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Linear and Nonlinear
Viscoelastic Arterial Wall
Models: Application on Animals
This work deals with the viscoelasticity of the arterial wall and its influence on the pulse
waves. We describe the viscoelasticity by a nonlinear Kelvin–Voigt model in which the
coefficients are fitted using experimental time series of pressure and radius measured on
a sheep’s arterial network. We obtained a good agreement between the results of the non-
linear Kelvin–Voigt model and the experimental measurements. We found that the visco-
elastic relaxation time—defined by the ratio between the viscoelastic coefficient and the
Young’s modulus—is nearly constant throughout the network. Therefore, as it is well
known that smaller arteries are stiffer, the viscoelastic coefficient rises when approaching
the peripheral sites to compensate the rise of the Young’s modulus, resulting in a higher
damping effect. We incorporated the fitted viscoelastic coefficients in a nonlinear 1D fluid
model to compute the pulse waves in the network. The damping effect of viscoelasticity
on the high-frequency waves is clear especially at the peripheral sites.
[DOI: 10.1115/1.4034832]

1 Introduction

One way of obtaining information about the cardiovascular sys-
tem is by studying pressure and flow waveforms. By analyzing
and modeling flow waveforms, we can deduce the mechanical
properties of the cardiovascular system even in regions of the net-
work inaccessible to visualization techniques. However, chal-
lenges still remain such as real-time observations and analysis of
flow waveforms to help the medical staff make diagnostics and
surgical decisions. Pulse waves of pressure and flow rate in the
arterial system can be correctly captured by 1D models of blood
flow. The 1D approach is attractive because it is a good compro-
mise between modeling complexity and computational cost and is
useful for medical applications, such as disease diagnostic and
presurgical planning. Difficulties arise when performing patient-
specific simulations as the number of parameters required by the
model increases with the number of simulated arterial segments.
The hardest parameters to obtain are those describing the complex
mechanical properties of the arterial wall. In the 1D model, a con-
stitutive equation of the wall mechanics is necessary to close the
system of conservation laws of mass and momentum. Although
the viscoelastic behavior of the wall has been recognized as fun-
damental for a long time, most 1D numerical simulations existing
in literature adopted elastic wall models for simplicity since the
viscoelastic coefficient is difficult to measure. Another problem-
atic point is that the viscoelastic response of the wall dynamics
interacts with the viscoelastic properties of the blood. Therefore,
both phenomena should be included in the model to obtain a com-
plete picture of the coupled wall-blood flow dynamics even

though it was shown that differentiating both behaviors from
experimental data is a complicated task [1].

Nevertheless, there are previous studies of blood flow in net-
works using viscoelastic 1D models. The viscoelastic models for
the arterial wall fall into roughly two categories: Fung’s quasi-
linear viscoelastic models [2] and an arrangement of
spring–dashpot elements. Models of the first category are more
general but also more difficult to handle when coupled with a 1D
model of blood flow because they involve a creep function and
convolutions have to be computed [3]. Holenstein et al. [4] pro-
posed a model and fitted the parameters from published data. Rey-
mond et al. [5,6] adopted Holenstein’s model and parameter
values in their patient-specific simulations. Comparison between
numerical results and in vivo measurements reveals a considerable
impact of the viscoelasticity on the pulse waves. Another compar-
ison between the results obtained with 1D models using different
viscoelastic models of the first category shows that the differences
between the results computed with different models are minor [7].
Segers et al. [8] proposed another approach incorporating a
frequency-dependent viscoelastic model with the linearized 1D
model of blood flow. They found that the influence of viscoelas-
ticity is comparable to the elastic nonlinearity [7]. We note that
the parameter values of the viscoelastic model are fitted from the
limited available data in literature.

The second class of viscoelastic models is built by combina-
tions of springs and dashpots. The Kelvin–Voigt model which
consists of one spring and one dashpot connected in parallel is
suitable to describe viscoelastic solids and is straightforward to
incorporate in a 1D model of blood flow. Armentano et al. [9]
fitted the coefficients of the Kelvin–Voigt model from
simultaneous experimental measurements of diameter and pres-
sure and obtained acceptable agreements with measurements.
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Alastruey et al. [10] also adopted the Kelvin–Voigt model and
estimated the parameters using a tensile test. They simulated the pul-
satile flow in an in vitro experimental setup and compared this model
with an elastic one. They showed that the viscoelastic model agrees
much better with measurements than the elastic one. We observe fur-
thermore that the vessels in the study were made of polymers which
are actually much less viscous than the real arterial wall.

In this paper, we propose to analyze a nonlinear Kelvin–Voigt
wall model and to study the effect of viscoelasticity on the pulse
waves of a sheep’s arterial networks. We collected simultaneous
time series of diameter and pressure at different arterial sites from
a group of sheep (experimental data from Ref. [11]). We esti-
mated the viscoelasticity coefficients by fitting the experimental
measurements using the following nonlinear Kelvin–Voigt model:

1� g2
� �R

h
P ¼ Eeþ /0 _e þ /NL _e2

where the nonlinear coefficient /NL appears necessary to retrieve
the experimental data. Segers et al. [8] have shown that the non-
linear term in e2 can be neglected compared to _e. We have con-
firmed this fact, and therefore, we have removed the
corresponding term in the proposed viscoelastic model. Con-
versely, the nonlinear term in _e2 seems to play an important role
in the wall dynamics. Erbay et al. [12] used this nonlinear term to
study the wave propagation in nonlinear viscoelastic tubes, and
the theoretical basis of the approach is in Ref. [13].

We computed the unsteady blood flow in the network using a
1D blood flow model coupled to the linear viscoelastic wall
model. We observed the smoothing effect of the wall viscosity on
the pulse waveforms in particular at the terminal sites of the net-
work. This result is corroborated by the observation that the visco-
elastic relaxation time /0=E is nearly constant throughout the
network. Therefore, as it is well known that smaller arteries are
stiffer, the viscoelastic coefficient rises when approaching the
peripheral sites to compensate the increase of the Young’s modu-
lus, resulting in a higher damping effect.

Section 2 presents the experimental protocol for data acquisi-
tion, the proposed nonlinear Kelvin–Voigt model, the optimiza-
tion approach to compute the model parameters, and the 1D blood
flow model used in the numerical simulations. In Sec. 3, we dis-
cuss the optimization results and the numerical findings. We also
present numerical simulations to explain the differences between
an elastic and a viscoelastic wall model.

2 Methodology

2.1 Data Acquisition. The experimental data were obtained
from a group of 11 sheep (male Merino, between 25 and 35 kg).
Before surgeries, the animals were anesthetized with sodium pen-
tobarbital (35 mg/kg). The arterial segments of interest (6 cm
long) were separated from the surrounding tissues. To measure
the diameter, two miniature piezoelectric crystal transducers
(5 MHz, 2 mm in diameter) were sutured on opposite sides into
the arterial adventitia. The animals were then sacrificed, and the
arterial segments of interest were excised for in vitro tests.

The arterial segments were mounted on a test bench where a
periodical flow was generated by an artificial heart (Jarvik Model
5, Kolff Medical, Inc., Salt Lake City, UT). The input signal was
close as possible to a physiological waveform. We obtained the
desired pressure waveforms by simple adjustments of tuning resis-
tances and Windkessel chambers.

The circulating liquid was an aqueous solution of Tyrode. At
each arterial segment, the internal pressure was measured using a
solid-state pressure microtransducer (Model P2.5, Konigsberg
Instruments, Inc., Pasadena, CA), previously calibrated using a
mercury manometer at 37 �C. The arterial diameter signal was
calibrated in millimeters using the 1 mm step calibration option of
the sonomicrometer (Model 120, Triton Technology, San Diego,
CA). The transit time of the ultrasonic signal with a velocity of

1580 m/s was converted to the vessel diameter. The experimental
protocol was conformed to the European Convention for the Pro-
tection of Vertebrate Animals Used for Experimental and Other
Scientific Purposes. For more details on the animal experiments,
refer to Ref. [11].

The synchronized recording of transmural pressure and diame-
ter was applied on the following seven anatomical locations as
shown in Fig. 1: ascending aorta (AA), proximal descending aorta
(PD), medial descending aorta (MD), distal descending aorta
(DD), brachiocephalic trunk (BT), carotid artery (CA), and femo-
ral artery (FA).

We note that the experimental data were acquired from blood
vessels that are extracted from their surrounding tissue and this
modifies the experimental “pressure–radius” function we will use
to do the optimization process. Others factors modifying this rela-
tion are listed in Ref. [14], where it was shown that arterial wall
viscosity and elasticity were influenced by adventitia removal in
in vivo studies, possibly by a smooth muscle-dependent
mechanism.

2.2 Nonlinear Wall Model and Evaluation of the
Parameters. In a linear approach for an isotropic, incompressible,
and homogeneous arterial wall with a thickness h and radius R,
the thin cylinder theory states that the stress r and the linearized
strain e ¼ R� R0=R0 follow the equation:

r ¼ E

1� g2ð Þ e (1)

where E is the Young’s modulus, R0 is the unstressed radius, and
g is the Poisson ratio (0.5 for incompressible materials). Also, the
transmural pressure P�Pext is related to the stress r by the
equation

r ¼ R P� Pextð Þ
h

(2)

The reader can refer to Ref. [15] for details. Conform to the exper-
imental setup, we set the external pressure to zero and we have

1� g2
� �R

h
P ¼ Ee (3)

the equation linking the pressure P to the strain e. Adding to the
right-hand side a viscoelastic term / _e where / is the coefficient
modeling the wall viscosity, we retrieve a classic Kelvin–Voigt
model. We can build a more general nonlinear wall model by
developing e and _e asymptotically to second-order, we then find

1� g2
� �R

h
P ¼ Eeþ ENLe2 þ /0 _e þ /NL _e2 (4)

where the subscript NL stands for nonlinear and where we have
ENL� E.

Fig. 1 Arterial tree of a sheep. Experimental data are collected
from 11 sheep at the following seven locations: ascending aorta
(AA), proximal descending aorta (PD), medial descending aorta
(MD), distal descending aorta (DD), brachiocephalic trunk (BT),
carotid artery (CA), and femoral artery (FA). There are three vir-
tual arteries (VAs), which are indicated by dashed lines, to
model the side branches when pulse waves are simulated.
Parameters for all the arteries are shown in Table 1.
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We will show in the “Results” section that the nonlinear term in
e2 does not play an important role in the pressure dynamics. In
fact, the experimental data are in regions of small e; therefore, e2

� e, and the term ENLe2 is negligible.
Rearranging Eq. (4) and recalling that ENL¼ 0, we get the fol-

lowing relationship connecting the pressure P to the radius R:

P ¼ Eh

1� g2ð ÞR0

� Eh

1� g2ð Þ
1

R
þ /0h

1� g2ð ÞR0

dR

Rdt

þ /NLh

1� g2ð ÞR2
0

1

R

dR

dt

� �2

(5)

The pressure P is a linear combination of the quantities 1/R,

(dR)/(Rdt), and 1=RðdR=dtÞ2. Therefore, we estimated the coeffi-
cients of the equation by a linear regression method. Written in
matrix form, the problem is PðtÞ ¼ MC; where M is a N� 4

matrix ½ð1;…; 1ÞT; 1=R; dR=ðRdtÞ; 1=RðdR=dtÞ2�, with N as
the number of experimental data points, and C as the 4� 1 coeffi-

cient vector ½Eh=ðð1� g2ÞR0Þ;�Eh=ð1� g2Þ;/0h=ðð1� g2Þ
R0Þ;/NLh=ð1� g2Þ�T. The objective cost function is JðCÞ ¼

ð1=NÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i ððPmodelÞi � PiÞ2Þ
q

; with Pmodel as the pressure pre-

dicted by the model. We assume that the columns of the data
matrix are independent in the linear space and that the errors of
the measurement data are independent and identically distributed.
According to the theory of the least-square method, the optimal

value of C is ðMTMÞ�1MTP.
In the data matrix, we evaluated the derivative of R by a spec-

tral numerical method. Given a times series R(t) with a period T
which is expanded in Fourier series R ¼

P1
k¼�1

bRðkÞeð2pi=TÞkt;
where bR is bRðkÞ ¼ ð1=TÞ

Ð T
t¼0

RðtÞe�ð2pi=TÞktdt: For the derivative,
one has

dR

dt
¼
X1

k¼�1

bR 2pi

T
ke

2pi
T kt

In the computation, we take advantage of the discrete Fourier
transform (DFT). The experimental measurements are filtered out
through a loop in the calculation. The pseudocode is:

Step 1: Evaluate the DFT of R (assume N as an even number
without loss of generality)

bRk ¼
1

N

XN
2

n¼�N
2
þ1

Rn � e�
2pi
N nk;

k ¼ �N

2
þ 1…

N

2

Step 2: jjbRkjj represents the amplitude of the kth wave. To filter
out the high-frequency experimental noise, we impose a crite-
rion c such that if jjbRkjj < c; bRk is set to 0. The value of c will
be optimized by minimizing the cost function through the loop.
Step 3: Multiply bRk by 2pki=T to get cDRk.
Step 4: Evaluate the inverse DFT of cDR

dR

dt

� �
k

¼
XN

2

k¼�N
2
þ1

cDRe
2pi
N nk

Step 5: Solve the least-square problem and evaluate the objec-
tive function, J(C).
Step 6: Change c and return back to step 2 until the value of the
objective function stops decreasing.

The thickness h and the unstressed radius R0 are directly meas-
ured. From the optimization process, we computed the Young’s
modulus E and the viscosity coefficients / and /NL as well as the

unsteady radius R0 again. We will show that the measured and
optimized values of R0 are equivalent.

We note that we have performed the optimization process for a
given imposed physiological frequency given by the Jarvik
device, but we know that the model parameters depend on the fre-
quency. Therefore, we are supposing that the model (both linear
or nonlinear) is valid for all the frequencies, and this is a strong
hypothesis when we use only one imposed frequency. To confirm
that hypothesis, we need to design an optimization process for
large band frequencies and show that the optimal parameters are
independent of the input frequency. Finally, once the optimal
coefficients are found, we can introduce them into the numerical
model to study the wave propagation in the network.

2.3 Simulation of Pulse Waves With the 1D Model. For
blood flow in arteries, denoting the circular cross-sectional area
by A, the flow rate by Q, and the internal pressure by P, the con-
servation of mass and balance of momentum follows two partial
differential equations (PDEs):

@A

@t
þ @Q

@x
¼ 0 (6)

@Q

@t
þ @

@x

Q2

A

� �
þ A

q
@P

@x
¼ �Cf

Q

A
(7)

where x is the axial distance, and t is the time. The blood density
q is here constant, and Cf is the skin friction coefficient which
depends on the shape of the velocity profile. In general, the profile
depends on the Womersley number, R

ffiffiffiffiffiffiffiffiffi
x=�

p
, with x as the angu-

lar frequency of the pulse wave and � as the kinematic viscosity
of the fluid. In practice, Cf usually takes an empirical value fitted
from the experimental observations. In this study, we assume
Cf¼ 22p� as fitted for the blood flow in large vessels with a
Womersley number of about 10 [16]. To close the system of equa-
tion, we need a constitutive equation for the pressure P (Eq. (5))
and is then written

P ¼ Pext þ b
ffiffiffi
A
p
�

ffiffiffiffiffi
A0

p� �
þ �s

@A

@t
þ �NL

@A

@t

� �2

(8)

with

b ¼
ffiffiffi
p
p

Eh

1� g2ð ÞA0

; �s ¼
ffiffiffi
p
p

/0h

2 1� g2ð ÞA
ffiffiffiffiffi
A0

p

�NL ¼
1

4

/NLh

1� g2ð Þ
p1=2

A3=2A0

as the elastic and viscoelastic coefficients. Those are the govern-
ing equations for the blood flow in one segment.

In the numerical simulations, we preserved the conservation of
mass and static pressure at the confluence points between seg-
ments. We neglected the energy loss due to the variation of geom-
etry. We impose a flow rate as input condition at the inlet of the
network (ascending aorta). The flow rate is a cyclic half sinusoidal
function in time of a period of 0.5 s; the simples one having the
right signal characteristic in terms of physiological amplitude and
frequency. A more physiologic waveform shape does not change
significantly the numerical results, which are primarily affected
by the confluence reflexions and terminal resistances. At each out-
let, we imposed an identical small reflection coefficient Rt¼ 0.3.

We solved the governing equations numerically using a finite
volume approach by a monotonic upstream scheme for conserva-
tion laws (MUSCL). The code has been favorably validated with
analytic results and experimental data, see Refs. [17,18].

3 Results and Discussion

3.1 Parameters of the Arterial Wall. Before the complete
presentation of the nonlinear Kelvin–Voigt model optimization
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results, we discuss the differences in predictions when using a
classical linear model and the relative importance of the nonlinear
term in e2.

Figure 2 presents in the ascending aorta the prediction of the
linear model (ENL and /NL set to zero), and the nonlinear
Kelvin–Voigt model proposed is

1� g2
� �R

h
P ¼ Eeþ /0 _e þ /NL _e2 (9)

The linear model fits poorly the curvature observed in the experi-
mental data (Fig. 2 (left)) and is equivalent to the optimization
analysis of Valdez-Jasso et al. [11], which adopts a stress relaxa-
tion constant as an extra parameter into a linear Kelvin–Voigt
model. On the contrary, the nonlinear prediction (Fig. 2 (right))
properly follows the experimental data. We note that linear and
nonlinear optimal parameters for (E;/0) computed independently
are very similar: linear (1:475 MPa and 26:156 kPa s) and nonlin-
ear (1:539 MPa and 25:451 kPa s).

From the experimental data of Fig. 2, we can evaluate the order
of magnitude of e which is around 1.5/10; therefore, the nonlinear
term scales as e2 � 2 10�2. As the ratio ENL=E is around 10�2 as
shown by the numerical results gathered from the optimization pro-
cess with the nonlinear parameter ENL, the linear term scales as Ee
and the nonlinear one as 10�3Ee. The numerical predictions using
the nonlinear term ENL confirm that this nonlinear term as small
influence and can be neglected as already advanced in Ref. [8].

Over the subsequent optimizations we used the nonlinear
Kelvin–Voigt model (Eq. (1)). As stated in the Introduction, there
are other models for the viscoelasticity (see, e.g., Refs.
[4,8,19,20]). Fung’s quasi-linear model is more generalized than
the spring–dashpot models, but its incorporation in 1D fluid mod-
els is complex, thus it is only applicable to limited formulations
(e.g., linearized 1D model [4,8]).

The results presented in Fig. 3 from the upper left side to the
bottom right side (proximal descending aorta, medial descending
aorta, distal descending aorta, brachiocephalic trunk, carotid
artery, and femoral artery) show that this model captures the wall
viscosity and the nonlinearity of the pressure–radius loop. As
stated above, Valdez-Jasso et al. [11] already tested the Kelvin
model simulating the two stress relaxation constants and their
results are close to the linear Kelvin–Voigt model. Their sensitiv-
ity analysis shows that the model prediction depends least on this
constant among all the parameters, thus even though the
Kelvin–Voigt does not include this constant, the validity is hardly
influenced. Moreover, in contrast to nonlinear optimization meth-
ods that estimate the model parameters in Ref. [11], we use the
linear regression method which is fast and the global optimization
is readily guaranteed.

Figure 3 shows the hysteresis in the pressure–radius loop for
six arteries (the seventh, the ascending aorta is in Fig. 2). The

agreement between the experimental measurements and the model
predictions shows that the nonlinear Kelvin–Voigt model captures
the wall viscosity everywhere. We remark that among the seven
arteries, the brachiocephalic trunk has the largest nonlinearity
(Fig. 3 (center and left)).

At the aorta, the nonlinearity decreases from the proximal part
to the distal end. Finally, at the peripheral arteries, represented by
carotid artery and femoral artery, the nonlinearity is negligible.

We present the unstressed ratio R0 with error bars in Fig. 4, and
the mean values are [ascending aorta, proximal descending aorta,
medial descending aorta, distal descending aorta, brachiocephalic
trunk, carotid artery, femoral artery]¼ [0.9489, 0.8809, 0.8554,
0.8286, 0.9002, 0.4069, 0.2826]. These values compare extremely
well the experimentally measured ones [0.9360, 0.8600, 0.8500,
0.8250, 0.8900, 0.4060, 0.2810] (crosses in figure). The experi-
mental measurements of neutral vessel radius are only possible in
in vitro experiments but impossible in an in vivo analysis, this is
the reason we chose to estimate the values of the radius R0 in
numerical simulations. Since the nonlinear Kelvin–Voigt model
predicts the actual values (within the error bars), which suggests
that this approach could be used in an in vivo situation.

Figure 5 (left) shows the Young’s modulus for the seven
arteries, and these results have to be compared to those of the lin-
ear viscoelastic modulus / in Fig. 5 (right). Both predicted values
follow the same behavior. By examining the parameter values
among the different arteries, we can see that smaller arteries tend
to be stiffer, as pointed out by previous studies [11,20]. We note
that running the optimal process for the linear model we found
similar values of E and /0, this implies that these parameters are
unaffected by the nonlinear coefficient and suggests that at the
first-order they have a physical meaning.

We analyzed the relation between the Young’s modulus and the
viscoelastic coefficient by defining a characteristic time /0=E.
Figure 6 presents the values for the seven arteries: an important
observation is that these values seem to be constant.

We want to stress in this study the importance that the ratio
between /0 and E is constant and the impact this has on high fre-
quencies components of the pulse waves. From the linear
Kelvin–Voigt equation (9), with /NL ¼ 0, the magnitude of the

complex modulus is jGj ¼ E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðtr=tf Þ2

q
, where tr ¼ /0=E is

the viscoelastic relaxation time, and tf¼ 1/x is the typical forcing
time. The linear model also gives the phase shift as
d ¼ arctanðtr=tf Þ. Therefore, for an imposed pressure perturbation
on a viscoelastic arterial wall, the wall will come back to its equi-
librium state but with a phase lag characterized by the viscoelastic
relaxation time. Figure 6 shows that the viscoelastic relaxation
time seems to be a biological constant. It is then evident that for
high values of x, the pressure perturbations vanish as long as
arctan ðtr=tf Þ ! p=2. The pressure perturbation and the wall
response will be in phase opposition. This indicates that higher
frequency of the waves will lead to stronger damping effect of the

Fig. 2 Pressure–radius loop of ascending aorta: experimental data and prediction of
(left) linear Kelvin–Voigt model and (right) nonlinear Kelvin–Voigt model
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wall viscosity. Since the wavefronts are more steepened toward
the peripheral part of the arterial tree due to the advection effect
of blood flow, the damping effect is more significant in this part.
Damping effect maybe a protective factor of the microcirculatory
system.

In a stiffer vascular network, pulsatile energy at high frequency
tends to be damped in microcirculation, especially in the brain
and kidney [21]. The arterial wall is mainly composed of elastin
and muscular fibers and this composition varies throughout the
whole network, from the aorta to the peripheral arteries. The elas-
tin is more related with the elasticity modulus and the muscular
fibers to the viscoelasticity. The smaller arteries usually have
more muscular fibers than large arteries, and this may also be
explained by the need of a stronger damping factor of pulsations
right before the microcirculations.

Finally, the mean values of the ratio /NL=/ are for ascending
aorta, proximal descending aorta, medial descending aorta, distal
descending aorta, brachiocephalic trunk, carotid artery, and femo-
ral artery] equal to [�0.915, �0.999, �0.888, �0.975, �1.380,
0.524, �0.395]. This result allows to estimate the order of magni-
tude of the terms in _e, this is /0 _e and /NL _e2. Writing /0 _e þ /NL _e2

from Eq. (9) as /0 _eð1þ ð/NL=/0Þ _eÞ, we observe that both
/NL=/0 and _e are of the order 1 as long as _e is evaluated as

Fig. 3 Experimental data and the fitted nonlinear Kelvin–Voigt model. Parameter values
are in Table 1.

Fig. 4 Optimal unstressed radius R0, predicted and measured
for the seven arteries (ascending aorta, proximal descending
aorta, medial descending aorta, distal descending aorta, bra-
chiocephalic trunk, carotid artery, and femoral artery)

Journal of Biomechanical Engineering JANUARY 2017, Vol. 139 / 011003-5

Downloaded From: http://biomechanical.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/jbendy/935860/ on 02/10/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



ð1=10Þð2p=TÞ, where 1=10 is the amplitude of e, and T is the
imposed signal period.

3.2 Pulse Waves. We propose a 1D numerical model to put
forward the differences between an elastic and a viscoelastic wall
model. We set the nonlinear viscoelastic coefficient /NL to zero
for simplicity. Preliminary simulations show that the behavior is
similar and not particular shape or pattern was found. The nonlin-
ear term could play a role in a transient state in large networks.

We use the mean values coming from the optimization process.
Table 1 shows the parameters of the simulated arterial tree where
the length L of each artery is estimated from the data in literature
[15].

To model the terminal branches of the aorta, we added three
virtual arteries (VAs) at the ends of proximal descending, medial
descending, and distal descending aorta, respectively (see Fig. 1).
We determined the radius of the virtual arteries by Murray’s law
and we calculated their elasticity using a well-matched condition
which is essentially no reflections at the bifurcations.

At the inlet of the network (ascending aorta), the flow rate is a
cyclic half sinusoidal function in time with a period of 0.5 s, and
the peak value is Qmax ¼ 55cm3s�1. As long as the pressure waves
travel in the network, high-frequency components appear in the
signal due to reflexions and the branching points and because the
vessel segments are short, geometrically reducing the wavelength
of the pulse waves.

Figure 7 presents the simulated results of flow rate at two dif-
ferent representative locations: medial descending aorta (left) en
carotid artery (right) for peripheral arteries. The elastic wall model
shows high-frequency components, especially on the carotid
artery. With the viscoelastic wall model, we observe on the con-
trary that the high-frequency components of the waveform are
damped.

Previous numerical studies [3,4,6–8] have shown the significant
damping effect of wall viscosity on the pulse waves but limited by

Fig. 5 Mean values of the reference Young’s modulus E (left), and viscosity coefficient
/0 (right) with standard deviations among the group of sheep at the seven locations of
the arterial network

Fig. 6 Relaxation time /0=E with standard deviations at the
seven locations of the arterial network

Table 1 Parameters of the simulated arterial tree. The length L
is from literature and the thickness h is directly measured.
From the optimization process, we computed the Young’s mod-
ulus E, the viscosity coefficients /0, and the neutral radius R0.

Artery L (cm) R0 (cm) h (mm) E (MPa) /0 (kPa s)

AA 4 0.948 0.38 1.539 25.451
PD 10 0.880 0.91 0.842 12.746
MD 10 0.855 1.26 0.617 11.651
DD 15 0.828 1.10 1.427 24.514
BT 4 0.900 1.06 0.683 12.048
CA 15 0.406 0.78 4.142 77.082
FA 10 0.282 0.31 2.260 43.426
VA1 20 0.384 0.50 4.121 10.000
VA2 20 0.387 0.50 0.237 10.000
VA3 20 0.817 0.50 3.636 10.000

Fig. 7 Time series of flow rate at medial descending aorta (left) and carotid artery (right). The
viscoelastic model predicts a smoother waveform than the elastic model.
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the lack of exactitude of the values of the model parameters, espe-
cially for the viscoelasticity of the arterial network. In our numeri-
cal simulations, we use estimates of the viscoelasticity by
evaluating the pressure–diameter relationship from a dataset of
direct measurements on arterial network of sheep.

One of the major drawbacks of numerical simulation on
extended networks is the impossibility of computing the visco-
elastic coefficients directly from the experimental data. On the
contrary, the Young’s modulus is well known and a large litera-
ture exists. If we work with the hypothesis that the ratio between
the Young’s modulus is almost constant, we will be able to build
networks using accessible information.

4 Conclusion

We estimated the viscoelasticity of the arterial network of a
sheep by evaluating the pressure–diameter relationship with a
dataset of direct measurements. Good agreements between the
proposed nonlinear Kelvin–Voigt model and measurements were
achieved through a linear regression method. The obtained param-
eter values were used in a 1D blood flow model to simulate the
pulse waves in the arterial network. We have shown the damping
effect of the wall viscosity on the high-frequency waves, espe-
cially at the peripheral arteries. We explained it by the nearly con-
stant value of the viscoelastic relaxation time, defined by the ratio
between the viscosity coefficient and the Young’s modulus. The
optimal values of the ratio /NL=/ seem to be constant in five of
the seven arteries, we plan for a future work to study the impact of
the nonlinear coefficient /NL in large networks.
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