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A triple deck model of ripple formation and evolution
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The two-dimensional laminar quasisteady asymptotically simplified flow with mass transport of
sediments is solved over an erodible bed in various laminar hydraulic reginfiesge depth, finite

depth subcritical or supercritical, nondisturbed boundary Jay@ompared to the boundary layer
thickness, the bump is supposed longer and thinner and the triple deck theory is used. Furthermore,
the flow is linearized. Next, a simplified mass transport equation is obtained which includes the two
following phenomena: there is a flux of erosion when the skin friction goes over a threshold value,
and concentration of sediment in suspension is convected but falls at a constant settling velocity. It
is shown that two ingredientsonvection of the longitudinal flux or particles and advanced response

of the skin friction to the bump changesre necessary to produ@xcept in the supercritical regime
which, in this flux convected model, is always stabéeband of amplified spatial frequencies.
Furthermore, putting the effect of slope limitation makes long wave stabléhe infinite depth

case. Examples of evolution in various regimes are presented, wave trains of ripples are created and
merge in a unique bump. A very long time is required for this process. This coarsening appends
except in the infinite depth case when the effect of slope limitation is turned on: in this case a train
of several bumps fills the computation domain. 2003 American Institute of Physics.

[DOI: 10.1063/1.1588305

I. INTRODUCTION theory: the logarithmic profile law. Previous studies often
solved the problem by integral boundary layer theory
Let us consider the deformation of a bump immersed inPlapp!! Akiyama and Stefalf or Zeng and Low®).
a flow. This bump is made of an erodible material which may  These boundary layer approaches are pertinent because
be convected and diffused in the flow. Practical cases would| the phenomena take place near the wall, where the veloc-
consist in dune of sand in water of various depth, or dune ofty changes abruptly on a small scale: the boundary layer
sand in air. This kind of flow is of course very important for thickness. Here we use the framework of the triple deck
environmental problems and a vast literature refers to thesgieory (Neiland!* Smith!® and for recent developments Sy-
problems since Exner in 192%ang,” Bagnold, Fredsge and chevet al,'® Smith” Bhattacharyyat al 8 which allows a
Deigaard; Nielsen? Sauerman and HerrmafirSauerman, strong coupling between the laminar boundary layer and the
Kroy, and Herrman?). This problem is very complex be- ideal fluid. The flow separation is not a problem: even more,
cause all mechanical effects are linkihie flow depends on  the triple deck was created to compute the separation of the
the shape of the bump which depends on the flow whicthoundary layer. As conditions for this description the flow is
erodes or deposits sediments on the soil modifying again thgupposed to be two-dimensionébr sake of simplicity,
flow). guasisteadyerosion and sedimentation are a slow progess
These erosion/sedimentation problems have been solveghq it is assumed laminar. This last hypothesis is maybe the
by various techniques with various approaches. Even recertronger one, but we will see that we recover some results
studies use simplified physical models to compute the flowyptzined by Charret al'® and Fowlef® In the first one, a
Anderserf, Nishimori et al;” most of which use continuum laminar theory has been proposed in the case of a Couette
models of mechanics; the flow is now computed with directﬂOW, and we will see that taking this theory in the long wave
solution of Navier—Stokes equations with turbulent models;a5e |eads to a triple deck case; in the second one, Fdwler
Andersenet al,® Andersen and FredsdeKroy, Sauerman, recovers the same equation too, but starting from other hy-
and Herrmantl,and Sauerman, Kroy, and HerrmahBut, pothesis(in fact the turbulent flow is modelled by a laminar
ultimately, all these studies have to look at the flow near thg)ne of viscosity equal to a mean turbulent viscosityhe
soil. This is the boundary Iaye_r itsetfvhich @S not so well - concentration of sediments in the flow is supposed small
solved by NSk-¢ solvers. That is why they finally turnto @ - gnough to unaffect viscosity and density of the flow: we do
simplified law issued from asymptotic analysis by Jacksomqt yse models of re suspension as in Schiafiegeat?! The
and Hunt,® where the final important ingredient is the veloc- oncentration of sediment is a continuous function. A less
ity near the wall coming from the turbulent boundary layer sjmpjified model using interacting boundary layer theory in
subcritical flow has been presented in Lagfeln fact, triple
dElectronic mail: pyl@ccr.jussieu.fr deck is a true asymptotic limit of Navier—Stokes equations as

1070-6631/2003/15(8)/2355/14/$20.00 2355 © 2003 American Institute of Physics

Downloaded 28 Aug 2003 to 134.157.34.53. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



2356 Phys. Fluids, Vol. 15, No. 8, August 2003 P.-Y. Lagrée

u ]
* ° - §
y o
3
L": FIG. 1. Arough sketch of the flow: a boundary layer of
- § Upper Deck thicknesss encounters a very small hump so that only
a‘c’j the linear sheared part of the profile is perturbed. In fact
an interacting structure is created, this perturbation on a
_ small longitudinal scale near the wélbwer dech per-
o 5 turbs the boundary layer cofmain deck so much that
> . /"F»‘_?—" the ideal quid_ layefupper deckis linearly perturbed as
5 B ;l ManlDEEL v -A(X) well, retroacting onto the lower deck.
3
2 [ Lower Deck it X'
2 ower ¥(x 1)

Re number tends to infinity, and it leads to simple linearizedstudy of the self-induced jump whem,= (L Re ) and
results linking the skin friction distribution on the dune to its | agree?® for its thermal counterpajtin fact the present
shape. That is wh;;this SimF_>|ifi59d point of view will here be theory is included in Higuera’s one for small values>df
emponed(N.ena.no‘ and Smith>). o _(variables with stars are with dimensions

As our aim is to present a oversimplified model, we will  Notice that the incoming velocity profile is here selected
use the terms “dune” or “ripples” in an improper way be- to be a Blasius onfdefined by the functiot), such as the
cause we deal only with very simplified models far from |ongitudinal velocity in the boundary layer ig* (x*,y*)
reality. From our model equation a structure will emerge=U Ug(yx Y?) wherex=x*/L is the longitudinal abscissa
from variation of an initially flat wall, and this structure will andy=y*/(L Re *?) the boundary layer thicknepdn fact
be called train of “dunes” or “ripples.” We may say, in the any given boundary layer profile is relevant, scales have then
subcritical case, that this objects are dunes. When using the be rewritten using its thickness. An extension of this
Hilbert integral, this structure may be called ripples if we theory should be constructed so that is included a slip effect
consider a flow of infinite depth of water, but ripples or which may arise when the bottom is porous.
dunes if we consider an air flodthere is no scale in our We next introduce in the flow a small bump of relative
equations First we shall present the classical triple deckthickness ¢ (compared to the boundary layer thickness
equations in the various regiméSec. Il A), and next a sim- | Re"*?) at the positionx* =L (or x=1). In this layer of
plified concentration evolutiofSec. 11 B). Thus we link the  thicknesseL Re 2 the velocity is linear iny, so u* is
flow to the movement of the erodible bed. The numericalscaled byeU,, pressure/convective balance suggests that the
method is shortly explained in Sec. lll. The linear temporalpressure is scaled b,;ﬂpug_ On purpose that the problem
stability of the system is presente8ec. VA1) validating  presents the maximum number of terfisast possible de-
the numerical solution. Simulations of several initial bumpsgeneracy, Van Dykg), including pressure, convective terms
are presente(Secs. IVA1-IVB 1. Finally (Sec. VB2 we  and a viscous termx* is scaled byx* =L +&3Lx. Time
shall discuss the long time evolution resulting in a coarsenshould then be scaled by’L/(cU), but if we call T the
ing in a unique dundexcept in the slope effect case in an scale of the erosion/sedimentatiptf =Tt, cf. the equation

infinite depth regimg of evolution of the bottom in the next section, Eg1)], we
will have e2L/U,/T<1, andt is only a parameter associated
Il. THE COUPLED MODEL to the bump shape.
With these usual triple deck scalé¥eiland!* Stewart-

A. Dynamical aspect: The triple deck
y P P son and William$® Smith!® Sychev et al,'® Gajjar and

1. The triple deck Smith?® Bowles and Smitff), the problem in the “lower

In Fig. 1 we present a rough sketch of the flow and thedeck” is simply
decks. There is a flow of incoming water over a flat bottom
under a quiet atmosphere. In the limit of laminar two- ¢ J 0 0
dimensional(2D) steady flow at high Reynolds number, the X~y '
water has an basic thicknekg. If this depth of liquid goes
to infinity the problem is independent of the existence of the d d d 9?
free surface. The basic flow splits into two layers: the ideal U U™V 5 U=~ g P 52U @
fluid layer of thickness, where the velocity is of constant
valueU, (U, free stream velocityand the boundary layer, |t means that near the wall there exist scales such that a non
the Froude number is FrU3/(ghg). Let us callL the de- linear problem(with convection, diffusion and pressure gra-
veloping length of the boundary laydr,Re 2 is then the  dieny has to be solved. Boundary conditions are no slip con-
thickness of the viscous layésee Schlichting). Of course  dition on the bottom
ho> (L Re Y?), which means that the boundary layer has not
yet merged in a single layer of flujgee Higuerd ?*for the u(x,y=Ff(x))=0, v(x,y=f(x))=0, (3)
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and the asymptotic matching between the “lower deck” and
the “main deck.” This latter is in fact the boundary layer
itself: “far” from the wall with the focused scales we are
“near” the wall in the boundary layer scalé¢the transverse
variable is hergy, with ey=Yy, and the longitudinal dimen-
sionless velocity is heré of scaleU). The perturbation of
the boundary layer at the scadéL, at positionx=1, gives
the function A) which represents the deflection of the
streamlines:

U=Ug(y) +eAUg(¥) +---,

S AU o
PSRy T T PT

The matching between the top of the lower degk«(~) and
the bottom of the main decky(-0) yields

lim (gu(x,y))=limU(x,y),
y— y—0

ie.,

lim u(x,y)=Ug(0)(y+A).

y~>:x:

(4)

A triple deck model of ripple formation 2357

This case corresponds to several different configurations: it
corresponds to a bump of length equal or smaller to the size
of the boundary layer itse®=Re %2, but this result is the
one found by Plantié? for a Couette flow. This is in fact the
configuration found in Charret al:!° they identify this re-
gime as the “deep viscous regime.” Finally, in the half Poi-
seuille case(corresponding to a fully developed laminar
flow), this case is the Smith result, which is used by
Fowler®®

Interesting enough, the Hilbert case degenerates in the
case A=0: no perturbation in the boundary layevhen the
bump becomes shorter and short8mith et al). So hav-
ing a given water depth, depending on the size of the pertur-
bations one can meet either a subcritical case, either an Hil-
bert case or a nondisturbing case. In the numerical
applications we will focus on these last two cases.

2. Dynamical system for the fluid

The final dependence id5(0) and Fr-1 can then be
removed by a straightforward rescalifighich is deduced
from the fact that Eqs(1), (2), and(5) are invariant for any

3 2
The latter means that the incoming velocity is linear, thisY Whenx—Y"x, y—=Yy, u—Yu, p—Y°p, andA—YA].
means that upstream we recover the boundary layer profile>© the interacting problem is

5

Finally, the deflection of the stream lines induced in the
lower deck(function —A) is transmitted by the main deck,
perturbating the “upper deck{which is the third layer in-
volved). This perturbation is a kind of suction velocity
—& ?(Re Y2 (dA/dx), or a perturbation of the displace-
ment thickness by an amount e{L Re %) (—A). In the

u(x——o,y)=Ug(0)y, v(x——o,y)=0.

layer of ideal fluid, the pressure responds to this boundary

layer displacement by the pressure modification. This fixes

the value of the scale:=(L/ho)Re 2. The final coupling
relation betweerp andA is

_-A
P=F—1

(6)

In the subcritical regimg and —A have the opposite sign
(Fr<1), and a decrease of the water levelA<0) is pro-
duced at the perturbatiofBaines?); the opposite is true in
the supercritical regimgFr>1, thenp and (—A) have the
same sigh (see Gajjar and Smith or Kluwick et al3? for
details on the upstream influence

If hg is very high in comparison to the bump length and

L, the free surface is at infinity. The gaugesis Re /8 and
we may ultimately recover the Hilbert case
_ 1 f —A’ q -
== x=¢ €. (7)

This is the classical incompressible result. Another result is

obtained when the perturbation of the bump on the boundar
layer (main deck is so small that no displacement occurs,
which reads

A=0. tS)
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u(x,y=f(x))=0, v(x,y=f(x))=0, (13)
lim u(x,y)=y+A. (12
y—©
With either
(i) the infinite depth case
_ 1f°° —A’d
P==7 ) g%
with

X= (X*/L_l)ué(o)SM/(Ref 3/8),
y=(y*/L)Ug(0)%¥¥(Re *'®),
p=(p*/(pU3))UL(0) *?/(Re %), etc.

(i)  The no displacement cage=0, which either is the
limit of the preceding one when the length of the
bump is the boundary layer thickness, either exists in
half Poiseuille flow or either exists in Couette flow.

(i) The subcritical casep=A and the supercritical

p=—A, both with
x=(x*/L—1)UL(0)°|Fr— 1|3/ (Re *®),
y=(y*/L)U(0))Fr— 1| Y/ (Re %),
p=(p*/(pU))UL(0)Fr—1|"%(Re 28), etc.

y
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1.2 , | |
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case A=0 -------
case Hilbert -------- ]

0.8

0.6 -

-4 -2 0 2 4

z

FIG. 2. The linear solutior(in the triple deck scalgsfor the perturbation of the wall shear function xf in the A=0 case, and in the Hilbert case

p=—m f(x— & Y—A’)dé The bump perturbation is hees ™. The caseA=0 leads to no upstream influence, the Hilbert case leads to a small
upstream influence: the skin friction anticipates the bump. The skin friction is extreme before the maximum of the bump. Skin friction is largendh the w
side than in the lee side.

3. Final linearization: Law between the topography In Fig. 13 in the Appendix we present a numerical solu-
and the skin friction tion of the problem[in a zero displacement cag8) of

The unperturbed solution o) and (10) is simply u  Smitt**] in order to discuss the influence of the nonlinearity
=y, v=0, p=0. It implies that, at the small longitudinal of the solution and the boundary layer separation. We see in
scale, the boundary layer thickness does not evolve and tibe Appendix, that even for bump leading to flow separation,
velocity profile remains linear near the wall. The linearizedthe prediction of formuld14) is correct, the main advantage
solution of (9) and (10) around this shear profile in Fourier of this triple deck model being that flow separation is effec-
space is straightforward and leads B¥FT[p]=FT[(A tively constructed without the approximations of Kroy,
+f)] whereg* = (3 Ai’(0)) " *(—ik)*~. Sauerman, and Herrmahar Andreottiet al3®

The linearized solution of the ideal fluid probleftup- In Figs. 2 and 3 we draw the solution of the perturbation
per deck’) may be writteng,FT[p]=FT[(A)] with Byt of the skin friction for the various cases. When<Fr in (6)
=1/kl,0,1~1 [respectively,6) for (7) and(8), Fr<1 and o in the infinite depth cas&) or in the “Couette”(8) case,

Fr>1], so we see that the skin friction is always extreme before the
FT[f] maximum of the bumpgthe wind side of the bumpIn the
FTlp]= m (13 subcritical case and in the “Couette case,” there is no influ-

ence of the downstream part of the flow to the upstream.
The linearized perturbation of the skin frictién) is then(Ai ~ Case(7) gives a small upstream influence; on the opposite

is the Airy function the supercritical casg6) with Fr>1] leads to a strong up-
(—ik)28 stream influence: perturbation exists before the bump. In this
FT[7]= ————Ai(0)FT[p]. (14) sole case the wall shear stress is not extreme before the
Ai'(0) maximum of the bump; in the three other ones the skin fric-

This well-known relationg13) and (14) gives the final re- tion is “in advance” with the bump shape.

sponse of the fluid: it links the topography change to the  Knowing the response of the fluid to any perturbation
shear stress. It will be very useful in the sequel as the shedin the selected frameworkve now examine the transport
stress is believed to control the flux of sediments. equation.
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25 T . r ' Bump ——

case p=A -------
case p=-A --------
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FIG. 3. The linear solutioriin the triple deck scalgdor the perturbation of the wall shear functionxfin the p=—A case, and in the=A. The bump

perturbation is here™ ™ The casep=A (subcritica) leads to no upstream influence, the cpse— A (supercritical leads to a strong upstream influence:
the skin friction anticipates the bump. The skin friction is extreme before the maximum of the bump only in the fluvial case

B. Transport equation conservation for the sediments is solved so that the speed of
the sediments ig, v — V7§ . With those restrictive hypothesis

1. The equation - i : ) .
the dimensionalized transport equation of suspended sedi-

Together with the dynamical equations of the flow one

LT . . ‘ments i
has to solve the quasistatic mass conservation of the partlclese tsls
in the laminar flow(Fig. 4). We aim to derive a simple law J J vl 92 92
linking the flux of sediments to the skin friction. Of course u* v c*+(v*—V¥) Py c*= s WC* + WC* :

real transport of sand takes place in the turbulent regime, but (15)

here to be coherent with our simplification we write sediment

transported in the laminar case. The concentration is supn the literature(Noh and Fernand¥, Fredsgé, Izumi and
posed small enough so that it does not interact with the fluidParker®® Nielsen® Fredsge and DeigaafdSeminard) it is
motion. We suppose a simple Fick law and we definhe  written in the turbulent regime. The integral counterpart of
Schmidt numbefratio of viscosity by diffusion We assume this equation may be taken in integrating foyh=0 to hg.

that there is a settling constant velocityritten —Vi <0). A characteristic thickness of suspended sediment under the
This means that we suppose that the equation of momentusettling and diffusive effects ist{(SVf)), see Fredsge and

Y

FIG. 4. The concentration of sedimerts(decreasing
with altitude) is passively transported in the flow, it is
submitted to diffusion and to a constant falling velocity
—V§<0. The skin friction puts sediments in suspen-
sion (source termA,), those two contributions change
the total flux of convected sedimengs(left figure). A

Y

c * Ar simplified view is displayed on the right part where a
Ar q simple mass balance is doriim a small control vol-
q ume: the sediment fluxg is changed by loss propor-
tional to g (due to sedimentatiorand by gain propor-
_—————/ Vi -Vf tional to A, the pick up function.
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Deigaardcf, here we suppose thap>v/(SVF). We suppose in the next paragraph thatl6) may be rewritten(25)
as well that the settling velocity is of ordes/L)U,, where  as dq*/dx* plus a term proportional tg* equals toAY

Uy is the characteristic longitudinal velocity ahdthe lon-  of (18).

gitudinal scale. As a consequence, boundary layer arguments Finally, the net flux of particles at the wall has two con-
allow to neglect the longitudinal second order derivative intributions: erosion[ (v/S)(dc*/dy*)|,] and sedimentation
(15). We define, as Anderen and FredSdhe flux with di- (Vfc*|p); this total flux deforms the betf shapef*, n is
mensions:q* = fu*c* dy*, this is the flux of convected porosity according to

sediments. So, transverse integration(18) yields

af* o v Jc* 20
i wla (1= G =Victlot 5 5% - @0
IX* g+ (Vf )Cbottom: - § WC (16)
bottom According to(16), g* may be reintroduced, and this equa-
In fact this equation is valid for a turbulent flow too, as far astion 1S Written as
the right-hand sidéRHS) is the total flux at the wall. We of* aq*
s * — —_
defineA¥ the flux as (1-n)—= gl (21)
v dc*

*

17) which is common in the literaturéexner law: Izumi and
Parker’® Nielsen® Fredsge and Deigadid

It is of course at this point that the time scdleassoci-
The boundary conditions dfL5) are clear upstream and on ated with the preceding equation is chosen: the deformation
the top: here we suppose no incoming sediment flux on thg done at a very long scale compared to the hydrodynamic
incoming flow and no sediments are poured. The problengcale(so the flow is quasisteagly
stems from the bottom. We have to link the transverse flux
[Ay, the RHS of(15)] to the skin friction. The boundary

condition for the suspended concentration is taken as fol- . .
P 2. The final simplification in a shear flow

=Sy

0

lows:
. . , We rewrite (15) with triple deck scale, in the linearized
._ Ll R R Y L R case (1I=y), the velocity profile is linear \{; is suitably
Ar =B H| —| —72 <l -7, (18)
W 1, W |, rescalegt
where H(x) is the Heaviside functiofH(x<0)=0, H(x ic—v ic=8*13—20 (22)
>0)=1], Bis of order one ang (common values are 1, 3/2 Y ox oy ay?

or 3, we will takey=1 in practice. Formulas(17) and(18)
mean that there is a threshold value of the skin friction
(au*/1ay*) |o: if it is larger than this threshold value} , d (= [ 0c
then the flow erodes the bump; otherwise erosion occurs 5[0 (ye)dy—(—Vico)=—S (@) : (23
((ac*1ay*) |o=0). 0

The latter of(18) is common(written with the Shields The subscript 0 denotes the wall. From the conditiony at
parameter in the literature of erosion/sedimentatidan  =co, and if we define as in the preceding paragraph the
Rijn formula, or Pieter-Meyer formula cf. Niels®n but  dimensionless “bed load” ag= [, (yc)dy (i.e., the flux of
other formulas may be foungfang'). Notice that it is mostly  sediment in a thin layer near the walthe first term is the
written in a turbulent regime so that the friction velocity is derivative ofq. The second one can be rewritten with if
used instead of the skin friction. we guess that, is likely to be proportional tay. We may

An effect of slope may be introduced as wgHlading to  justify roughly this strong hypothesis as follows: we observe
a multiplicative coefficient likef1—X (of*/9x*)] (Koma-  that as—V;cy=(dc/dy),, the solution for the concentration
rova and Hulschéf) or changing the thresholds in [ 72 behaves more or less agexp(—«ySV), with « of order
+\ (0f*19x*)]]. The latter expression will be used in the one. In fact as we suppose that this parameter remains nearly
next paragraph, when we will discuss its influence on stabilconstant, we are allowed to write that
ity. Notice that here we have changed a bit the classical law:
in the literature, the bed load is taken to be equal to the q:CO(SVf)_zf (pexp—«n)dn) (24)
proceeding formula,

integrating(22) over the lower deck yields

which means that is proportional toc, the value of the
concentration at the wall. Consequent®B) may be approxi-

whereB* is anad hoccoefficient, see Yangbut here we Mated by
of of
x| TN

q*=B*A7, (19

suppose that it is the transverse fliX) that is equal td18). g
Note that final laws linking the fluxg* and the excess of a—xq+Vq=,8(H<T— TS_)‘O’J
skin friction are finally always like(19) (even Charru
and Mouilleron-Arnould, who take a Schlafinger description,whereV is a new constant linked t&, V; and the other

reobtain this formula in the linearized cas&Ve will see physical parameters, and supposed to be here of order

Y

. (25
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one H is the Heaviside function = being the perturbation return in the physical space deals with the unique “nonlin-
of the skin friction induced by the topographly which  earity” of the problem which is the Heaviside function taken
evolves as in (25), the “pick up” relation. The update of the bump
pr J shape is done using an Adams Bashford two steps in
—=-—q. (26)  time method.
at 20 At initial time t=0, we impulsively introduce a bump of
As suggested before, this last equation, which is dimengiven equationf(x,t=0) (which may be a random sum of
sionless, gives the time scale of the phenomena: the flow i€0s with a very small amplitudeWe choose a typical set of
quasistatic compared to the slow topography evolution. A®rder one parameters for the modets=O(1), 7,=0(1),
displayed in a simplified way in Fig. 425) is a simple mass A=0(0.1), andV=0(1), thedomain is defined by its half
balance: the sediment fluxis changed by loss proportional lengthL, which we will vary: —L,<x<L,.

to q (due to sedimentatiorand by gain proportional té, The occurrence of the termyq is very favourable for

the pick up function. the stability of the numerical scheme as it allows values of
At to be of the same order thaxx=2L,/(N—1) (N num-

3. Notes ber of points for the Fourier transfoymif this term is not

present, then ag25) is explicit in 4,f, then At must be
smaller thatVAx?/(AB). The numberN has to be large
enough to obtain accurate results, a too crude computation
does not lead to the final coarsening, in practide=0.05,
N=512, s0 thattx=0.125.

Notice that Eq.(25) contains a derivative term that we
may reinterpret as an effect of inertia: for example, if the
skin friction goes under the threshold value, the fiuis not
instantaneously put to zero but relaxes smoothly in th
streamwise direction. Furthermore, we present here only
linear relation forg, the nonlinearity is in the threshold. We
may compare this to Sauerma al® While they obtain a V. RESULTS
saturated fluxgs function of an excess of skin friction, our A nitial time: Linear results and temporal stability of
notations would result in something likgs=(B/V)(H(7  an initial flat topography
—15)(7—75)7. They obtain with their model that the total
flux relaxes omgg asls(d/9x) g=q(1—a/qs). Thus, linear-
izing asq=qs+q, the equation for the excess of flux is If 75 is negative, a steady uniform solution of system
ls(a/ax)q+g=0 (they take the length scale as function of [(13) and (14)—(25) and(26)] is =0, f=0 andq=(B/V)
the excess of flux, this is the constan¥16f our mode).  (—75)?. The linear stability analysis around this basic flow is
Re-adding the two contributions, we see that &) is not  then straightforwardand is fully valid as long al(7— 75)
so far from their analysis, if linearized. =1]; looking for modes ire”*'** and here taking/=1 we

Theories linked to BCRE descriptiongBouchaud simply find that

1. Dispersion relation

et al. *Y) will add another term with which the left-hand side , o
of (25) will read [ KB CIO oy — ik 28
Jd J
@ a4+ - qtVa, (27  with p*=(3Ai"(0)) (k)3 By=1/k,0,1-1 [re-

spectively, for(7) and(8), Fr<1 and Fr>1]. The parameter

this unsteady ternfas in Valance and Riou#) is not rel- B will often be taken equal t& thereafter.
evant in our analysis because of the quasisteady nature of the
flow. 2. Linear stability analysis

To be noticed here too, is the fact that the slope effect is
very crude: it is a kind of “viscous” diffusive dissipation
(of<d2f ). Hence, it presents a very strong drawback as i
makes flat any topographyby diffusion). A better way
would be introducing a slope limitation mechanism for the
topography which would remove this drawback. For ex-
ample, Boutreuxet al*® propose a simple model of ava-
lanche without any diffusive term.

First we examine the most simple case with no slope
effect, \ =0, and with no effect of inertia oq (with V=2
>1, i.e.,q= 1), then all the spatial frequencies are unstable
for the subcritical, infinite depth, and the=0 called “deep
viscous regime” by Charriet al. The supercritical case is
stable fork<2.4.
Introducing\ (with V=8>1, i.e.,q=7—\d,f ) leads to
a cutoff frequencyk,, (depending on the parametgr3he
high frequenciegwhich behave as-\k?) are stable for all
models; fork>k,, we have Ref)<0. For small frequencies
We have to solve at each time stépfirst, a steady (0<k<k,,) the configuration remains unstaljxcept in the
linearized triple deck problem, which for the given duneFr>1 case where values aflarger than 0.0947 fully stabi-
shapef(x,t), gives the distribution of- [the perturbed skin lize the problem
friction (13) and (14)]; second, the mass transport equation ~ Now, if we introduce thed,q term [V=8, A=0, i.e.,
(25) which givesq; third, the shape of the bump is modified (1/V)d,q+q= 7], it has a stabilizing effeatas\) for largek
according to(26) for the next time step. and a band of amplified frequenciéke small frequencies,
The solution is achieved in Fourier space fi3) 0<k<k,,) exists in all the cases except for the supercritical
and (14), but with a return in physical space f@5). This  one which is always stable.

Ill. NUMERICAL SOLUTION OF THE FINAL PROBLEM
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FIG. 5. The topography at time= 100 for the three unstable regime8€V=y=1, A=0,L,=64 7,=—0.1). At timet=0, a random noise of level 0.001
was introduced. The spatial frequenky giving the larger Ref) in the band 8<ky <k, has been selected.

To illustrate this instability, we start from a random +1/V). Hence 1Y is a kind of lag:q and the velocity are not

small topography and wait for a sufficient long tinfleut
being here always in the linear regiingve observe numeri-
cally that the value of the wave number which maximizes
of (28) (sayky,) is effectively the value leading to a maxi-
mum for the energy spectrunky;=0.59 if Bp=1/k|, ky
=0.49if B,s=1 andky=0.31 if ,;=0). This is shown in
Fig. 5 where the wall shape is plotted at tire 100. The
case with no displacement is wider than the otligrsas the
smallerky), it is faster as well[it has the largest phase
velocity Im(o(ky))/ky] and it has the smallest heigfit has
the smallest amplification factor Rey))].

3. Note on the lag

Notice here that the idea of Kennédyor Engelund and
Fredsg®) is reobtained in a certain sense. They introduce
an advance between the velocityere skin friction and the
the topographywith the lawq=7) due to the fact that the
boundary layer was unknown. Suppose that the response
the skin friction is a simple change of phase expg), with
—w/2< $<m/2, the skin friction is in advancé&he maxi-
mum is before the maximum of the bumg ¢>0, the skin
friction is “late” if $<0. The amplification ratéif g=7) is
o=ik exp(—i¢), which gives temporal amplification for all
frequencies if the skin friction is in advanceé$0).

Now if we introduced,q, the left-hand side (1/)d,q
+qg may be reinterpreted as the Taylor’s series gk

in phaseg is late. The same has been obtained by Sauerman
et al® (but with a nonlinear term added, and the possibility
of saturation ofy which is not put here This allows to write
(remember that hereV=pg) the amplification rateo
=[ikV/(V—ik)]exp(—i¢), which gives Ref)>0, temporal
amplification, for 6<k<Vtan(¢). The slope effect has the
same interpretation: \ d,f may be interpreted as a term of a
Taylor’s series. Those two effects work in the same reverse
direction: they are “late” compared to the topography.

The conclusion for our proposed models is first, that the
skin friction must be in advance with the topography to have
instabilities and second that if there is no introduction of a
lag 1V or \ one cannot introduce a wavelength selection, the
topography is temporally unstable for any spatial frequency.

d
4. Focusing on slope effect in Hilbert case

The Hilbert,A=0 and FK 1 cases are unstable for small
ofave numbefin the (9,q)/V+qg= 7 casd. We nevertheless
focus here on the Hilbert case in which we introduce the
slope effect & \d,f). As already mentioned, the first effect
of the slope stabilizes large wave numbers in any case. But,
the other limit of small wave numbers is changed for the
infinite depth case: as observed previously with no slope
effect, large wavelengthk(~0") are always amplified.
Those wavelengths may be damped if the slope effect is
introduced. Neak=0, o of (28) expands as
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FIG. 6. Infinite depth casgHilbert case. The real part ofr for 8=V=y=1 as function of the wavelength In the left figurex =0, there is no slope effect.
In the right figure, we focus on the sm&lwhich are amplified whem =0, but are damped fox>0 (following the arrow, from up to dowm. =0, A
=0.1,A=0.2,A=0.3,\=0.316, and\=0.4).

BAKZ|  (—1)YEBAI(0)KER  ipNk3 We guess that ir>0" for k>0, the large wavelength
o=— - . - +0O(k)1o3, i if i
v VAI'(0) V2 will be amplified, and as occurs a bound due to the numerical
(29 solution (the size of the bo)x a single bump may be present

The k3 term disappears ifj=7—\a,f. The effect of the in the domain. _This .result Wi_II be seen numerically in the

slope () in the Hilbert case allows always the damping of Paragraph dealing with long time behavior.

the long wavelengths. There is then a band of amplified Here we have in fact observed that the sriaiehavior

which excludes the valuk=0 (see Fig. 6. is dependent on the exact solution of the flow through the
The A=0 and FK 1 cases turn out to be different. In exact development at the origin. Only the infinite depth case

those configuration, the small wave numbers are always an&llows a wave selection. For example, if, as in the preceding

plified. section, we put a simple change of phase between the
1.2 ] T T
f(x,t), Lb=3 ——
Lb=1 -------
e Lb=2 --------
: Lb=3 A
1F Lb=4 ------
Lb=5 -------
Lb=6
0.8 | -
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04 | /) s
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7
0.2 77
-~
0
-0.2 L | 1 1
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FIG. 7. Influence of the initial widtt ,, of a bump expf 7(x/L,)?), the maximum of the bump is plotted fog=1, 2, 3, 4, and 5 fot<<100; f(x,t) is plotted
as well(for t=0,2,4,6,..,100 withL,=3). The larger the bump, the smaller its velocis=1, y=1,V=1,A=0, and7,=0.
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FIG. 8. Destruction of a bump
exp(—m(x/6)?) in the supercritical
regime, with g=1, y=1, V=1,
A=0, andrs=0; the maximum of the
bump is plotted fort<<100, it is mov-
ing upstreamf(x,t) is plotted as well
(for t=0,2,4,6,..,100).

\\\
= W
/_‘\ s

T
= =

topography and the skin friction (exp{¢)) we do not reob- B. Time evolution of the system

tain this slope effect. This same phenomena of wave selec- _ o

tion is observed in Blondeau analyin an oscillating flow 1. Moderate time: Examples of qualitative influence of

and in Richard's orf in a turbulent case. This is named '€ different parameters

“ripple mode.” Our analysis is in fact too far from Richard- Before looking at long time behavior, in this section we
son’s one to use his definitiorioughly speeking roughness allow some parameters to vary in order to observe qualita-
controls the ripples, and depth controls the dynés the tively some various phenomena.

turbulence plays as a complicating fact¢introducing First we observe on one exampldilbert caseé the in-

the roughness scalehe occurrence of the Hilbert solution is fluence of the bump length on the movement of the bump.

hidden. Starting from a bump of Gaussian shape, exp(x/L,)?) we

3 T T T T T T
A=00——"
A=01-----m
A=02eeee
25t 4

FIG. 9. Bump shape at tinte=500, at
an intermediate time at which four
bumps coexist with 8=1, y=1,
V=1, 7,=—0.05, Hilbert case. The
slope effect is observed on the curves
A=0,A=0.1, and\=0.2 (the curves
are shifted to place the maximum at
the origin, notice the kink effect
which arises even ax=0 [it corre-
sponds to the point where the RHS of
(25), A, , is zerd.
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1 FIG. 10. The wavelength2/k of the

maximum of the bump spectrum ver-
sus time, corresponding mostly to the
number of bumps present in the do-
main, is plotted as function of time

(log scale, here in the cas&=0. As
time increases, there is less and less
. bumps present in the domain, finally a
single bump fills it 27/Kg,q=2Ly.
Here,L,=12.5, 25, and 50. The long
waves are unstable in such a way that

the final length of the bump is the size
1 of the computational domain.

10 100

changel,, and observe in Fig. 7 thahere withV=p8=1

place at the point where=0, and the sediments are then

vy=1, 7=0) there is a critical size leading to the possibility convected. The bump is destroyed by the shear which is
of an initial growth of the bump. We notice that unfortu- extreme just after the crest.

nately, the bump does not move, the wind side part is longer

Third, we look at the lee side of the bump. Starting from

and longer and the lee side has nearly a constant slopa.random noise distribution, first the wavelength(R,,) of
Qualitatively same results are obtained for the subcritical andnaximal o is selectedas already mentiongdafter quite a
A=0 cases. Nearly the same results are obtained by EXgre long time a coarsening is observéste next sectionDuring
with developing boundary layer so that the final position ofa long time a configuration with three or four bumps may be

the dune was fixed.

observed. Here we observe the obtained bump shape after the

Second, for the sake of illustration of the “stability” of crest in the lee side. Evenif=0 a change of slope happens

the supercritical cas@vith V=8=1, A=0), an example of

(see Figs. 7 and)9 This kink develops after the crest, it

the wash out of a bump is presented in Fig. 8. Erosion takesorresponds to the point where the RHS of Etp) is zero.

10

FIG. 11. The maximum of the final
bump height,,,, plotted as a function
of half the domain siz&, in the case
A=0. The caser,=—0.1, V=1, \
=0 is the upper curve. The lower
curves correspond tas=—0.05, V
=1, the arrow is directed to the in-
creasing values ok (A=0, 0.1, and
0.2). The subcritical case gives quali-
tatively the same results.
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70 — T T
A=0—
A=02-------
A=031----neee
60 I § FIG. 12. Examples of long time evo-
lution of 2#/k the wavelength value
maximizing the bump spectrurttor-
responding mostly to the number of
50 - ] bumps present in the domairThis is
an infinite depth case for a domain of
ﬁ length 2,. If A=0, there is finally
cl\:l a0 | only one bump of size 2, (the largest

possible. If A<0.316, two bumpsgof
size L,) are present, the larger are
damped. IfA is increased, there is no
30 L 5 4 dune anymore as predicted by the lin-
earized theory of(28). Here V=7
=1, L,=32, 7,=—0.25. Notice that
several bumps may live during a very

Qo [T E . long time: here in the case=0.31,
: during a very long time (1€t
J <25000) three bumps are present.
10 iaal 1 n " " L S,
10 100 1000 10000 100000
2. Long time evolution A=0, B=vy=V=1). Unsurprisingly, the largefr, the

Waiting much more longe(than in Fig. 5, we observe a higher the bump; and the larggr the smaller the bump.
kind of long wave slow instability: there are less and less ~ The Hilbert case results essentially in the same wave-
bumps in the boxthe small wave number gain an increasinglength coarsening but it needs a far longer time to be ob-
importance. The mechanism is as follows: in the lee side of served. Several bumps stay during long intervals of time in
a bump, the skin friction is lesser than in the wind sifigg.  the domain. In Fig. 12 we plot an example of such coarsen-
2), so second bump in the lee-side of the first one experiing of the bump in the no slope effect case<{0). Notice
ences a smaller erosion than the first one. that for 1500<t<<50 000 three bumps are present in the box.

The cases f=A) and (A=0) evolve toward a one The growth of the wavelength is more or less logarithmic. If
mode bump filling the domaifsee Fig. 10 thed=0 cas¢, now we introduce the slope effect in the equations in the
the maximal height of the bump depends on the length of thélilbert case, the result is, as predicted by E2f) a damping
computational domain. In Fig. 11 we plot the maximum of of the unstable long wavesee Fig. 8, so that in the condi-
the bump as function of the size of the doméim the case tions chosen in Fig. 12 two bumps are ultimately present

FIG. 13. The reduced wall shear
[(duldyy)—1]/a function of X, in
the A=0 case, for the bump
ae~ ™ with «=0.10, «=0.5,
a=1.0,a=2, a=2.25,a=2.50.
The plain curve(“lin.” ) is the linear
prediction (14), other curves come
from the nonlinear numerical solution.
The nonlinearity increases the relative
maximum value of the shear stress,
but weakly shifts it downstream. There
is also a decrease of the relative width
of the curve. Notice the numerical os-
cillations in the case of separated flow
(separation is fow>2.1)
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(casesA =0.2 and\=0.316). Enlarging gradually the do- APPENDIX: NONLINEAR FLOW SEPARATION
main up to twice allows another bump to be present. As
predicted again by28) [and (29)], whenV=1, B=1, there

is a limiting valuex=0.316, if A is greater, then the flat

In this appendix we compare, for a given bump, the lin-
earized solution of(9)—(12) in the zero displacement

bottom is stabléFig. 12). case(8):
- _(—ik)z’SA_ o) FTLT]
[7]= Ai’'(0) A )B*—,Bpf’
V. CONCLUSION with B8* =(3 Ai’(0)) (—ik)*® and (8): By=0, and a

complete non linear solution @®)—(12) with (8). We com-

We have presented here a simplified model of flow overpute the skin friction for various values of the highof a
an erodible bed which is asymptotically coher¢inta 2D bumpy,,= a exp(—mx?). We observe that the separation for
laminar linearized description at large Reynolds number this kind of bump occurs forr=2.1. The computations are
The advantage of this model is that a lot of hydrodynamicabpossible when the skin friction is smaller than zétwe triple
mechanisms have been put without usual integral simplificadeck is the asymptotic framework for separated flows, there
tions, or without a complete Navier—Stokes numerical simuis no Goldstein singulariby but if the size of the separation
lation. Though we do not claim that we have a “real” model, bubble is too big, numerical oscillations take place (
we have caught some features with a realistic asymptotie=2.5). In Fig. 13 we plot the reduced skin friction
solution of the Navier—Stokes equations. Furthermore, ther [ (du/dy)|o— 1], because the linear prediction @f4) is
selected method allows to obtain some analytical results such

u

as the growth raté28). —| =1+ aFT (3 AI(0)(—iK)FT[f]]+0O(a?).
To sum up, the equation of transport of sediments con- Wl

tains the following terms: a convective effect betwegthe (A1)

flux of sediments and the perturbation of skin friCtion, a \We see that forr=0.1 the agreement between the linear and
threshold effect for-and a limiting slope effedtthrough the  nonlinear solution is excellent. Larger valueswinduce the
parameten). This effect of the convection of sediments hasdiscrepancy observed on the Fig. 13 which is an increase of
been justified on view of the equation of transported sedithe maximum of the skin friction value and a decrease of its
ments, but may be seen as a simple balance law at the walk|ative width.

The linear stability analysis gives good predictions for the
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