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Institut de Mécanique des Fluides de Toulouse,

UMR CNRS 5502,
31400 Toulouse Cedex, France

Pierre-Yves Lagrée
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Maximal Wall Shear Stress in
Arterial Stenoses: Application to
the Internal Carotid Arteries
Maximal wall shear stress (MWSS) in the convergent part of a stenosis is calculated by
the interactive boundary-layer theory. A dimensional analysis of the problem shows that
MWSS depends only on a few measurable parameters. A simple relationship between
MWSS and these parameters is obtained, validated, and used to calculate the magnitude
of MWSS in a carotid stenosis, as a function of the patency of the circle of Willis and the
stenotic pattern. This demonstrates the huge effect of collateral pathways. Elevated
MWSS are observed even in moderate stenoses, provided they are associated with a
contralateral occlusion, a large anterior, and narrow posterior communicating arteries,
suggesting a potential risk of embolus release in this configuration.
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Introduction
Stenoses and occlusions of internal carotid arteries are involved

in 34 @1# to 44 percent@2# of strokes. Large multicenter trials@3,4#
have shown that the risk of stroke increases significantly with the
degree of stenosis. Carotid lesions induce strokes by either a he-
modynamic or an embolic mechanism. In the first case, obstruc-
tive lesions induce a loss of perfusion pressure that causes isch-
emic lesions in the downstream cerebral territories. Poor collateral
arterial circulation through the circle of Willis~the main anasto-
motic network situated at the base of skull! has been shown to be
frequently associated with this clinical condition@5,6#. In the case
of embolic strokes, materials detached from ulcerated plaque or
mural thrombus migrate from the stenosis and occlude the distal
smaller vessels@7#. The embolization is probably related to com-
plex biochemical phenomena in plaque and/or thrombus compo-
nents, which determine their mechanical properties, but also to
shear stress due to blood flow@8#. In a simulation study, Cassot
et al. @9# showed that differences in collateral pathways of the
circle of Willis and in degree of contralateral stenosis induce great
interindividual variability of measurable parameters~flow rate, ve-
locity! in a stenosis of a given radius reduction. They suggested
that this variability could lead to large changes in maximal wall
shear stress~MWSS! that could play a role in the embolic mecha-
nism. However, the magnitude of these shear stress variations has
still to be quantified.

In spite of abundant literature about magnitude and effects of
wall shear stresses at early stages of development of atheroscle-
rosis and mural thrombosis@10–12#, there is no report about the
evaluation of high shear stresses in advanced occlusive lesions
that takes the role of collateral circulatory pathways into account.
For this purpose, a simplified methodology for evaluating MWSS
in stenoses ranging from mild ones to occlusions is needed. In-
deed, even if Navier–Stokes solvers are now very efficient to
compute wall shear stress in moderate stenoses@11,13,14#, some
difficulties still remain for stenoses whose degree, expressed as
percent narrowing in the luminal diameter, is higher than 70 per-
cent. Moreover, achieving a new computation for every particular
geometry and flow rate is still time consuming. Hence, Siegel

et al. @13# have performed a regression analysis in order to inter-
polate their numerical results for all Reynolds numbers. However,
the scaling law they have proposed is limited to three moderate
constrictions~29, 50, and 69 percent radius reduction! and cannot
be extrapolated to severe stenoses. There has been very little work
toward a simplified method valid for severe stenoses, mainly done
by Back et al.@15,16#. They used a local similarity method de-
rived from the boundary-layer theory for steady flow through a
conical axisymmetric constriction. However, they found that the
wall shear stress monotonically increases from the inlet to the
throat, whereas all other studies find a peak wall shear stress
slightly upstream of the throat. Consequently, this model is only
accurate for evaluating MWSS in approximately conical stenoses.

In the present study, the interactive boundary-layer~IBL !
theory is applied. A scaling analysis based on geometric param-
eters ~radius reduction at the throat and stenosis length! is
achieved, assuming that the blood is Newtonian~viscosity of 0.03
Poise!, the stenosis is axisymmetric with a small rate of change of
taper and a smooth, rigid wall, and the flow is steady. Under these
assumptions, widely used by others@11,13,14,16# and further dis-
cussed below, such an asymptotic method allows the extraction of
the fundamental mechanisms and the determination of the relevant
nondimensional parameters. In this way, a simple relationship is
obtained between the MWSS in the convergence, the flow rate~or
Reynolds number! and the geometric parameters. We thus com-
pute the magnitude of MWSS in a carotid artery stenosis, as a
function of the morphology of the circle of Willis and the stenotic
pattern of both carotid arteries.

Methods

Stenosis Geometry. The stenosis geometry is approximated
by an axisymmetric fourth-order polynomial~Fig. 1!, defined by:

R~x!52DS x

L D 4

12DS x

L D 2

112D, xP@2L,L#, (1)

wherex, R, andL are, respectively, the axial coordinate, the radial
position of the wall, and the convergence length nondimensional-
ized by the upstream radiusR0* , and D is the stenosis degree,
i.e., radius reduction at stenosis throat.
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Wall Shear Stress in the Stenosis Convergent Part: IBL In-
tegral Method. The IBL theory is based on two hypotheses.
First, the Reynolds number based upon upstream diameter and
mean upstream velocity (Re0) is large enough~typically between
200 and 800! for the boundary-layer theory to hold. Second, as
Re0 is not strictly infinite, the boundary-layer at the vessel wall
interacts with the potential~thus irrotational! core of inviscid fluid
through the global conservation of flow@17–19#: The core flow
speed is increased to take account of the boundary-layer displace-
ment ~at order Re0

21/2!, which is itself dependent on the pressure
gradient in the core. This modification is a significant improve-
ment on the classical boundary-layer approach, but even the IBL
theory is only valid for attached flows.

Assuming a curvilinear system of coordinates~Fig. 1!, we de-
note bys* the current length measured along the stenosis wall
from the beginning of the convergence (x52L), n* denoting the
coordinate normal to the wall. The asymptotic dimensionless vari-
abless, n, u, v, andue , are chosen to be of the same scale in the
boundary-layer as Re0 tends to infinity. They are determined by:

s5
s*

R0*
, n5

ARe0n*

&R0*
, u5

u*

u0*
, v5

ARe0v*

&u0*
, ue5

ue*

u0*
,

(2)

whereu* , v* , andue* are, respectively, the velocity components
parallel and normal to the wall, and the velocity at the edge of the
boundary-layer. The displacement thicknesses of the boundary-
layer are defined by:

d1* 5
&R0*

ARe0

d1 , d15E
0

`S 12
u

ue
Ddn. (3)

Let us introduce new variablesX, Y, D1 , U, V, andUe defined by
the Mangler transformation that reduces the problem to a plane
bidimensional formulation@20#:

X5E
0

s

R~s8!2ds8, Y5R~s!n, D15R~s!d1 , U5u,

(4)

V5
1

R~s! S v1
1

R~s!

dR~s!

ds
unD , Ue5ue .

If the rate of change of taper of the convergenced2R/dx2 is
everywhere small, the dimensionless versions of the boundary-
layer equations@20# and of global conservation of flow, written in
Mangler coordinates, are, respectively:

]U

]X
1

]V

]Y
50

U
]U

]X
1V
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]Y
5Ue

dUe

dX
1

]2U
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J (5)

and

UeS R2
&D1

RARe0
D 2

51. (6)

This system may be simplified by taking the integral form of the
momentum equation, obtained by integrating it with respect toY
between 0 and infinity. Becaused2R/dx2 is everywhere small,U
is constant and equalsUe in the whole potential core. Thus, when
Y tends to infinity, the velocity matches the velocity of the core. If
Y is sufficiently high, the result of the integration is independent
of the upper limit:

d

dX S D1

H D1S 11
2

H DD1

1

Ue

dUe

dX
5

f 2H

D1Ue
, (7)

where the shape factorH and the coefficientf 2 are defined by:
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dU

dYU
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. (8)

To solve the set of ordinary differential equations~6! and ~7! for
D1 andUe , we need to calculatef 2 andH, and hence to hypoth-
esize a suitable form for the velocity profileU. We suppose that
the velocity profile may be locally approximated by one of the
Falkner–Skan family~exact profiles for flow past wedges@21#!.
Thus, the role of the pressure gradient in the potential core~rep-
resented byL1 , see Eq.~9!! and the role of the no-slip condition
at the wall are taken into account. The approximate closing laws,
deduced from a Runge–Kutta 4 numerical integration of the self-
similar equation, take the following form:

L15D1
2

dUe

dX
,

H5H 2.59e20.37L1 L1,0.6

2.07 L1>0.6
, f 250.94S 4

H22
1

H D . (9)

Given the stenosis geometry~i.e., L and D!, the upstream dis-
placement thicknessd10

and Reynolds number Re0, the set of Eqs.
~6! and~7! closed by Eq.~9! is numerically solved by a marching
predictor/corrector method. The wall shear stress,tw ~nondimen-
sionalized by the upstream Poiseuille value 4mU0* /R0* , where
m is the viscosity!, is obtained by:

tw5
1

4&
f 2H

UeR

D1
ARe0 (10)

The value of MWSS is then computed. The relationship between
MWSS andL, D, d10

and Re0 is investigated by regression analy-
sis based on the least-squares method.

Simulation of Blood Flow Through the Circle of Willis.
Once the relationship between MWSS andL, D, d10

and Re0 is
known ~see results!, the calculation of MWSS in carotid stenoses
requires knowledge of the trans-stenotic blood flow. As demon-
strated by Cassot et al.@9#, this flow rate is highly dependent on
the anatomy of the circle of Willis.

Therefore, the blood flow through the distensible network in-
cluding the circle of Willis and its afferent and efferent arteries
~Fig. 2! is simulated as described by Zagzoule and Marc-Vergnes
@22# and Cassot et al.@9#. In each segment of the network, a set of
three unsteady equations~conservation of mass and momentum
and purely elastic tube law! relates the variable cross-sectional
area of the vessel, the pressure, the flow rate, and the wall shear
stress. A second-order asymptotic expression of the wall shear
stress as a function of the flow rate is provided to close the system
@23#. The compatibility conditions at the nodes of the network are
the identity of the pressure signals and the conservation of flow.
The effects of the carotid stenoses are put into the network model
by means of the semi-empirical formulas of Young, Tsai, and
Seeley@24,25# relating the trans-stenotic pressure drop to the flow

Fig. 1 Geometry and nondimensional parameters of stenosis
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rate in streamlined constrictions. As the predicted pressure drop
differs from the experimental measurements@26#, the potential
error associated with using these formulas is further discussed
below.

By varying the diameters of anterior and posterior communicat-
ing arteries, within the range of anatomical data, we can simulate
the hemodynamic influence of the circle of Willis. Stenoses of
variable degrees can be added to one or to both internal carotid
arteries (R0* 52 mm) over a 5 cmlength ~corresponding toL
512.5!. Given the pressure signal at entries and outputs, the
model computes instantaneous pressure and flow rate values at
each point of the network. MWSS in the stenosed arteries is then
derived from the average flow rate thus computed and the stenoses
degrees.

Results

Validation of IBL Integral Method for Calculation of
MWSS

1 Dependence on Upstream Displacement Thickness.Exis-
tence of a potential core implies that the displacement thickness
d1* is not thicker thanR0* R/3 for a fully developed parabolic
Poiseuille flow, i.e., from Eqs.~3! and ~4!:

D1,
R2ARe0

3&
. (11)

Therefore, the classical assumption of a fully developed parabolic
flow at the inlet of the convergence@13,14# is not consistent with
our methodology. Some authors@15,16# hypothesized a flat pro-
file. Actually, the boundary-layer grows from the artery origin,
and its thickness is unknown at the inlet of the constriction@27#.
Therefore, the dependence of displacement thickness and wall
shear stress distribution in the convergence on inlet displacement
thickness was first investigated for nine values of Reynolds num-
ber ~from 400 to 2000!, thirteen values ofD ~from 0.3 to 0.9!, and
four values ofL ~from 3 to 12!.

For example, Fig. 3 displays the results obtained in a 70 percent

stenosis. Whatever the initial value ofD1 , Eq. ~11! holds and the
curves of wall shear stress become superposed in the downstream
part of the convergence, where the gradient parameterL1 is
greater than 0.6. Maximal difference from the mean for MWSS in
all the cases studied is less than 0.25 percent. MWSS is therefore
independent of inlet displacement thickness and thus, of the as-
sumed entry velocity profile. This validates the use of the IBL
theory.

2 Comparison With Solutions of Complete Navier–Stokes
Equations. Siegel et al.@13# and Huang et al.@14# have numeri-
cally solved Navier–Stokes equations for axisymmetric Newton-
ian flow in moderate stenoses. In the first work, a spectral element
method was applied to cosine-shaped constrictions~LP@3;6# and
DP@0.29;0.5;0.69#! for diverse Reynolds number values. Huang
et al. @14# used a finite difference scheme with an unspecified
constriction shape, for five values of pair~L, D! ~~2, 0.25!, ~2,
0.33!, ~2, 0.5!, ~4, 0.5!, ~1, 0.5!!, and three values of Re0 ~100,
500, 1000!. The results obtained with both methods are consistent
with our IBL method: the discrepancy between the various
MWSS obtained for the same stenotic configuration~e.g., same
values of pairs~L, D!! is smaller than 8.5 percent in spite of
different shapes of the stenosis model.

Scaling Law for Maximal Wall Shear Stress. Siegel et al.
@13# performed a scaling analysis of the numerical results ob-
tained in three moderate constrictions~29, 50, and 69 percent
radius reduction!, leading to the following relationship:

MWSS5a~Re0!0.51b, (12)

where the numerical values of coefficientsa and b depend on
stenosis degree and length in an unknown fashion. Our aim was to
complete these results for stenoses ranging from moderate to se-
vere ones, focusing on dependence of MWSS on the upstream

Fig. 2 Diagram of the circle of Willis and its afferent and effer-
ent arteries. „VA: vertebral, BA: basilar, ICaA, internal carotid,
ACeA: anterior cerebral, MCeA: middle cerebral, PCeA: poste-
rior cerebral, ACoA: anterior communicating, PCoA: posterior
communicating arteries. …

Fig. 3 Nondimensional displacement thickness in Mangler co-
ordinates D1 „upper … and wall shear stress „lower … versus axial
position in the convergence characterized by DÄ0.7 and L
Ä6, for Re 0Ä1000 and different values of D10

&ÕARe0 „corre-
sponding to an initial displacement thickness d10

* between
0.01R0* and 0.33R0* …
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Reynolds number and the geometric parameters. In other words,
we investigated the dependence of parametersa andb ~Eq. ~12!!
on stenosis length and radius reduction. The first step was to ana-
lyze the dependence of MWSS on Re0 for D between 0.3 and 0.9
andL between 3 and 12. Regression analysis of the results showed
that this dependence is correctly described by Eq.~12!. The cor-
relation coefficient in all cases was 0.999 or greater. Finally, we
looked for a relationship between the thus identifieda andb co-
efficients and the corresponding values ofL andD. As indicated
by the dimensional analysis of Eq.~10! ~see Appendix A!, aAL
andb should be independent ofL. This was verified, as the maxi-
mal deviation from the mean values ofaAL andb obtained for a
range ofL ~3 to 12! at fixedD was 1.1 percent and 2.9 percent,
respectively. Hence, a relationship between these averagedaAL
andb parameters andD alone~see Fig. 4! was sought. The chosen
fitting function, derived from the dimensional analysis of Eq.~10!
~see Appendix A!, was:

K

~12D !j , (13)

whereK andj are positive real numbers. Results obtained by the
least squares method are given in Table 1, and displayed in Fig. 4.
They show very good agreement with numerical values derived
from Siegel et al.@13#.

Finally, the generalized law for MWSS is:

MWSS5
0.170

~12D !3.298

Re0
0.5

L0.5 1
0.705

~12D !2.984. (14)

Hence, dimensional expression as a function of parameters mea-
surable in clinical practice is the following:

MWSS* 5
4mQ*

p~R0* !3 S 0.240

~12D !3.298

1

L0.5 S Q*

pR0* n D 0.5

1
0.705

~12D !2.984D , (15)

whereQ* is the flow rate through the stenosis.

MWSS in a Carotid Stenosis: Role of the Patency of the
Circle of Willis and of Stenotic Pattern. Cassot et al.@9# have
shown that the flow rate in a carotid stenosis is highly dependent
on its radius reduction and, provided collateral circulatory path-
ways of the circle of Willis are efficient, on stenosis degree at the
contralateral side. Hence, dependence of MWSS* on these param-
eters was investigated.

1 MWSS Dependence on Carotid Stenosis Degree.Figure 5,
left, displays the variations of MWSS* in a unilateral stenosis
versus stenosis degree for five configurations of the circle of Wil-
lis, i.e., for five arrangements of anterior communicating arteries
~ACoA! and posterior communicating arteries~PCoA! diameters.
Whatever the configuration, MWSS* exhibits a maximal value for
a stenosis degree between 60 and 80 percent. The maximal value
of MWSS* depends on the configuration of the circle of Willis: It
is multiplied by approximately four when both communicating
arteries are narrow~ACoA and PCoA diameter equal to 0.4 mm!
compared to the cases when one of the communicating arteries at
least is broad~diameter equals to 1.6 mm!, which allows collateral
supply from anterior and/or posterior territories.

In the case of a stenosis associated with a contralateral occlu-
sion ~Fig. 5, right!, the higher MWSS* is obtained when the
ACoA is broad and the PCoA is narrow, because the nonoccluded
carotid irrigates ipsi- and contralateral anterior cerebral territories,
without collateral supply from the posterior side. The greater the
caliber of the PCoA, the smaller the maximal value of the
MWSS*.

Fig. 4 Parameters a„L …0.5 and b as a function of radius reduc-
tion. Full circles: results derived from Siegel et al. †13‡; cross:
mean of the results of regression analysis obtained for L be-
tween 3 and 12 at fixed D; line: interpolation of results aver-
aged upon L .

Fig. 5 Dimensional maximal wall shear stress „MWSS* … and rate „MWSR* … as a function of
stenosis degree, for five arrangements of anterior and posterior communicating arteries diam-
eters; Ã: AcoA Ä0.4 mm ÕPCoAÄ0.4 mm; h: ACoA Ä0.4 mm ÕPCoAÄ1.6 mm; s: ACoA Ä1.6
mm ÕPCoAÄ0.4 mm; n: ACoA Ä1.6 mm ÕPCoAÄ1 mm; ¿: ACoA Ä1.6 mm ÕPCoAÄ1.6 mm.

Table 1 Estimated parameters K and j „see Eq. „13…… and re-
gression coefficients

K j x square Correlation coefficient

a(L)0.5 0.170 3.298 0.291 1.000
b 0.705 2.984 0.146 1.000

4 Õ Vol. 122, DECEMBER 2000 Transactions of the ASME
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2 MWSS Dependence on Contralateral Stenosis Degree.As
an example, Fig. 6 displays the variations of MWSS* in a 57.8
percent radius reduction stenosis versus contralateral stenosis de-
gree for five configurations of the circle of Willis. In all cases, an
S-shaped curve is obtained. As long as the degree of the contralat-
eral stenosis remains less than 30 percent, the MWSS* value does
not change significantly from the value for a unilateral stenosis,
while contralateral stenoses greater than 80 percent have practi-
cally no further effects on the MWSS*, and behave like occlu-
sions. As the degree of the contralateral stenosis increases from 30
percent to 80 percent, the MWSS* increases, but the slope of the
curve is strongly affected by the communicating arteries’ diam-
eters: It increases when ACoA diameter increases, because the
interaction between ipsilateral and contralateral sides increases,
and decreases when PCoA diameter increases, because collateral
supply from the posterior territories minimizes flow rate augmen-
tation. Consequently, when the ACoA is thin, the amplitude of the
S-shaped curve is almost zero. Maximal amplitude is obtained for
broad anterior and thin posterior arteries, leading to very high
MWSS* in moderate stenoses~up to 70 Pa for a 60 percent ste-
nosis!. When the degree of contralateral stenosis equals the degree
of the ipsilateral one, the cerebral network presented in Fig. 2
becomes symmetric, and ACoA diameter has no influence. Curves
obtained for the same PCoA intersect in that case, whatever
ACoA patency.

Discussion
Our scaling law for MWSS in a stenosis is based on several

simplifications when compared to the pathophysiological com-
plexity. The principal assumptions are to consider the blood as a
Newtonian fluid, the flow as steady, and the stenosis as axisym-
metric with a small rate of change of taper and a smooth, rigid
wall. Nevertheless, even if blood is non-Newtonian, its non-
Newtonian components do not affect the magnitude of wall shear
stresses in arterial conditions@28#. The relative error made when
calculating the MWSS assuming quasi-steadiness of the flow in-
stead of taking its unsteadiness into account can be evaluated by a
dimensional analysis from Pedley@29# taking numerical data
found in carotid arteries@9,22#. This error is about 15, 10, 7, and
5 percent for respectively a 30, 50, 70, and 85 percent stenosis. As
intimal thickening in stenosed arteries decreases the flexibility of
the wall, the variations of stenosis radius caused by pressure fluc-
tuations encountered in carotids@22#, are less than 1.5 percent.
The hypothesis of a little rate of change of taper is not limiting,
since it is verified even for total occlusions ifL>3, i.e., if the
convergence length is greater than 6 mm. The two last assump-

tions are the axisymmetric and smooth geometry. However, they
made possible the dimensional analysis~Appendix A!, which ex-
plained the simple dependence of MWSS on geometrical param-
eters and Reynolds number. The results of Siegel et al.@13# were
explained and extended to a larger range of stenosis degrees~in
particular for severe ones!, with a simpler methodology and a
great reduction in computing time. The main interest of the so-
obtained scaling law~Eq. ~14! or ~15!! is that all the parameters
needed are measurable either inin vitro experiments, or in clinical
practice, allowing a simple and much more accurate evaluation of
MWSS than the classical Poiseuille law. This could be of greatest
concern for studying the role of elevated shear stresses in ad-
vanced occlusive lesions, particularly on plaque ulceration, rup-
ture, and thromboembolism.

Using our scaling law, we calculated MWSS values in carotid
stenoses, according to the patency of collateral pathways. The
main assumption in the simulation of blood low through the circle
of Willis was to use semi-empirical formulas of Young, Tsai, and
Seeley relating the transtenotic pressure drop to the flow rate in
streamlined constrictions. As the predicted pressure drop differs
from the experimental measurements@26#, the potential error as-
sociated with using these formulas was estimated in the particular
case where both anterior and posterior communicating arteries are
so narrow that they founctionally behave as closed. This analysis
demonstrated that using more accurate formulas would change the
absolute numbers, but not the general trends of the results de-
picted in Figs. 5 and 6. As an example, the maximal MWSS*
calculated when both communicating arteries are narrow~ACoA
and PCoA diameter equal to 0.4 mm! is underestimated by around
35 percent.

An interesting result is that wall shear stress doesn’t increase
monotonically with the stenosis degree: The stenosis degree lead-
ing to maximal MWSS results from a balance between the in-
crease of wall shear stress due to increasing velocity, in order to
satisfy mass conservation, and its decrease due to reduction of
flow rate through the vessel induced by its increased resistance.
This suggests that risk of embolus release could be greater for
some moderate stenoses than for more severe ones. Even for a
given stenosis degree, the results show huge variations of the
MWSS. For instance, very high MWSS* values~.70 Pa! can be
found in moderate stenoses~60 percent!, if they are associated
with a contralateral occlusion, large ACoA, and narrow PCoA
diameters. This last result was obtained because we have not only
considered an isolated stenosed vessel, but also included it in the
whole network. It could explain the uncertainty about the percent-
age of stenosis above which carotid obstructive lesions must be
considered severe for the risk of stroke. In fact, peril of embolic
stroke is likely to be elevated for stenosis degree where MWSS is
maximal~i.e., between 60 and 80 percent!, when risk of hemody-
namic stroke increases with stenosis degree. Further investigations
on the mechanical properties of thrombi and plaques are therefore
needed for a better understanding of the role of MWSS in the
embolic mechanisms.
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Nomenclature

a, b 5 coefficients for maximal wall shear stress relationship
~Eq. ~12!!

D 5 degree of stenosis~radius reduction at stenosis throat!
L 5 length of convergent part of stenosis
n 5 coordinate at right angle to the stenosis wall

Fig. 6 Dimensional maximal wall shear stress „MWSS* … and
rate „MWSR* … in a 60 percent stenosis as a function of con-
tralateral stenosis degree, for five arrangements of anterior and
posterior communicating arteries diameters; same symbols as
Fig. 5
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Q 5 flow rate
R 5 radial position of the wall

Re0 5 Reynolds number based upon upstream diameter and
mean upstream velocity52R0* •U0* /v52Q* /pR0* v

s 5 current length measured along the stenosis wall from
the beginning of the convergence (x52L)

u 5 velocity component parallel to the stenosis wall
U 5 velocity component in the ManglerX direction
v 5 velocity component normal to the stenosis wall
V 5 velocity component in the ManglerY direction
x 5 axial coordinate

X,Y 5 Mangler coordinates~see Eq.~4!!
d1 5 displacement thickness of the boundary-layer
D1 5 displacement thickness of the boundary-layer in Man-

gler coordinates
L1 5 pressure gradient parameter of the boundary-layer
m 5 viscosity
v 5 kinematic viscosity

tw 5 wall shear stress

Subscripts

0 5 upstream condition (x52L)
e 5 condition at the edge of the boundary-layer

Superscript

— 5 mean over a cross section
* 5 dimensional quantities

none 5 nondimensional quantities

Appendix A: Dependence of MWSS on Parameters
In order to analyze the dependence of MWSS on geometrical

parameters and Reynolds number, a dimensional analysis was per-
formed. Wall shear stress as a function of these parameters is
given by Eq.~10!. Since MWSS is obtained in the part where the
gradient parameterL1 is greater than 0.6~see Results!, implied in
Eq. ~9! is that f 2 andH are constants. As:

D1

RARe0

!R, (A.1)

simplification of Eq.~6! gives at first order:

Ue'
1

R2 S 112&
D1

R2ARe0
D . (A.2)

The basic assumption of boundary-layer theory@20# gives, for the
displacement thickness:

d1* ~x* !ø
s*

ARe~s* !
, (A.3)

where Re(s* ) is the local Reynolds number in the potential core,
based ons* (x* ) andue* (x* ). Assuming that the axial location
of the MWSS is near the throat, combination of Eqs.~3!, ~4!, and
~A.3! leads to:

D1ø
RAL

AUe

. (A.4)

Thus, by use of Eqs.~A.2! and~A.4!, Eq.~10! at first order reduces
to:

MWSS'kS 1

Rthroat
3

ARe0

AL
1

3&

Rthroat
3D , (A.5)

wherek is a real constant andRthroat5(12D).
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