de la profondeur (c'est-à-dire la hauteur y). On peut voir de cette manière l'influence que peut avoir la profondeur sur nos quantités.

1- Vitesse en x

1-1- Loi de Bagnold

Nous allons faire une analyse simplifiée du transfert de quantité de mouvement entre deux couches. Nous nous plaçons dans un cadre simplifié de milieu continu, on cherche donc un profil de vitesse \(u(y) \).

![Fig. 3-2: Ecoulement de grains dans la direction x, sur un plan incliné d'un angle \(\theta \). Couches parallèles y et y+R. Hauteur maximale H.](image)

La relation fondamentale de la dynamique (RFD) nous dit :

\[m \frac{dv}{dt} = \sum F \]
On considère deux couches parallèles de grains qui s'écoulent l'une sur l'autre. La première est en \(y \) et la seconde en \(y+R \), avec \(R \) le diamètre d'un grain.

L'accroissement de vitesse s'écrit :
\[
\Delta v = v(y+R) - v(y) = R \frac{\Delta v}{\Delta y}
\]

On peut considérer que le temps caractéristique (temps de collision) est :
\[
\Delta t = \left(\frac{\Delta v}{\Delta y} \right)^{-1}
\]

La RFD devient alors :
\[
m \frac{\Delta v}{\Delta y} = m \frac{R}{R} \left(\frac{\Delta v}{\Delta y} \right)^2
\]

La contrainte normale est à peu près hydrostatique soit :
\[
\sigma_{xy} = mg (H - y) \sin \theta
\]
Ainsi la contrainte étant la force par unité de surface est alors :
\[
F = m \left(\frac{\Delta v}{\Delta y} \right)^2 = \sigma_{xy} = mg (h - y) \sin \theta
\]

L'équation différentielle du mouvement est alors :
\[
\left(\frac{dv}{dy} \right)^2 = B (h-y) \sin \theta
\]
avec \(B \) une constante

Donc
\[
\frac{dv}{dy} = B \sqrt{\frac{1}{2} (\sin \theta)^{\frac{1}{2}} (h - y)^{\frac{3}{2}}}
\]

En intégrant, on obtient :
\[
v = -\frac{2}{3} B \sqrt{\frac{1}{2} (\sin \theta)^{\frac{1}{2}}} \left[(h)^{\frac{3}{2}} - (h-y)^{\frac{3}{2}} \right] + v_0
\]

CI : pour \(y = 0 \) => \(v = 0 \)

Donc
\[
v = \frac{2}{3} B \sqrt{\frac{1}{2} (\sin \theta)^{\frac{1}{2}}} \left[(h)^{\frac{3}{2}} - (h-y)^{\frac{3}{2}} \right]
\]

On pose :
\[
v = v_0(y) \cdot v_{surf}
\]

avec \(v_0(y) = \frac{(h)^{\frac{3}{2}} - (h-y)^{\frac{3}{2}}}{(h)^{\frac{3}{2}}}
\]

\[
v_{surf} = \frac{2}{3} B \sqrt{\frac{1}{2} (\sin \theta)^{\frac{1}{2}}} (h)^{\frac{3}{2}}
\]

Cette forme théorique de Bagnold est l’approche théorique à laquelle nous nous référons.

1-2- Analyse

A chaque hauteur \(y \) de la couche, on moyenne un quantité ici la vitesse en \(x \) pour un temps \(t \) donné : c’est le profil de la vitesse en \(x \) à un temps \(t \).

Le calcul est réalisé pour une épaisseur \((y) \) de 32 diamètres de grains. On obtient le graphique fig.3-3. On peut en déduire que plus on est à la surface \((y élevé) \) plus la vitesse en \(x \) est importante.
Ceci est cohérent, car on s'imagine bien que les grains à la surface s’écoulent avant ceux qui leur sont inférieurs, leurs vitesses sont donc plus importantes. On constate aussi que l'utilisation d'un profil nous permet d'avoir une vision plus nette de l'évolution de v_x.

![Fig. 3-3: Pente $\theta = 17^\circ$. Pour t donné : profil de vitesse en x et profil de la valeur absolue de la vitesse de rotation.](image)

On regarde à présent le profil de vitesse moyenné en x et en temps t pour différents angles θ, sur une épaisseur de 28 diamètres de grains. Puis on compare à la courbe théorique de Bagnold que l'on rappelle : $v_b(y) = \frac{(h/2)^2 - (y - h/2)^2}{(h/2)^2}$.

![Fig. 3-4: Profils de vitesse en x moyennés au cours du temps pour différents angles θ (17 à 26.5 °).](image)

- **a-** Profils de vitesse en x moyennés au cours du temps pour les différents angles θ, avec la condition $y=h$ en valeur maximale. Profil théorique de Bagnold $v_b(y)$.

"\[\text{fig. 3-3: Pente } \theta = 17^\circ. \text{ Pour } t \text{ donné : profil de vitesse en } x \text{ et profil de la valeur absolue de la vitesse de rotation.}\]

"\[\text{fig. 3-4: a- Profils de vitesse en } x \text{ moyennés au cours du temps pour différents angles } \theta \text{ (17 à 26.5 °).}\]

"b- Profils de vitesse en x moyennés au cours du temps pour les différents angles θ, avec la condition $y=h$ en valeur maximale. Profil théorique de Bagnold $v_b(y)$."
D’après la fig. 3-4-a, on constate que chaque profil moyenné en x au cours du temps est croissant et lisse. Ainsi plus on se rapproche de la surface du système granulaire, plus la vitesse est élevée. De plus le profil moyenné en temps a une meilleure allure que le profil à un temps t donné, et nous donne une meilleure statistique. Par ailleurs quand on compare les profils à différents angles θ, on remarque que plus l’angle est élevé plus la vitesse est élevée (d’où la flèche présente sur la courbe qui indique ce phénomène). Ce qui est logique, car la pente est plus importante, les grains s’écoulent donc plus rapidement. Il faut signaler par ailleurs que pour tous les angles il y a écoulement, chaque angle même le plus faible 17° permet aux grains de s’écouler continûment. On est au-dessus d’un angle limite pour lequel l’écoulement commence à avoir lieu.

La fig. 3-4-b nous permet de comparer nos résultats au modèle théorique de Bagnold présenté précédemment (1-1, p.9). En utilisant \(v_0(y) \), on impose une valeur maximale aux vitesses de la couche : en \(y=h \), \(x=1 \). De cette manière, on généralise notre analyse. Tous nos profils s’intersectent au même point, et on peut d’avantage les comparer. Nos résultats numériques ont la même allure que la courbe théorique. On observe que le profil pour \(\theta=26.5^\circ \) (angle le plus important) est le plus éloigné de la théorie. Mais l’allure générale est maintenue. La vitesse dans la direction x de l’écoulement est donc une quantité physique mesurable.

2-Vitesse de rotation

2-1- Rotationnel

Pour un fluide, le rotationnel des vitesses est donné par :

\[
\text{rot} \, v = \frac{1}{2} \left(\frac{\partial v_y}{\partial x} + \frac{\partial v_x}{\partial y} \right)
\]

Dans le cas d’un système granulaire, observons-nous une relation analogue ? Comme pour la vitesse en x, on se place dans le cas de la fig. 3-2 exposant l’écoulement de grains dans la direction x, sur un plan incliné d’un angle \(\theta \). On considère deux couches parallèles y et \(y+R \). Quand on moyenne les vitesses, on obtient une vitesse moyenne \(v_y \) presque nulle, car la vitesse prépondérante est \(v_x \) dans le sens de l’écoulement. Le terme d’accroissement \(dx \) et le terme \(\frac{dy}{dx} \) sont donc négligeables. On obtient alors :

\[
w = \frac{1}{2} \left(\frac{dv_x}{dy} \right)
\]

avec w la vitesse de rotation.

2-2-Analyse

A chaque hauteur y de la couche, on moyenne la vitesse en rotation pour un temps t donné. Il y a 28 diamètres de grains en épaisseur de couche. Le profil des vitesses de rotation à t donné (annexe 2-4) est assez fluctuant, mais semble osciller autour des mêmes valeurs (entre -1 et 0). Par ailleurs on ne peut rien dire sur l’évolution de la vitesse par rapport à la position y dans la couche.

Les vitesses prennent des valeurs négatives, quelle en est la raison ? Ceci vient du fait que dans le sens trigonométrique le grain a une vitesse de rotation positive et dans le sens horaire elle est négative. Pour éviter ce changement de signe et n’avoir que la norme de la vitesse, on calcule aussi la valeur absolue de la vitesse de rotation. Mais cela n’est pas plus concluant, de même que le profil de la valeur absolue de la vitesse de rotation à un temps t donné, fig.3-3.
On réalise le profil de vitesse de rotation moyenné au cours du temps pour la vitesse de rotation, fig.3-5, puis pour la valeur absolue de la vitesse de rotation, annexe 2-5.

On constate d’après la fig.3-5, que la vitesse de rotation est plus importante aux couches inférieures. Ce qui est cohérent, car les grains à la surface sont les premiers à s’écouler et entraînent ceux des couches inférieures. Par ce processus, ceux de la surface glissent sur les inférieurs, par conséquent la rotation est plus importante pour ces derniers.

Et plus la pente θ est grande plus la vitesse de rotation est importante, c’est ce qu’illustre la flèche. Par ailleurs quand on se rapproche du fond de l’écoulement, on constate que l’allure des profils connaît des fluctuations. Ceci pourrait s’expliquer du fait que le fond rigide induit plus d’agitation. Les grains à ce niveau ne s’écoulent pas forcément, et ne connaissent qu’une rotation sur eux même contrairement aux grains supérieurs.

On a aussi quelques fluctuations qui apparaissent sur les profils quand l’angle augmente. Les grains vont plus vite, et les vitesses fluctuent d’avantage.

A présent on réalise un petit programme nous permettant de calculer \(w = \frac{1}{2} \left(\frac{d\nu_x}{d\gamma} \right) \).

On réalise cette simulation pour quelques angles, et on regroupe les valeurs dans un même fichier.

Puis on trace les points obtenus ainsi que la régression linéaire correspondante afin de comparer la simulation à la courbe théorique : \(w = \frac{1}{2} \left(\frac{d\nu_x}{d\gamma} \right) \).

La fig.3-6 est obtenue, et nous permet de dire que le coefficient directeur de la régression linéaire est de \(a = 0.453834 \), ce qui s’approche assez bien de la théorie \(a_{th} = \frac{1}{2} \).

L’hypothèse théorique d’une vitesse de rotation \(w = \frac{1}{2} \left(\frac{d\nu_x}{d\gamma} \right) \) est raisonnablement bien vérifiée dans les simulations.
3- Compacité

Plusieurs méthodes peuvent être utilisées pour calculer le profil de compacité. Tout d’abord pour le profil à un temps t donné, on a utilisé la méthode de comptage qui consiste à prendre une couche d’épaisseur 32 diamètres de grains. Puis on calcule pour chaque épaisseur de 1 à 32 la quantité de grains N, puis la compacité associée : $c = \frac{N \pi R^2}{2R L}$ avec πR^2: la surface moyenne d’un grain, $2R$: le diamètre, L: la longueur de la boîte.

On obtient ainsi la fig. 3-7.

fig. 3-7 - Pente $\theta = 17^\circ$. Profil de compacité à t donné, pour une épaisseur de couches de 32 diamètres. Profil de compacité moyenné au cours du temps.
Pour le profil de compacité moyenné au cours du temps, on procède de la même manière que pour la vitesse en x. On somme le nombre de grains par couche et on calcule la compacité obtenue à chaque pas de temps. On remarque que les profils moyennés à un temps t donné et au cours du temps fig.3-7 sont assez fluctuants, et les valeurs oscillent autour de 0.76. Par ailleurs le profil moyenné au cours du temps donne une meilleure statistique.

Pourquoi y a-t-il ces fluctuations pour les profils de compacité?
Cela peut venir du fait que jusqu'à présent quand on comptait le nombre de grains par couche, on avait tout simplement la somme des grains à chaque pas. On ne tenait pas compte de la position du grain dans la couche, et du fait que la surface du grain, présente dans une couche, peut varier d'un grain à l'autre.

Nous allons utiliser une méthode géométrique plus précise. Celle-ci consiste à analyser toutes les configurations possibles, fig.3-8. Pour cela on va aborder de façon plus complète le problème, en comptabilisant le nombre de grains pour chaque cas.

Pour différencier les cas entre eux, il faut examiner 2 paramètres : la position yi du grain (à l'intérieur ou à l'extérieur de la couche) et la surface 'grisée' du grain comprise dans la couche. Les différentes positions d'un grain sont donc (avec R le rayon du grain):

1/ (yi-R)>=y1 et (yi+R)<=y2
2/ yi<y1 et (yi-R)<yi
3/ yi>y1 et (yi+R)>yi
4/ yi<y2 et (yi+R)<yi
5/ yi>y2 et (yi+R)>yi

Remarque : on prendra une épaisseur de couche de diamètre Dmax=2Rmax afin d'éviter le cas où un grain se retrouve à chevaucher y1 et y2 : yi+Rmax>y2 et yi-Rmax<y1
Ainsi on simplifie les calculs.

Maintenant en ce qui concerne la surface “grisée”. Le cas simple (cas 1) est que la surface vaut : \(S = \pi R^2 \)
Pour les autres cas, la surface est moins évidente, il faut donc la calculer.

\[
S = 2 \int_{\theta_{m,n}}^{\theta_{m,n+1}} r(\theta) \, dy
\]
Or \(r(\theta) = R\cos\theta \) et \(dy = R\cos\theta \, d\theta \)

\[
S = 2 \int_{\theta_{\min}}^{\theta_{\max}} R^2 \cos^2 \theta \, d\theta
\]

Or \(\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1 \)

Soit \(\cos^2 \theta = \frac{1 + \cos 2\theta}{2} \)

\[
S = R^2 \int_{\theta_{\min}}^{\theta_{\max}} (1 + \cos 2\theta) \, d\theta
\]

\[
S = R^2 \left[\theta + \frac{\sin 2\theta}{2} \right]^{\theta_{\max}}_{\theta_{\min}}
\]

A partir de cette formule on calcule pour chaque cas de 2 à 5 la surface S.

Par exemple prenons le cas 4, on obtient :

\[
S = R^2 \left[\theta + \frac{\sin 2\theta}{2} \right]^{\theta_{\max}}_{-\pi}
\]

\[
S = R^2 \left(\theta_{\max} + \frac{\sin 2\theta_{\max}}{2} + \frac{\pi}{2} \right)
\]

\[
S = \frac{R^2}{2} \left(\pi + 2\theta_{\max} + \sin 2\theta_{\max} \right)
\]

\[
S = \frac{R^2}{2} \left(\pi + 2 \arcsin \left(\frac{\Delta R}{R} \right) + \sin 2 \left(\arcsin \left(\frac{\Delta R}{R} \right) \right) \right)
\]

avec \(\Delta R = y_2 - y_i \)

Après avoir transcrit chaque surface dans l’algorithme, on compile le programme et on trace la fig.3-10.

On obtient des profils de compacité beaucoup plus « lisses ». Pour un angle \(\theta \) donné, la compacité voisine toujours une même valeur, par exemple pour 25°, on a \(c=0.75 \). Quand on se concentre sur la partie centrale de l’écoulement (bords exclus), on peut dire que la compacité est une quantité physique relativement constante.

De plus la compacité diminue, avec la pente qui augmente. Ceci peut s’expliquer du fait que lorsque la « boîte » est plus inclinée l’écoulement de grains est plus important. Plus de grains sont en mouvement et sont alors moins compacts.
Il n'y a pas d’approche théorique qui a pu être réalisée pour ces profils de compacité. Car il n’y a pas de modèle théorique que l’on puisse étudier avec ses simulations.
En outre cette analyse de compacité, qui est l’un des enjeux de ce stage, fait partie des travaux de recherches de mes tuteurs.

C-Dépendance en θ : influence de la pente

1-Vitesse moyenne en x

On réalise pour chaque simulation une mesure de la vitesse moyenne en x, et on regroupe les valeurs en fonction de l’angle θ associée à chaque simulation.
Le but est alors de vérifier si des expressions théoriques issues de [2] s’appliquent.

Pour la vitesse en surface en fonction de θ, on cherche l’approche théorique :
1/ On utilise la formule $v_{surf} \propto \sqrt{\sin \theta}$ ou bien $v_{surf} \propto \sqrt{\sin \theta - \mu \cos \theta}$. Cela nous donne de très mauvais résultats.
2/ On utilise la formule 7 issue de l’article [2]. On l’écrit :

$$v = A \frac{(\sin \theta - \mu \cos \theta)^{\frac{3}{2}}}{\left(1 - \frac{\mu N(tan \theta - \mu)}{\mu_T}\right)^{\frac{1}{2}}}$$

avec A=constante
μ_N = coefficient de viscosité normale
μ_T = coefficient de viscosité tangentielle

Remarque : pour obtenir la constante A, on fait une approximation des valeurs dans GnuPlot, et A est déterminée.

On obtient alors la fig.3-11. La vitesse moyenne en $y=h$ augmente avec l’angle qui augmente. Les valeurs numériques obtenues concordent bien avec la courbe théorique. On peut dire que la vitesse moyenne en h est liée à l’angle de la pente. Et on peut penser qu’un angle limite tend à être obtenu
au-delà de 26° : on n’a plus de régime permanent, mais continûment accéléré; la dynamique devient alors différente.

![Graphique 3-11. Vitesse en y=h en fonction de l’angle θ. Courbe théorique tracée à partir de la formule de la référence [2]. Courbe Simulation.](image)

2- Compacité moyenne

Une mesure de la compacité moyenne est réalisée pour chaque simulation, soit pour chaque angle θ donné. La fig.3-12 nous permet de constater une nouvelle fois, comme dans le cas des profils moyennés au cours du temps : plus la pente est importante plus la compacité est faible (les grains sont moins compacts).

![Graphique 3-12. Compacité moyenne en fonction de l’angle θ.](image)

Jusqu’à présent on a toujours analysé les vitesses et la compacité individuellement. On peut se poser la question : est-ce que ces paramètres de vitesse en x et de compacité c sont corrélés?
La compacité moyenne diminue avec une vitesse moyenne dans la direction x de l’écoulement. Ce qui signifie que vitesse et compacité sont des quantités physiques corrélées. De plus on a vu que la vitesse moyenne en x augmente avec l’angle et que la compacité moyenne diminue avec l’angle qui augmente. Par conséquent on montre que plus la pente est élevée, plus la vitesse en x est importante et plus la compacité est faible.

Il en est de même pour la vitesse de rotation. On a réalisé la comparaison entre la compacité moyenne et la vitesse de rotation moyenne (annexe 2-6).
CONCLUSION

A travers ce stage, il était fixé d’étudier des propriétés physiques d’écoulements granulaires par expériences numériques. Cette étude fait appel à une partie de la mécanique : la rhéologie qui est l’étude des déformations et de l’écoulement des corps par rapport aux sollicitations qu’ils subissent.

Ainsi les quantités physiques suivantes, vitesse dans la direction de l’écoulement v_x, vitesse de rotation w et compacité c, ont été analysées. Tout d’abord, l’évolution des moyennes de ces quantités au cours du temps nous a permis d’observer leur comportement général. Puis à l’aide des profils des quantités moyennes à un temps t donné, nous avons commencé à étudier plus précisément les caractéristiques, comportements de ces grandeurs. C’est ensuite vraiment grâce aux profils moyennés en temps que nous avons basés et approfondis nos analyses. Des approches théoriques telles que Bagnold pour la vitesse en x, le rotationnel pour la vitesse de rotation, nous ont permis d’obtenir un point de vue critique sur nos résultats numériques. On peut alors dire que la vitesse en x est stationnaire au cours du temps, et est d’autant plus grande que la pente θ du système granulaire est importante. Il en est de même pour la vitesse de rotation. Puis pour la compacité, on conclue que plus la pente est élevée, plus la compacité est faible. Cette quantité physique qui était le principal enjeu de ce stage a donc pu être observé.

Ce stage m’a permis de me perfectionner en programmation en langage Fortran et dans l’utilisation de l’outil Gnuplot. Ayant réalisé auparavant dans mon cursus universitaire des expériences granulaires en laboratoire, je me rend bien compte que la simulation numérique permet d’étudier des quantités physiques qui seraient sûrement inaccessibles par des expériences de laboratoire. Des paramètres, comme par exemple l’angle d’inclinaison, le pas de temps, le coefficient de viscosité et pleins d’autres, peuvent être modifiés facilement et permettent d’élargir les analyses. Ce stage était vraiment plaisant et instructif et je tiens à nouveau à remercier mes tuteurs.

Par ailleurs l’étude des écoulements granulaires ne s’arrête pas là, on pourrait analyser le tenseur des contraintes, réaliser une approche théorique supplémentaire pour la vitesse de rotation. Il serait aussi intéressant de réitérer nos analyses de profils pour des simulations plus longues, afin de voir le comportement des grandeurs physiques sur une plus grande échelle temporelle.
ANNEXE

1-Post traitement

1-1-Exemples d'algthme

!===

module exe

CONTAINS

subroutine exemple()
use declare

implicit none

integer :: i,j,k
integer :: n0
integer,save :: irec
real :: yi,y1,y2
real :: nx,nvit
real, dimension(40,2),save:: Vprof
real,dimension(40,6000), save :: ngrainmean,vitmean

!--
! iexe=4: tracer le profil des vitesses x a un temps t
if (iexe == 4) then

 n0 = 100 ! specifie le pas de calcul pour lequel on veut le profil

 if (nrec == n0) then
 open(100,file="ProfilVB.dat",status="unknown")
 Vprof=0.
 do k = 1,28
 y1 = (k-1)*2*rmax
 y2 = k*2*rmax

 do i = 1,np
 yi = grains(i)%ry
 if (yi > y1 .and. yi <= y2) then
 Vprof(k,1) = Vprof(k,1) + 1
 Vprof(k,2) = Vprof(k,2) + grains(i)%vx,vitmean
 end if
 end do
 end do
 end if

end if

end subroutine exemple

end module
Vprof(k,2) = Vprof(k,2)/Vprof(k,1)
write(100,*) k, Vprof(k,2)
end if
end do

close(100)

stop 'Profile recorded'
end if
end if ! iexe == 4

!---
! iexe=8: tracer le profil des vitesses en x moyenné au cours du temps
if (iexe == 8) then
 if (nrec == 1) then
 irec = 0
 open(100,file="ProfilVxmean.dat",status="unknown")
 end if

 irec = irec + 1

 do k = 1, 28
 y1 = (k-1)*2*rmax
 y2 = k*2*rmax
 ngrainmean(k,nrec) = 0.
 do i = 1,np
 yi = grains(i)%ry
 if (yi > y1 .and. yi <= y2) then
 ngrainmean(k,nrec) = ngrainmean(k,nrec) + 1
 vitmean(k,nrec) = vitmean(k,nrec) + grains(i)%vx
 end if
 end do
 end do

 if (nrec == rec2) then
 do k = 1,28
 nx = 0.
 nvit = 0.
 do i = 1, irec
 nx = nx + ngrainmean(k,irec)
 nvit = nvit + vitmean(k,irec)
 end do
 nx = nx/float(irec)
 nvit = nvit/float(irec)
 nvit = nvit/nx
 end if
vxprofmean(k) = nvit
write(100,*) k, vxprofmean(k)
end do

close(100)
write(*,*) 'Profile recorded'
end if
end if ! iexe == 8

end subroutine exemple

end module exe

1-2-Modata

<table>
<thead>
<tr>
<th>SimuF</th>
<th>simu</th>
</tr>
</thead>
<tbody>
<tr>
<td>simu29</td>
<td>dirin</td>
</tr>
<tr>
<td>resu01</td>
<td>dirout</td>
</tr>
<tr>
<td></td>
<td>rec1,rec2,nbound</td>
</tr>
<tr>
<td>1 5000 1200</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>iexe</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

0 1	idraw,ndraw
0 70.	iscale,izoom
Imag02	direx
2	mode
	dveloce
1	dsystem
0	dcorrel
0	dstress
2-Courbes

2-1-Vitesse moyenne en x au cours du temps ($\theta = 17^\circ$)

2-2-Vitesse moyenne de rotation au cours du temps ($\theta = 17^\circ$)

2-3-Compacité moyenne au cours du temps ($\theta = 17^\circ$)
2-4- Profil de la vitesse de rotation à t donné (θ = 17°)

2-5- Profil de la valeur absolue de la vitesse de rotation moyenné au cours du temps (θ = 17°)
2-6-Compacité moyenne en fonction de la vitesse de rotation moyenne

