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Abstract. The 2D laminar quasi-steady asymptotically simplified and linearized flow with a simplified
mass transport of sediments is solved over a slowly erodible bed in various laminar basic shear flow (steady,
oscillating or decelerating). The simplified mass transport equation includes the two following phenomena:
flux of erosion when the skin friction goes over a threshold value, and a non local effect coming either from
an inertial effect or from a slope effect. It is shown that the bed is always unstable for small wave numbers.
Examples of long time evolution in various shear régimes are presented, wave trains of ripples are created
and merge into a unique bump. This coarsening process is such that the maximum wave length obeys a
power law with time.

PACS. 45.70.-n Granular systems – 47.15.Cb Laminar boundary layers – 45.70.Qj Pattern formation

1 Introduction

Understanding how water or air creates ripples on sand
or sediments is a very important environmental problem.
Widely different wave lengths are involved from small rip-
ples on the beach (either in the wet or dry sand) to dune
formation in desert or mega ripples in sea. A large litera-
ture refers to this problem since du Boys in 1879, Exner
in 1925, and Bagnold in the 40’s up to now, as ripples on
Mars may be an evidence of water on this planet [1].

These erosion/sedimentation problems have been
solved by various techniques with various approaches.
These problems may be seen from a practical point of
view with direct application in costal enginering. Yang [2],
Fredsøe and Deigaard [3], and Nielsen [4] give the state of
the art for this very complex problem linking various phys-
ical aspects at different scales (from the grain diameter to
the sea depth!).

Experimental setup have been constructed to study
how ripples (of sand or beads) appear and grow in a flow
of water. Typical experimental setups are oscillating an-
nular cells (Sherer et al. [5], Rousseaux et al. [6,7]), uni-
formly rotating cell (Charru et al. [8,9], Kruelle et al. [10])
uniformly rotating disk ([11,12]) or stopping a disk which
was uniformly rotating (Caps [13], here the shear is due to
the fact that the soil is stopped and the flow continues to
rotate). The flow is characterized by the shear at the wall
which makes the soil move. The observed ripples are of
centimetric size. It is observed that as time increases the
wave length of the ripple increases. As the ripple increase
in size and length, vortex appear in the lee side: before it
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was the “rolling grain régime”, after it is the “vortex rip-
ple régime”. When time increases more and more, there
is less and less ripples: this is the coarsening of the rip-
ples. It takes a long time (weeks, months?) to observe this
coarsening.

This is an interacting problem between the deformable
soil and the flow. On the first hand, to understand the
flow it self, the ripples may be fixed: the shape is given.
Then, simplified (Rousseau et al. [7]) or complete Navier
Stokes computations (direct numerical resolution with
turbulent models) may be done over the given ripples
(Barr and Slinn [14], Andersen et al. [15], Andersen and
Fredsøe [16,17] or Scandura et al [18]).

On the other hand, the relation between the shear and
the flux of sediments is investigated (Charru et al. [9,8],
Loiseleux et al. [19]). This study of the early stages is not
simple. The first difficult problem is to measure the value
of shear stress above which sediments are entrained. The
second is to measure the sediment flux as a function of
the shear stress. So, if appropriate experimental results
for validation are still lacking, a lot of effort is done do
measure the threshold value and the flux relation.

Coupling the flow and the soil variation allows compu-
tation of linear stability of the erodible bed. This has been
done by Charru et al. [8], in the case of constant shear and
slope effect in the flux relation, by Fowler [20] nearly in
the laminar same case (though presented as turbulent),
by Valance and Langlois [21] in the case of convective ef-
fect in the flux relation (this is similar to our analysis).
From an experimental point of view, it is not simple to
measure the first unstable wave length. Oscillating cases
have been done by Mei and Yue [22] with a linear stability
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theory with A/λ = 0(1) (A amplitude of the oscillation,
λ wave length). The case of large values of A/λ has been
examined by Gerkema [23] as well, our analysis is in fact
similar to his analysis and makes it more general because
applied to other régimes.

Previous studies where laminar. Komorova and
Hulsher [24], Sumer and Bakioglu [25], and Richards [26]
take into account turbulence, they have to model the tur-
bulent viscosity.

The ripples of sand in air seem to be governed by a
completely different mechanism from reptation saltation
(Andreotti [27]) which does not involve fluid mechanics
(Valance and Rioual [28], Balmforth et al. [29]), neverthe-
less fields of dunes are governed again by an interaction of
the fluid and the transport of grains (Kroy et al. [30] and
Sauerman et al. [31], Andreotti et al. [32]).

Finally, we notice that some studies use simplified
physical models to compute the flow and the ripples evo-
lution (Andersen [32], Nishimori et al. [33]). Rousseaux
et al. [6] suggest that a Cahn-Hillard model (Bray [34])
may give a prediction of coarsening for ripples.

We simulate this phenomena with a simple model for
both the flow and the soil. Instead of using an amplitude
model equation we want to use model equations coming
from mechanics. The first difficulty consists in computing
the flow which is unsteady and turbulent in the nature,
but which may be considered as laminar in most experi-
ments. Our model will consider quasi steady laminar per-
turbations of a slowly varying basic flow. An asymptoti-
cal approach allows to obtain a linearised solution for the
flow over the ripples. This approach is done in a frame-
work which allows boundary layer separation. This is done
because it has been observed that the ripples produce vor-
tices in their lee side. So, we focus on configurations of flow
which describe boundary layer separation (the so called
“triple deck”, which is here in fact a “double deck”).

The second difficulty consists in computing the flow
of sand. The sand may “creep” (bed load transport), or
“fly”, or may be suspended in the fluid. This modifies the
viscosity and density of the flow. Our model will consider
different simple relations between the flux of sand and the
shear stress from the flow.

We present a stability theory valid for different cases
of flow which is a generalization of other cases found in
literature. The basic state is a flat erodible bed with a
shear flow. Either a steady established flow, an oscillating
one, or a decelerated one will be considered. The questions
are about the linear stability of the configuration, and
about the non linear long time evolution of the bed form.
We then observe coarsening of the waves an fit a power
law.

We first remind the equations of the full coupled prob-
lem (Sect. 2) and the first simplifications for the flow and
for the granular material. We present the simple basic
régimes: they reduce near the soil to a shear flow (Sect. 3).
We focus on the small perturbations of this flow in Sec-
tion 4. The linear stability is then discussed (Sect. 5). Fi-
nally we present a long time evolution (Sect. 6) of the
erodible bed leading to the coarsening of wave length.

2 The coupled problem

2.1 The flow

We consider a steady or unsteady laminar incompressible
Newtonian flow. We suppose that the viscosity and den-
sity remain constant in the flow. An initial boundary layer
is developing, δ is its thickness, U0 is the velocity far from
the soil. The Reynolds number Reδ = U0δ

ν is supposed
large enough to use an asymptotical approach. In fact the
slope of the velocity at the surface U0/δ will be the perti-
nent parameter (we note it U ′

0, this is often called γ̇). The
Reynolds number is in fact Reδ = U ′

0δ2

ν . We will specialise
the boundary layer in Section 3. Knowing the instanta-
neous soil shape the problem is to find the velocity near
the soil, more exactly the skin friction τ = µ∂yu from the
Navier Stokes equations. Using δ as length scale, y = δȳ,
x = δx̄, u = U0ū, and t = (δ2/ν)t̄. The Navier Stokes
equations are (Rousseaux et al. [7]):

∂ū

∂x̄
+

∂v̄

∂ȳ
= 0, (1)

1
Reδ

∂(ū, v̄)
∂t̄

+ (ū, v̄) · ∇̄(ū, v̄) = −∇̄p̄ +
1

Reδ
∇̄2(ū, v̄). (2)

Here we will concentrate to the case of small perturbations
of the soil’s surface, and we will see that asymptotic anal-
ysis allows an analytical resolution. The boundary condi-
tions are the no slip flow at the upper surface of the soil
described by ȳ = f̄ .

2.2 The erodible bed

Due to the movement of sand or sediment, the upper sur-
face of the soil (y = f(x, t)) changes according to the mass
conservation. To solve the mass conservation of sediments

∂f

∂t
= − ∂q

∂x
, (3)

one has to know the relation between the flux q and the
fluid flow. This depends on a lot of factors. In the litera-
ture (Yang [2], Nielsen [4], Fredsøe and Deigaard [3], ...)
the final relation is mostly that q is function of the skin
friction τ . The adimensionalised skin friction is denoted
as the Shield number θ = τ

(ρs−ρ)gd ; ρ and ρs are fluid and
particle density (s = ρs/ρ), respectively, d is average par-
ticle diameter, and g is gravity. There is a threshold value
τs (or critical Shield θs) above which the sediments are
entrained, a power law is often used:

qs ∝ (θ)a(θ − θs)b, with θ > θs.

Coefficients a, b depend on the modelling. Du Boys [35]
law corresponds to a = b = 1; Charru and
Mouilleron-Arnould [8] law, issued from resuspension the-
ory, corresponds to a = 0, b = 3; Sumer and Bakioglu [25]
use a = 1/2, b = 1; Blondeaux [36] uses a = 0, b = 4.28;
Peter-Meyer (see Fredsøe and Deigaard [3]) use a = 0,
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b = 3/2. Those different values correspond to various spe-
cific hypotheses, in various laminar or turbulent flows, in
air or in water.

In fact, we use a linearized version just above the
threshold: qs ∝ τ − τs. Furthermore, there is a gravity
effect which induces a correction in the threshold value
depending on the slope of the soil. It is proportional to
the inverse of the tangent of the static friction angle φs. If
τ > τs + Λ∂f

∂x there is a flux, else there is no flux. Hence,
we define a saturated flux as:

qs = Q0�

(
τ − τs − Λ∂f

∂x

ρ(s − 1)gd

)
, (4)

where �(x) = x if x > 0, else �(x) = 0. The expressions
of τs, Q0 and Λ are mainly in the literature:

τs =θsρg(s − 1)d,

Q0 =8
√

g(s − 1)d3,

and Λ =
θsρg(s − 1)d

tan(φs)
. (5)

In an eolian context, Kroy et al. [30], Sauermann et al. [31]
introduced an effect of inertia adding a term proportional
to ∂xq (with Λ = 0), we may simplify their expression as:

lK
∂q

∂x
+ q = qs (6)

with lK proportional to 1
U ′

S
i.e. the inverse of the shear.

With again Λ = 0, Andreotti et al. [37] simplified this
expression as:

ls
∂q

∂x
+ q = qs, (7)

with a constant coefficient in front of ∂xq. Assuming an
equilibrium in the granular media modelized by a BCRE
model, Valance and Langlois [21] proposed this same re-
lation for water ripples.

Finally the slope of the ripple may be limited by an
“avalanche” effect (at least a “slope effect”). It means that
at each time step:

if |∂f

∂x
| >

1
µ

, then |∂f

∂x
| =

1
µ

and
∫

fdx = cste.

(8)
Mass is conserved during this process, and slope is limited.
The problem is now to find τ and to test either equa-
tions (4, 6), or (7), and (8).

3 Basic flow

The basic configuration is a bidimensional flow over a flat
soil. Curvature and gap effects in circular cells are ne-
glected. The flow is laminar. Near the wall, any velocity
profile reduces to a pure shear flow (Fig. 1). The basic
adimensionalised velocity is:

ū = Ū ′
S ȳ. (9)

Fig. 1. Any velocity profile is linear near the wall. λ is a typical
length. H = εδ is the typical height.

Typical examples are an oscillating flow, or a moving tank
with an impulsively stopped bottom or a Blasius bound-
ary layer. In the next subsections we will show that the
steady case corresponds to Ū ′

S = 1, the oscillating case
corresponds to Ū ′

S = cos (2πt̄), and the decelerated case
to Ū ′

S = t̄−1/2. The shear itself is denoted U ′
0 = U0/δ.

3.1 Steady basic flow

If we consider a Blasius boundary layer, near the wall, the
profile is linear (Schlichting [38]):

u � 0.33U0
y

δ
(10)

with δ = (LR
−1/2
L ) so that we obtain (9) with Ū ′

S = 0.33.
We may as well imagine a flow in a channel with a devel-
oped half Poiseuille profile, the parabolic velocity profile
being linear near the wall. The analysis of Fowler [20] of
a turbulent flow with a mean equivalent viscosity leads in
fact to this analysis.

3.2 Oscillating basic flow

In the frame of the wall, the basic flow is solution of:

∂

∂t
u = − d

ρdx
p + ν

∂2

∂y2
u. (11)

The oscillating velocity U0�[exp(−iΩt)] is imposed at “in-
finity”, far from the bottom where u(y = 0, t) = 0. The
solution is classical (Schlichting [38]) and after a change
of phase in the time, near the wall:

u � U0
y

δ
e−iΩt + ... (12)

so that we obtain (9) with Ū ′
S = cos(2πt̄), with time

scaled with f−1 = 2πΩ−1. The scale of the boundary layer
δ = (ν/Ω)1/2.

3.3 Decelerated basic flow

In the frame of the wall, the basic flow is again the
solution of equation (11) (Rayleigh problem) with U0 the
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constant velocity at “infinity”, far from the bottom and
u(y = 0, t) = 0:

u � U0
y√
πνt

+ ... (13)

so that we obtain (9) with Ū ′
S = 1/

√
t̄, δ = (πνT ∗)1/2

were T ∗ = h2
0/ν is the chosen time scale (h0 is the water

depth, which is supposed larger than δ).

4 Perturbation of the basic flow

As mentioned in the literature, the ripples are of small as-
pect ratio. Let then consider a bump of thickness H = εδ
and of length λ � δ (Fig. 1). In the sublayer of rela-
tive thickness ε (compared to the uniform boundary layer
thickness δ), and longitudinaly streched of a factor λ/δ we
may develop (1–2) using ỹ = ε−1ȳ = y

εδ and x̃ = δ
λ x̄ = x

λ .
Perturbations of velocity must be of order ε, in order to
reobtain far upstream of the bump: ũ = Ū ′

S ỹ. The harder
simplified problem to solve is the simplified problem which
has the maximal number of terms in the equations. This is
the “least possible degeneracy” (Van Dyke [39], p. 86, or
Darrozès [40]). So, to have a problem with the maximum
number of terms, including pressure, convective terms and
a viscous term, there should be a relation between λ and δ:

λ = ε3δRδ. (14)

Therefore with ū = εũ, v̄ = (δ/λ)εṽ, and p̄ = ε2p̃, and if
we take the time scale to be the time scale of the oscillating
flow t̄ = t̃, we have:

ε2 ∂

∂t̃
ũ+ũ

∂

∂x̃
ũ+ṽ

∂

∂ỹ
ũ = − ∂

∂x̃
p̃+

∂2

∂ỹ2
ũ+ε2 δ2

λ2

∂2

∂x̃2
ũ, (15)

and − ∂
∂ỹ p̃ = O(ε2). So that, as ε → 0, the problem is

quasisteady, and we obtain a “boundary layer” equation
for ũ which will be (Eq. (17)).

4.1 Notes on the scalings

We note (as ε → 0) that the second order partial longi-
tudinal derivative is not present. It is because the trans-
verse scale is smaller than the longitudinal one. Using the
same scale in both directions x = λvx̂ and y = λvŷ, (i.e.
λ = εδ = λv in Eq. (15)) we have λv =

√
ν/(U0/δ) and

equation (2), for û is:

ε2 ∂û

∂t̂
+ û

∂û

∂x̂
+ v̂

∂û

∂ŷ
= − ∂

∂x̂
p̂ +

∂2

∂ŷ2
û +

∂2

∂x̂2
û.

Again, the problem is steady. This scale is called the
“viscous scale” (Charru et al. [8]), it is supposed very
small. Nevertheless, looking at a large scale (x̂ = Xx̃),
small aspect ratio perturbation (ŷ = X1/3ỹ, û = X1/3ũ,
p̂ = X2/3p̃, and v̂ = X−1/3ṽ) of this equation gives:

ũ
∂

∂x̃
ũ + ṽ

∂

∂ỹ
ũ = − ∂

∂x̃
p̃ +

∂2

∂ỹ2
ũ + X−4/3 ∂2

∂x̃2
ũ.

So that we will recover (Eq. (17)) for scales larger than λv.
In fact we are in the Triple Deck theory (Neiland [41],

Stewartson and Williams [42], Smith [43], Sychev
et al. [44]), and Gajjar and Smith [45], Bowles and
Smith [46]). This set of equations is known to be relevant
to describe boundary layer separation. More precisely, we
are in the framework of Double Deck Smith [43]. We focus
on the case with no perturbations of the Upper Deck (no
retroaction of the ideal fluid). This means that perturba-
tions of pressure induced by the deflection of the stream-
lines in the Upper Deck (of order εδ

λε3δ ) are smaller than
the perturbation of pressure in the Lower Deck (of order
ε2) (Smith et al. [47]). In the Blasius case, this means that
ε � R

−1/8
L .

In complete Triple Deck, time should then be scaled by
ε2 compared to the time scale of the basic flow in this lower
layer. But this is not relevant here because this introduces
a smaller time scale than the one coming from the flow
(i.e. 1/Ω in the oscillating case). Furthermore, the time
of variation of the soil is itself very long compared to the
oscillation period.

4.2 Equations

Steady and unsteady cases follow the same equations, the
problem in the “Lower Deck” is simply:

∂

∂x̃
ũ +

∂

∂ỹ
ṽ = 0, (16)

ũ
∂

∂x̃
ũ + ṽ

∂

∂ỹ
ũ = − d

dx̃
p̃ +

∂2

∂ỹ2
ũ. (17)

It means that near the wall there exist scales such that a
non linear problem (with convection, diffusion and pres-
sure gradient) has to be solved. Solving numerically this
problem may lead to boundary layer separation: there is
a small thin vortex in the lee side of the bump. Boundary
conditions are no slip condition on the bottom:

ũ(x̃, ỹ = f̃(x̃)) = 0, ṽ(x̃, ỹ = f̃(x̃)) = 0. (18)

The matching between the top of the Lower Deck (ỹ → ∞)
and the bottom of the boundary layer (ȳ → 0) gives:

lim
ỹ→∞

(εũ(x̃, ỹ)) = Ū ′
S ȳ i.e. ũ(x̃, ỹ → ∞) = Ū ′

S ỹ.

(19)
The latter means that the incoming velocity is linear,
this means that upstream we recover the boundary layer
profile:

ũ(x̃ → −∞, ỹ) = Ū ′
S ỹ, ṽ(x̃ → −∞, ỹ) = 0. (20)

4.3 Linearisation: law between the topography
and the skin friction

The unperturbed solution of (16–17) is simply:

ũ = Ū ′
S ỹ, ṽ = 0, p̃ = 0.



K.K.J. Kouakou and P.-Y. Lagrée: Stability of an erodible bed in various shear flows 119

This means that at the small longitudinal scale, the
boundary layer thickness does not evolve and the velocity
profile remains linear near the wall. The linearised solu-
tion of (16–17) around this shear profile in Fourier space
is straightforward and leads to (Ai is the Airy function):

τ̃ = Ū ′
S+Ū ′

SFT−1[FT [f̃ ](3Ai(0))(−(ik̃)Ū ′
S)1/3]+... (21)

This relation (21) gives the final response of the fluid: it
links the perturbation of the shear stress to the topogra-
phy change. This final relation will be used for the linear
stability analysis as well as for the numerical simulations.

Going back in physical variables gives for a bump of
length of order λ and of height of order H :

τ = µU ′
0(Ū

′
S(1 + (

U ′
0

νλ
)1/3Hc̃)),

with c̃ = FT−1[FT [f̃ ]3Ai(0)(−(i2πk̃)Ū ′
S)1/3] (22)

c̃ is a numerical coefficient depending of the exact adimen-
sionalised shape, the height H is supposed to be smaller
than δ. The function of time Ū ′

S is a number of order one. If
(U ′

0
νλ )1/3H is of order one this is equivalent to formula (14).

Comparisons of formula (22) with Navier Stokes computa-
tions and full non linear equations (16–17) has been done
by Kouakou and Lagrée [48] and Kouakou et al. [49]. It
gives good results of boundary layer separation.

5 Linear stability of the bed

5.1 Steady case

The shear stress function of the topography change is now
coupled to the adimensional version of (4),

q̃s = �

(
τ̃ − τ̃s − Λ̃

∂f̃

∂x̃

)
. (23)

Either the flux is always saturated and

q̃ = q̃s, (24)

or the inertial effect is taken into account with a variable
coefficient (6)

l̃K
Ū ′

S

∂q̃

∂x̃
+ q̃ = q̃s, (25)

or the inertial effect is taken into account with a constant
coefficient (7)

l̃s
∂q̃

∂x̃
+ q̃ = q̃s, (26)

where τ̃s, Λ̃, l̃K , and l̃s are constants. In practice, in the
sequel, we do not mix the effect of inertia ∂q̃

∂x̃ and the

avalanche (or slope) effect ∂f̃
∂x̃ , so in (25 and 26) Λ̃ is zero

in q̃s. The bed form evolution (3) with a suitable adimen-
sionalisation is:

∂f̃

∂t̄
= −η

∂q̃

∂x̃
, (27)

0.1 0.2 0.3 0.4 0.5
k

0.01

0.02

0.03

0.04

0.05

σ

Fig. 2. Constant shear, Ū ′
S = 1, amplification factor σ as func-

tion of number k, case (4 or 24, and 28) with Λ̃ = 1 (most un-
stable wave kmax = 0.21, σmax = 0.02), decreasing Λ̃ increases
the cut off value of k.

where η represents the ratio of the hydrodynamic scale
versus the bed evolution one. In pratice this arises only
when Ū ′

S is not constant. When Ū ′
S is constant, the time

scale is such that η = 1. We introduce a long time
t̄1 = ηt̄. This allows to compute the temporal stability of
an erodible bed with Ū ′

S given. Looking for normal modes
f̃ = e(σ+iω)t̄1e−ikx̃, we obtain the perturbation of the skin
friction (Eq. (21)) and with the suitably adimensionalised
version of flux relation (Eqs. (24) or (25) or (26)), we ob-
tain σ as a function of the mode k. We note that there
exist a uniform flux:

q̃0 = Ū ′
S − τ̃s.

With q̃0 > 0, the linear stability analysis is valid as long
τ̃ − τ̃s > 0. The amplification factor σ is positive for small
k (with Eq. (4)):

σ + iω =
3

1
3

Γ (2
3 )

(
1
2

+
i
√

3
2

)
k4/3 − Λ̃k2. (28)

Unstability occurs only for long waves (Fig. 2). If the slope
effect is removed (Λ̃ = 0 in Eq. (4)), all waves are amplified
(σ = 0.53k4/3 and ω = 0.92k4/3). The same arises for the
case with saturation effect (Eqs. (7) or (6) here identical),
there is unstability only for long waves (Fig. 3).

Figure 4 gives an interpretation of the unstability, a
wavy profile has an excess of skin friction τ̃ − Ū ′

S that is
maximal just before the crest. The flux is decomposed in
a uniform flux q̃0 plus a perturbation which is τ̃ − Ū ′

S .
This latter contribution erodes the crest and displaces the
matter down stream.

5.2 Oscillating case

5.2.1 Averaging the flux relation

The oscillating time scale is supposed smaller than the
time of growth of the structures. We have again (27) with
η ratio of the oscillating time by the bed evolution one.
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Fig. 3. Constant shear, Ū ′
S = 1, amplification factor σ as

function of number k, case (7 or 25 or 26) with l̃K = 1
(most unstable wave kmax = 0.31, σmax = 0.047), decreasing
l̃K increases the cut off value of k.

Fig. 4. A wavy profile (bold line, f̃) has a perturbation of
skin friction (dashed line, τ̃ − Ū ′

S) in advance of phase. When
it is positive, the matter is moved down stream (small arrows
on the profile), when is is negative, it is in opposite direction.
The result is an increase of the wave and a displacement in the
stream direction (large inclined arrows).

We define a mean value 〈·〉 =
∫ 1

0
·dt̄ during an oscillating

cycle. Introducing a multiscale analysis: t̄0 = t̄ is the short
time, and t̄1 = ηt̄ is the long time. Let split f̃ = f̃0(t̄0, t̄1)+
ηf̃1(t̄0, t̄1) + ... and write q̃ = Q̃ + q̃′. Q̃ is defined as the
mean value during the current cycle Q̃ = 〈q̃〉 and 〈q̃′〉 = 0.
So, as the time derivative is: ∂

∂t̄ = ∂
∂t̄0

+ η ∂
∂t̄1

, the mass
conservation equation degenerates:

∂f̃0

∂t̄0
= 0,

i.e. the topology is quasisteady at the short time scale. We
define F̃0(t̄1) = f̃0(t̄0, t̄1). At the long time scale:

∂F̃0

∂t̄1
+

∂f̃1

∂t̄0
= − ∂q̃

∂x̃
.

With the decomposition of q:

∂f̃1

∂t̄0
=

(
−∂q̃′

∂x̃

)
+

(
−∂Q̃

∂x̃
− ∂F̃0

∂t̄1

)
.

In order to solve the problem at order one, the secular
term: (−∂Q̃

∂x̃ − ∂F̃0
∂t̄1

) must be 0:

∂F̃0

∂t̄1
= −∂〈q̃〉

∂x̃
.

This means that we can take the mean value of q to deal
with the long time evolution of the bed.

5.2.2 Stability

During a cycle the ripples do not change at first order, the
time of evolution of the topography is very slow compared
to the oscillating time. The small short time perturbation
of the soil is given by ∂t̄0 f̃1 = −∂x̃q̃′, where q̃′ must be
borned. So we estimate the mean value of the skin friction
with a “frozen” soil from equation (21) during a cycle
(note 〈Ū ′

S〉 = 0, and we use f̃ which is in fact F̃0):

〈FT [τ̃ ]〉 = −3Ai(0)
iΓ (1

6 )
8
√

πΓ (2
3 )

(k)1/3FT [f̃ ],

〈τ̃ 〉 and f̃ are out of phase, the skin friction will induce the
sand to move to the crests and out of the hollow (Fig. 7)
without displacing the ripples. The mean value of the skin
friction is real:∫ 1

0

−(−ik)FT [τ ]dt̄ =
3

1
3 Γ (1

6 )k4/3TF [f̃ ]

8
√

π Γ (2
3 )2

, (29)

the numerical value is 0.3087TF [f̃].
Putting the slope effect (24), the stability analysis

gives:
σ = 0.3087k4/3 − Λ̃k2, ω = 0, (30)

this dispersion relation is real, there is no phase speed.
There is a cut off frequency kc. Stability for large k: k > kc

and instability for k < kc. See Figure 5. Taking a relation
with an inertial effect depending on the actual value of
the shear stress (25) with q̃s = τ gives:

σ + iω = 〈−(−ik)
Ũ ′

S3Ai(0)(−(ik)Ū ′
S)1/3

1 − l̃K(ik(Ū ′
S)−1))

〉, (31)

which is real again (ω = 0), and plotted in Figure 6. As for
the steady case, long waves are unstable, in this oscillating
case there is no phase velocity. The ripples do not move.

5.3 Decelerated case

In the previous section, the hydrodynamic time was
smaller than the bed time evolution. If we look at a de-
celerated flow, generally no ripples are created. The time
during which the flow exists is too short for ripples to
grow. In some cases, this arises (Caps [13]). In order to
describe this case, the time scale of the flow must be the
same than the time scale of the bed. Taking the same
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Fig. 5. Amplification factor function of wave number. Aver-
aged oscillating case, Λ = 1 (most unstable wave kmax = 0.09,
σmax = 0.0043), case (4 and 30).

Fig. 6. Amplification factor function of wave number. Aver-
aged oscillating case, l̃K = 1 (most unstable wave kmax = 0.24,
σmax = 0.019) case (7 and 31).

  

Fig. 7. A wavy profile (bold line, f̃) has a mean perturbation
of skin friction (dashed line, < τ̃ >) out of phase. When < τ̃ >
is positive, the matter is moved from left to right (small arrows
on the profile), when it is negative, it is in opposite direction.
The result is an increase of the wave without displacement
(large vertical arrows).

scale for the flow and the topology variation we have (in
the case (24)):

∂f̃k

∂t̄
= (−3Ai(0)(−ik)(−ik)1/3t̄−2/3 − Λ̃k2)f̃k. (32)

Which may be solved for each Fourier mode k:

log(f̃k) = −9Ai(0)(−ik)(−ik)1/3t̄1/3 − Λ̃k2t̄. (33)

Fig. 8. Decelerated case Λ̃ = 1 (24 and 33), plot of log(f̃k(t̄))
as function of k for various increasing times. As time increases,
short waves are more and more stabilised.

Stability analysis now deals with log(f̃k). In Figure 8 is
displayed log(f̃k) as function of k for various time. As
time increases, the cut off frequency kc decreases. Short
waves are more and more stabilised.

5.4 Conclusion for stability analysis

As a conclusion for this section devoted to linear stability
analysis, we observe that the qualitative behaviour is the
same in every case: the long wave are unstable, the short
wave are stabilised by the gravity or the inertia effect. In
the oscillating case, there is no downstream propagation
of the ripples.

The scale of the most unstable ripple is given by the
flux relation itself either 4 or 7. In the “slope” case (4), Λ
dictates the scale, in the “inertia” case (7), ls dictates the
scale, so, either,

λ = (
Λ3

ρ3ν2U ′
0
4 )1/2, or λ = ls. (34)

The time scale follows from the mass conservation,
T = λH/Q0:

T = (
νλ4

U ′
0Q

3
0

)1/3. (35)

6 Examples of large time evolution

6.1 Numerical method

The system is solved numerically using a fast Fourier
transform ([50]). The non linearity of the problem is taken
in real space and consists in the fonction � that is zero
under the threshold. The initial profile is a random small
noise. We observe (see following figures) that the time for
ripples to grow and to interact is very long. Therefore we
solved the oscillating case with η = 1 (taking at each time
step t̄ the exact value of τ̃ ). This is a simple way to tackle
with the problem of the non linearity induced by �. We
obtain a coarsening in all the configurations.
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Fig. 9. Steady case, with (25) with Ū ′
S = 1, l̃s = 1. Spatio-

temporal diagram (t = 0, 20, 40, ... from bottom to top). The
flow is from left to right. Starting from a random small noise,
structures emerge and merge.

6.2 Steady case

Starting from a random noise, the structures predicted by
the linear theory appear. As time increases, the non linear
stage is induced by the threshold function �. The sinu-
soidal shape is transformed in a non symmetrical shape
(see Fig. 9 a spatio temporal diagram). The ripples move
from left to right. The ripple downstream of a larger one
is eaten by it. This is due to the fact that the lee bumps
experiment a smaller skin friction than the one upstream.
As a result, there is less and less bumps in the computa-
tional domain: this is “coarsening”. Finally there is only
one bump in the “box”. In Figure 10 is plotted the number
of bumps which diminishes with time, whereas the bump
height increases with time. The eight of the final bump sat-
urates. The wave length λmax (which corresponds to the
distance between the bumps, and is inversely proportional
to the number of bumps) increases. In Figure 11 is plotted
this wave length for several simulation with various values
of domain size, values of threshold τs and models (either 24
or 25). The large time behaviour is the same, this is due
to the fact that at small wave length k the bump is large
so the exact value of threshold does not matter anymore.
Furthermore, as the wave length is small, equations (24)
or (25) are identical and reduce to

q̃ = τ̃ + ...

The wave length λmax is plotted as function of t in Fig-
ure 11. A log-log plot suggest that λmax is more or less
proportional to time, it seems that: λmax ∝ t̄.

6.3 Oscillating case

Starting again from a random noise, the structures pre-
dicted by the linear theory appear. As time increases,
the non linear stage is induced by the threshold function
�. The sinusoidal shape is transformed in a symmetrical
shape (right/ left, see Fig. 13) due to the symmetry of the
flow. The ripples are steady and only move from one to the
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Fig. 10. Steady case Ū ′
S = 1, l̃s = 1, evolution of the maximum

value and of the number of bumps in the domain versus time.

Fig. 11. Constant shear, the wave length of the structure
scales with a power between t̄0.9 and t̄.

other during the pairing process. Again, there is “coarsen-
ing”: less and less bumps are in the computational domain.
Finally there is only one bump in the “box”. In Figure 12
the same is observed in the case of slope limitation (8). In
Figure 14 is plotted the number of bumps which dimin-
ishes, whereas the bump height increases. The wave length
λmax increases. In Figure 15 is plotted this wave length
for several simulations with various values of domain size,
values of threshold τs and models (either 24 or 25). The
large time behaviour is again the same. The wave length
λmax is plotted as function of t in Figure 15. A log-log
plot suggest that is near a 2/3 power: λmax ∝ t0.6 which
is different from the steady case (Fig. 11).

6.4 Decelerated case

As already mentioned, the time to obtain the growth of
ripples is long, here the time is borned (there exist a time
at which Ū ′

S = τ̃s). So τ̃s must be enough small. The
final time of growth is a bit larger than the time at which
Ū ′

S = τ̃s. In Figure 16 is a spatio-temporal diagram. As
the effect of a bump is to increase the skin friction, there
is an excess of τ̃ − τ̃s that is only due to the crest of the
ripple.
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Fig. 12. Oscillating régime with (25) and slope limitation
V = 1, 1

µ
= 0.05, spatio-temporal diagram, time increases

from bottom to top.

Fig. 13. Oscillating régime with (25), spatio temporal dia-
gram, time increases from bottom to top. Ripples growth from
a random noise and merge two by two.
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Fig. 14. oscillating case Ū ′
S = cos(t̄), l̃K = 1, evolution of the

maximum height of the bumps, and number of bumps in the
domain versus time.

6.5 Some experimental crude comparisons

First, in the case of constant shear, some orders of magni-
tude may be taken from Betat et al. [10] and [51], where
the most unstable wave length is about 9 cm, and the or-
der of magnitude of the wave growth is about 3×10−3 s−1

(for a shear with U ′
0 = 69 s−1). Taking θs = 0.06,

φs = 30◦, and numerical values from their experiment:
d = 95 × 10−6 m, s = 2.65 gives a value of the most

 1

 10

 100

 1000  10000  100000
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Fig. 15. Oscillating shear, the wave length of the structure
scales with a power law between t̄0.6 and t̄2/3.

Fig. 16. Decelerated case with (26) l̃s = 1. Spatio-temporal
diagram, time increases from bottom to top. There is a final
steady bed because the shear stress is under the threshold.

unstable wave length (using Eqs. (28, 34) and Fig. 2):

λ∗ � 15 cm.

The order of magnitude is correct (in increasing a bit θs,
and decreasing a bit φs, we could obtain 9 cm). The order
of magnitude of the wave growth is then about

σ∗ = 1.2 × 10−3 s−1,

which is is the order of magnitude of the experimental
value. Our analysis predicts that σ∗ increases with (U ′

0)
3

the shear, it is observed in [10] that σ∗ increases with the
shear. Our analysis predicts that λ∗ increases with U ′

0
−1,

this is not observed in the experiments where it seems that
maximum is independent of the shear.

Second, in the oscillating case, experimentally
Rousseaux et al. [6] studied ripples from the rolling ripple
stage to the vortex ripple one. The amplitude of the move-
ment is A (0.01 m < A < 0.05 m) and the frequency is f

(typically 1 Hz)), so that U0 = 2Aπf and δ =
√

(ν/(πf).
Then our theory apply for any ε such that equation (14)
gives: λ = ε3(2A): the wave length must be smaller than
the amplitude of the movement. It seems to be nearly the
case in this experimental setup where the first measured
wave length is λinitial � 0.005 m.

Taking θs = 0.06, φs = 30◦, and numerical values from
their experiment: d = 100×10−6 m, s = 2.49 gives a value
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of the most unstable wave length (using Eqs. (30, 34) and
Fig. 5):

λ∗ � 0.26 cm.

The order of magnitude is correct (again we may tune
the values). The formula predicts λ∗ ∝ d3/2, λ∗ ∝ δ2,
and λ∗ ∝ ν−1. Those are not the scalings of Rousseaux
et al. [6] but they obtained that λ∗ increases with d, δ
and ν−1 with different powers. The order of magnitude of
time (35) is then about the 0.3 s. which is coherent.

At long time, the Cahn-Hillard models (Villain-
Guillot, and Josserand [52], Bray [34]) predict that
λmax ∝ Log(t). Rousseaux et al. [6] suggest (but maybe
on a too small range of time) this fit for their data. With
our model, on a larger range, we instead have a power
law. Even if our theory does not strictly compute the sep-
aration, the prediction of formula 21 is a good one even
when there is flow separation (Lagrée [53]). Our theory is
a good approximation of the flow with small separation
bubbles. So we model the rolling ripples and the vortex
ripple when they are small.

Third, in the decelerated case the observed length is
of centimetric size again. There is here a problem be-
cause in Caps experiments [13], the size of the grain is not
fixed. Taking nevertheless d = 90 × 10−6 m, Ω = 0.2 s−1,
R = 0.15 m, and a typical time scale of 0.05 s (as the
experiment is finished in about 2 s) will give an order of
magnitude of the ripples of 2 cm which is possible. Un-
fortunately the dependance in the angular velocity of the
wave length is wrong and the time scale of the bed will be
of 9 s, which too large.

7 Conclusion

A model for the growth of ripples in a laminar 2D
shear flow has been presented. The proposed asymptot-
ical framework is a reinterpretation and generalization of
previous studies. It is the natural framework for bound-
ary layer separation. A condition for application is that
the height of the created ripples must be smaller than the
boundary layer thickness of the basic flow in order to have
a basic shear flow.

This shear flow may be steady or slowly varying in
time (oscillating or decelerating). A linear solution linking
the bed shape and the skin friction is obtained in Fourier
space. Depending on the chosen relation linking the trans-
port of sediments and the shear (or skin friction) we obtain
a coupled problem. A linear relation with a threshold in
shear has been chosen. We present a linear stability anal-
ysis of the erodible bed. In the chosen framework, in every
case, the bed is unstable for long waves. The instability
is due to the fact that the skin friction is in advance of
phase with the soil. The short wave length are stabilised
by either an “inertial” effect, either a “slope” effect. In the
oscillating case, during a period, the bed does not change
a lot, this allows a multiscale analysis of the instability.
The stabilising effect for the short waves is the same. In
the decelerated case, the classical temporal stability anal-
ysis has to be changed because the time of the deceleration
and the time of growth of the structures must be the same.

Large time simulation of the model equations shows
that the ripples merge and we obtain only one bump in
the domain (except in the decelerated case because shear is
decreasing finally under the threshold). During the coars-
ening process, the history is independent of the exact value
of the parameters. The maximal wave length λmax is pro-
portional to a power of time.

To go further, we should do more refined comparisons
between experimental works which are mainly in laminar
flows. In fact we need models of transport. To distinguish
between an inertia or a slope effect is not a simple task
because the two mechanisms (inertia and slope effect) have
same global behavior. At small time, short wave numbers
are amplified. At large time the coarsening is the same. It
would be interesting, but time consuming, to compute the
full non linear problem as it is presented here. Finally, to
be applicable to reality, instead of looking at perturbations
of a linear profile we should look at the perturbations of
turbulent flow (a linear and then logarithmic profile).
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14. B.C. Barr, D.N. Slinn, J. Geophys. Res. 109, (2004)
15. K.H. Andersen, M.-L. Chabanol, M.V. Hecke, Phys. Rev.

E 63, 066308 (2001)
16. K.H. Andersen, J. Fredsøe, Proceeding of the conference

“Coastal Sediments” (Long Island, 1999)
17. J. Fredsøe, K.H. Andersen, B.M. Sumer, Coastal Eng. 38,

177221 (1999)
18. P. Scandura, G. Vittori, P. Blondeaux J. Fluid Mech. 412,

355 (2000)
19. T. Loiseleux, P. Gondret, M. Rabaud, D. Doppler, Phys.

Fluids, submitted
20. A.C. Fowler, Dunes and drumlins in Geomorphological

fluid mechanics, edited by A. Provenzale, N. Balmforth
(Springer-Verlag, Berlin 2001), pp. 430–454



K.K.J. Kouakou and P.-Y. Lagrée: Stability of an erodible bed in various shear flows 125

21. A. Valance, V. Langlois, Eur. Phys. J. B 43, 283 (2005)
22. C.C. Mei, J. Yue, Phys. Fluids 9 (6), 1606 (1997)
23. T. Gerkema, J. Fluid Mech. 417, 303322 (2000)
24. N.L. Komarova, S.J.M.H. Hulsher, J. Fluid. Mech. 413,

219 (2000)
25. B.M. Sumer, M. Bakioglu, J. Fluid Mech. 144, 177 (1984)
26. K.J. Richards, J. Fluid Mech. 99, 597 (1980)
27. B. Andreotti, JFM 510, 47 (2004)
28. A. Valance, F. Rioual, Eur. Phys. J. B 10, 543 (1999)
29. N.J. Balmforth, A. Provenzale, J.A. Whitehead, The lan-

guage of pattern and Form in Geomorphological fluid me-
chanics, edited by A. Provenzale, N. Balmforth (Springer-
Verlag, Berlin 2001), 3

30. K. Kroy, G. Sauerman, J. Hermann, Phys. Rev. Lett. 88,
05431 (2002)

31. G. Sauerman, K. Kroy, J. Hermann, Phys. Rev. Lett. 64,
031305 (2001)

32. K.H. Andersen, Phys. Fluids 13 (1), 58 (2001)
33. H. Nishimori, M. Yamasaki, K.H. Andersen, Int. J. Modern

Phys. B 12 (3), 257 (1998)
34. A.J. Bray, Domain growth and coarsening, in Phase

Transitions and Relaxation in Systems with Competing
Energy Scales, edited by T. Riste, D. Sherrington, NATO
ASI Series C 415 (Kluwer Academic, 1993), p. 405
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