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We compare laboratory experiments, contact dynamics simulations and continuum
Navier–Stokes simulations with a µ(I) visco-plastic rheology, of the discharge of
granular media from a silo with a lateral orifice. We consider a rectangular silo with
an orifice of height D which spans the silo width W, and we observe two regimes. For
small enough aperture aspect ratio A=D/W, the Hagen–Beverloo relation is obtained.
For thin enough silos, A�Ac, we observe a second regime where the outlet velocity
varies with

√
W. This new regime is also obtained in the continuum simulations

when the friction on side walls is taken into account in a thickness-averaged version
of µ(I) + Navier–Stokes (in the spirit of Hele-Shaw flows). Moreover most of
the internal details of the flow field observed experimentally are reproduced when
considering this lateral friction. These two regimes are recovered experimentally for
a cylindrical silo with a lateral rectangular orifice of height D and arc length W.
The dependency of the flow rate on the particle diameter is found to be reasonably
described experimentally using two geometrical functions that depend respectively on
the number of beads through the two aperture dimensions. This is consistent with
two-dimensional discrete simulation results: at the outlet, the volume fraction and the
velocities depend on the particle diameter and this behaviour is correctly described by
those geometrical functions. A similar dependency is observed in the two-dimensional
continuum simulations.

Key words: complex fluids, granular media

1. Introduction
Discharge of granular media out of a silo through an aperture is a classical problem

with many practical and industrial applications. The main scaling relation, generally
known as the Hagen–Beverloo relation, predicts that the mass flow rate scales as (D−
kd)5/2 where D is the diameter of the aperture, d the grain size and k an empirical

† Email address for correspondence: pascale.aussillous@univ-amu.fr
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parameter. However detailed understanding of the physical processes leading to such a
scaling is still lacking (Janda, Zuriguel & Maza 2012; Perge et al. 2012). Numerical
simulations that explicitly solve granular media at the scale of the particle, such as
discrete element methods, can provide detailed and promising insight into the flow.
On the other hand, rheological models able to describe the flow at the scale of its
opening are still under development.

The Hagen–Beverloo scaling implies that, as long as the silo dimensions are
sufficiently larger than the aperture scale, the geometry of the silo and its walls are
irrelevant for the determination of the flow rate. However the conditions for which this
statement holds are still unclear: what are the criteria that bound this behaviour and
what are the control parameters that drive the flow beyond the classical regime? The
present study aims to study this departure for a specific case of industrial relevance.
Let us consider a non-classical geometrical configuration of the reservoir containing
the granular medium: a vertical and elongated cylindrical tube of diameter of the
order of centimetres with a lateral opening of similar size. This case is of particular
interest to understand conditions under which solid fuel particles inside a typical
pressurised-water nuclear reactor fuel rod, whose cladding would have failed under
hypothetical accidental conditions, could disperse out of this rod. The fuel particles
are generated from an initially cylindrical pellet (scale of centimetres) that can be
fragmented due to the irradiation process (burn up of the fuel) or accidental conditions
(large pressure and temperature variations inside the rod). The size distribution of the
fragments can be wide, the smallest size being of the order of 10 µm. In this study
the particles are composed of a population of spherical beads and are monodisperse
in diameter. Therefore, the probability of jamming and arch formation throughout
the silo is as low as possible due to the small contact area between neighbouring
particles. The discharge flow is therefore believed to overestimate that of a more
realistic granular material of the same average size. This granular reservoir has
two main peculiarities in regard to more classical hopper geometries. Firstly, for
a given cross-section of the flow, the perimeter over which wall friction occurs is
relatively large (by analogy, one could talk of a small hydraulic diameter) which
raises the question of the possible impact of wall friction on the flow rate. Secondly,
the aperture is vertical, an orientation that necessarily impacts the discharge for a
gravity-driven flow. Moreover, the number of beads through the aperture can vary
over a large range and is known to have a large effect at low values of flow rate.

The impact of the angle of the aperture surface (relative to horizontal) on the
discharge flow rate of a silo (a so-called tilted hopper) has been already studied
experimentally. For beads, (Sheldon & Durian 2010) or sand and sugar, Medina et al.
(2014) and Serrano et al. (2015) recovered a flow rate scaling as D5/2, as long as
clogging did not occur (which is only slightly affected by a vertical orientation of
the aperture). According to the authors, the success of the Hagen–Beverloo scaling
in this configuration indicates that one of the classical physical interpretations of the
relation in terms of free fall under an arch of aperture size is questionable. The shape
and size of the aperture were varied, but the size of the aperture was always small
compared to the silo width, which does not cover our range of interest. The wall
thickness of the silo can alter the discharge flow rate of tilted hoppers as soon as
it is sufficiently wide, according to Medina et al. (2014) and Serrano et al. (2015).
In these studies, the thickness was varied between zero and approximatively half the
aperture size, the latter always being an order of magnitude larger than the typical
grain size. In our case the typical cladding of a nuclear fuel rod is less than 1 mm
thick and the experimental facility has been designed to avoid any impact of wall
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thickness on the discharge rate. In those studies, the number of grains in the aperture
were varied solely by varying the aperture size, the grain size remaining constant.
Sheldon & Durian (2010) also underlined the possible influence of the hopper wall
as being an interesting line for future research.

As long as the granular bed height inside the silo is larger than its width, the
discharge flow rate does not depend on this height, a useful property used historically
for time measurement with sandglasses. This has some similarity to the so-called
Janssen effect that is observed for static packing of granular material confined by
vertical walls. During the discharge, relative motion of the granular material with
respect to these walls has to be considered and Bertho, Giorgiutti-Dauphiné & Hulin
(2003) have shown that the Janssen effect can be recovered in this configuration.
However, Aguirre et al. (2010) have shown that the Janssen effect (i.e. the pressure
level at the outlet) does not influence the granular discharge flow rate. The frictional
interaction of flowing granular material with walls and its possible influence on the
discharge flow rate for our geometry is therefore an open question.

For a small number of grains through the aperture, the flow rate depends on
grain size (the larger the size, the lower the flow rate). The Hagen–Beverloo relation
includes this effect. One of the classical interpretations of this d dependency is the
existence of an empty annulus that reduces the effective aperture area for the granular
flow. But recent studies of the velocity and density profiles of the granular flow over
horizontal apertures, e.g. Janda et al. (2012), indicate that the number of grains
through the aperture is strongly correlated to the dilatancy of the flow over the entire
flow cross-section (and not only over its periphery). There is therefore interest in
generalising this statement for other flow configurations where the Hagen–Beverloo
relation holds, like the case of vertical aperture of interest in our study.

We present an investigation of the discharge flow rate of a granular material of
spherical glass beads of variable size confined in a vertical elongated silo of variable
shape and size, with a lateral aperture also of variable shape and size, while neglecting
the effect of the wall thickness. The methods used are first introduced in § 2. The
main scaling relations that could be deduced from dimensional analysis (see § 3.1) are
recovered by the set of experiments performed (see § 3.2). It is then shown that the
influence of the silo geometry on the flow rate can be simulated thanks to a continuum
model for the granular flow with a frictional rheology described by a µ(I) constitutive
law (where the frictional coefficient µ depends on the inertial number I) and taking
into account the wall friction (§§ 3.3 and 3.4). The observed influence of the beads
size on the flow rate is analysed in terms of dilatancy over the aperture cross-section:
experimental results trends are supported by contact dynamics simulations of the flow
through a vertical aperture (see § 3.5).

2. Methods
2.1. Experiments

Two geometries of silos have been considered, either rectangular or cylindrical, as
shown in figure 1(a,b). The typical height H of the silos is larger than 500 mm, that
is always one order of magnitude larger than its lateral extent. The lateral extent of
the rectangular silo and the diameter of the cylindrical silo are fixed to 60 mm and
40 mm respectively. The aperture on the lateral side wall has a rectangular shape with
a height D and a horizontal length W. For rectangular silos, W is also the width of
the silo. For cylindrical silos, W is the orifice arc length. The whole set of geometrical
data considered in this study is given in table 1. The back wall of the rectangular silo
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FIGURE 1. (Colour online) Schematic apparatus of the silo. (a) Experimental rectangular
silo. (b) Experimental cylindrical silo. (c) Two-dimensional (2-D) discrete simulation. (d)
Continuum simulation. The horizontal red lines in (c) represent the horizontal boundaries
of the computational domain.

D W d

Exp. Rect. silo [2.7, 5.4, 10, 15 [3.5, 5, 10, 20 [124, 190, 375, 538
20, 25, 30, 35] mm 30, 40] mm 762, 1129, 1347] µm

Exp. Cyl. silo [5, 10, 20, 25, 30 [5, 10.1, 15.4, 20.9 [124, 190, 375, 538
35, 40, 41.5] mm 33.9, 62.8] mm 762, 1129, 1347] µm

Discrete 2-D sim. [6, 8, 10, 12 — [2, 6] mm
14, 16, 18, 20] d

Continuum [0.4375, 0.5, 0.5625, 0.625 — L/30, L/90
2-D sim. 0.6562, 0.6875, 0.75] L
Continuum [0.4375, 0.5, 0.5625, 0.5938 [0.16, 0.2, 0.25 L/30, L/90
pseudo-3-D sim. 0.625, 0.6562, 0.6875, 0.75] L 0.5, 1, 2] L

TABLE 1. Performed runs, the dimensions are defined in figure 1.

is made of a copper frame connected to ground to discharge static electricity. Front,
bottom and lateral walls of the rectangular silo, as well as cylindrical walls, are made
of a Plexiglas frame of millimetre width. The walls have been bevelled along the
aperture with an angle δ, as represented in figure 1. A preliminary study has shown
that the discharge flow rate was independent from this angle (and therefore that the
friction along the wall thickness was negligible) as long as δ < 60◦. The value δ= 30◦
has been chosen. The bottom of the aperture is at a vertical distance larger than 20
mm from the bottom of the silo (corresponding to at least 15 layers of beads): lower
values affect the discharge rate.

The non-cohesive spherical glass beads of density ρ = 2500 kg m−3 (Potter &
Ballotini Inc.) have been sifted between 0.9d and 1.1d, with d the mean diameter.
The initial (before the opening of the aperture) volume fraction of particles in
the silo φb has been estimated from the initial mass (of granular material before
filling) and from the initial height hp within the silo. During the discharge, the
grains flowing through the aperture are collected and their mass is measured with
an electronic balance (Mettler Toldeo 6002S) with an accuracy of 0.1 g and a
frequency of 20 Hz. We observed a steady-state discharge regime for all the
configurations explored. From the slope of the collected mass evolution during

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ite

 P
ar

is
 7

 D
id

er
ot

, o
n 

09
 N

ov
 2

01
7 

at
 1

1:
00

:3
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

7.
54

3

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.543


Discharge of granular media from silos with a lateral orifice 463

2

4

6

30

Q

10 20 400 0 2.5 5.0 7.5 10.0

t (s) t (s)

1000

2000

3000

4000(a) (b)

FIGURE 2. Temporal evolution of the instantaneous flow rate. (a) Experiment with
rectangular silo, d= 190 µm, D= 10 mm and W = 3.5 mm. (b) Two-dimensional discrete
simulation with d = 2 mm and D = 16 mm. The dashed lines represent the mean flow
rate Q.

this regime, one deduces the instantaneous mass flow rate, Qi, and the mean
flow rate, Q, as displayed in figure 2(a). The data are available as supplementary
material at https://doi.org/10.1017/jfm.2017.543. A Photron high-speed optical camera
FASTCAM APX RS has been used during rectangular silo discharge with a spatial
resolution of 256× 1024 pixels2, a frequency of acquisition of 250 Hz with a SIGMA
zoom 24–700 mm f2.8. Using the DPIVsoft software (Meunier & Leweke 2003) we
performed particle image velocimetry (PIV) of the granular flow and were able to
get streamlines and 2-D velocity fields at the front wall of the silo (as illustrated in
figure 7). Using an interface tracking algorithm, the instantaneous profile of the upper
layer of beads in the silo has also been recorded (as illustrated in figure 11).

2.2. Contact dynamics simulations
Following the work of Zhou, Ruyer & Aussillous (2015) we used the LMGC 90
software implementation of the contact dynamics method (Radjai & Dubois 2011)
to study the discharge of a silo with a lateral orifice. As discrete simulations in
three dimensions are too demanding given our computational resources, we only
performed 2-D simulations, which still take hours or even days. The two-dimensional
silo (figure 1c) consists of a rectangular reservoir, of width L, filled with a height
hp of particles of mean size d. There is a dispersion δd/d = 0.2 in the size of the
particles to avoid crystallisation. The wall thickness is imposed to be equal to the
diameter of the biggest particle in the silo, dM, with a circular shape at the edge of
the outlet. The outlet is located at the side, 3.5dM above the bottom, and has a length
D which was varied. The circular particles are treated as perfectly rigid and inelastic
and contact dissipation is modelled in terms of a friction coefficient that we set to
µp = 0.4 between particles, and µw = 0.5 between the particles and the wall. The
number of particles, reported in table 2, was chosen for each simulation to ensure that
the discharge flow rate is independent from the column height with 16D<H < 45D.
To ensure that the lateral walls do not influence the flow significantly, we impose a
width of the silo L= 3D. The granular column is prepared by the random deposition
of particles in the closed silo. The initial volume fraction of particles in the silo φb
has been measured in the central zone of the silo. Simulations are then run with a

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ite

 P
ar

is
 7

 D
id

er
ot

, o
n 

09
 N

ov
 2

01
7 

at
 1

1:
00

:3
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

7.
54

3

https://doi.org/10.1017/jfm.2017.543
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.543


464 Y. Zhou, P.-Y. Lagrée, S. Popinet, P. Ruyer and P. Aussillous

d= 2 mm d= 6 mm
D/d Np Nt Np Nt

6 5 000 30 000 4 000 30 600
8 7 500 20 000 5 400 22 000

10 10 000 20 000 8 400 20 000
12 11 290 16 000 12 000 20 000
14 13 500 15 000 14 000 16 000
16 15 500 10 000 16 000 9 200
18 20 000 5 200 18 000 8 000
20 20 000 6 000

TABLE 2. Parameters used in discrete simulations for given particle sizes (d= 2 mm
and d= 6 mm), where Np is the number of particles and Nt is the number of time steps.

time step of δt = 5 × 10−4 s and for a number of time steps Nt reported in table 2.
The computational domain is periodic in the vertical direction to keep a constant
number of particles. The horizontal boundaries of the computational domain are set
at a distance 10dM below, and 30dM to 70dM above the silo (see the red horizontal
lines in figure 1c).

Figure 2(b) shows a typical temporal evolution of the instantaneous flow rate. The
flow rate is found to rapidly reach a stationary value Q. The output data at the
aperture line are time averaged during this steady-state regime of discharge to deduce
the vertical profiles of velocity and particle volume fraction. Further details may be
found in Zhou et al. (2015).

2.3. Continuum numerical simulations
2.3.1. General equations

We turn to the continuum simulation method in the framework of the µ(I)-rheology,
a non-Newtonian rheology for granular flows proposed by Midi (2004) and Jop,
Forterre & Pouliquen (2006). The non-Newtonian incompressible Navier–Stokes
system reads:

∇ · u= 0, (2.1)

ρ

(
∂u
∂t
+ u · ∇u

)
=−∇p+∇ · (2ηD)+ ρg+ f w, (2.2)

where D is the strain-rate tensor (∇u+∇uT)/2 and f w is a volumetric force (discussed
in § 2.3.3). Following Jop, Forterre & Pouliquen (2005), the µ(I) viscosity is an
effective viscosity η depending both on the shear rate (the inertial number I being
proportional to the second invariant D2 of the strain-rate tensor D2=

√
DijDij) and the

local pressure. It reads:

η=
µ(I)
√

2D2
p, with I =

d
√

2D2
√

p/ρ
, and µ(I)=µs +

1µ

I0/I + 1
. (2.3a−c)

We take for the rheological constants µs = 0.4, 1µ = 0.28 and I0 = 0.4, but we do
not consider the variation of the volume fraction with I given by Jop et al. (2006),
as we suppose the flow incompressible. At the solid boundaries we impose a no-slip
condition. Pressure is zero at the orifice. In the original model pressure is zero at the
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FIGURE 3. (Colour online) Continuum simulation: temporal evolution of the dimensionless
instantaneous flow rate Q2D

i /(
√

gL3), as a function of the dimensionless time t/
√

L/g for
L= 90d and D= 0.5L (a) in two dimensions (b) in pseudo three dimensions with W =
22.5d. The dashed lines represent the mean flow rate Q2D/(

√
gL3).

free surface. To simplify the implementation of this boundary condition for a moving
free surface, we introduce a second passive fluid of small density and viscosity and
impose the zero pressure condition along the top boundary of the domain.

The Navier–Stokes simulations are performed with the free software Basilisk
(Popinet 2013–2016), which is the successor of Gerris (Popinet 2003, 2009) and uses
a similar finite-volume projection method. Two phases are present, a surrounding
gas and the granular fluid. The interface between these two phases is tracked with a
volume-of-fluid method. The viscosity and density of the surrounding gas are small,
so that the latter’s influence on the granular flow is minimised. The computational
cost is dominated by the solution of two Poisson–Helmholtz problems: a scalar
Poisson equation for the pressure necessary to enforce incompressibility and a vector
Poisson–Helmholtz equation for the time-implicit discretisation of the viscous term.
Note that in contrast with the formulation in Gerris Lagrée, Staron & Popinet (2011),
the fully coupled Poisson–Helmholtz problem for the velocity is solved (including
coupling terms between velocity components). The simulations in this paper are
in two dimensions. The CPU time of each simulation is always less than one
hour on a laptop computer. (The full code used is available and commented here:
http://basilisk.fr/sandbox/M1EMN/Exemples/granular_sandglass_muw.c.) We use a
regularisation technique to avoid the divergence of the viscosity when the shear
becomes too small by replacing η by min(η, ηmax) with ηmax = 100 a constant large
enough, as done successfully in Lagrée et al. (2011) and Staron, Lagrée & Popinet
(2012, 2014) where further details on the numerical method can be found.

2.3.2. Pure 2-D configuration
We consider a two-dimensional silo of width L, along the x axis, (gravity g is along

negative y axis) initially filled with a height hp = 3.9L of the visco-plastic fluid (see
figure 1d). The mesh is such that the width of the silo L is divided in 64 computation
cells which is a good balance between precision and computational time.

We first performed a series of simulations in the two-dimensional case, imposing
f w = 0. We varied the size of the aperture D and the particle diameters (see table 1).
In figure 3(a), the instantaneous flow rate obtained for a given run, Q2D

i , is found
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to be close to stationary during the discharge as in the experiments. As done in the
experiments, we measure the mean flow rate, Q2D, in the stationary regime (dashed
lines in the figure).

2.3.3. Averaged 2-D or pseudo-3-D configuration
To take into account the lateral friction on the walls and mimic 3-D effects,

we average the momentum equation across the width of the silo in the spirit of
Hele-Shaw flows, Jop et al. (2005) and Lagrée (2007). For pure Hele-Shaw flows
(with a Newtonian viscous fluid), the velocity is supposed to have a parabolic
profile in the transverse z direction. Here we suppose that the shape of the profile
is almost flat, which reflects the yield-stress nature of the granular fluid. Hence the
term appearing in front of the nonlinear derivative term associated with the effective
chosen profile is unity (see Lagrée 2007, for a discussion of the classical viscous
case and bibliography). The integration of the viscous force across the cell gives the
contribution of the friction stress at the wall, supposed to be a Coulomb force again:
−µwp on each wall. This wall friction acts in the direction of the velocity. This gives
the average additional force from the side walls in the momentum equation,

f w =−2
µwp
W

u
|u|
. (2.4)

From a Hele-Shaw point of view, the momentum (2.2) and incompressibility (2.1)
equations apply to a 2-D-averaged velocity field (u, v), with the extra source term in
the momentum (2.2) taking into account the wall friction (2.4). We chose the value
µw = 0.1 and varied the pseudo-width W, together with the aperture length D, and
the particle diameter d, as shown in table 1. Note that in the simulations 2Lµw/W is
the effective parameter. To compare with experiments and discrete dynamics (where
the natural scale is d), the geometrical parameters of the continuous simulations are
scaled by d (see labels of figures 7 and 11).

In these pseudo-3-D simulations, the different fields (velocity, pressure) are
interpreted as width averages. The instantaneous flow rate is again found to be
stationary during the discharge (figure 3b). We measured the mean flow rate Q2D

in the stationary regime (see the dashed lines in the figure) and we defined the
equivalent 3-D flow rate as Q=WQ2D.

Note that when the friction at the wall f w were too large, the continuum simulations
failed. We varied 2Lµw/W up to about 5.6, but were not able to reach larger values.
Further developments have to be done to overcome this problem, which could be
related to the numerical method. Nonetheless the range of W covered is sufficient to
compare qualitatively the results of the simulations with the experiments.

3. Effect of side walls on the silo discharge from a lateral orifice
The aim of this study is to clarify the role of the two dimensions of the outlet, the

height D and the width W as defined in figure 1, in the discharge of a silo from
a lateral aperture. In a first part we have simplified the problem by considering a
rectangular silo where the orifice spans the width of the silo. We first present the
experimental results. We then discuss the role of the side walls on the flow rate using
continuum simulations. Finally we extend the result to the cylindrical silo and we
discuss the role of the particle diameter.

3.1. Π theorem
The mass flow rate out of the silo, Q, depends on the density ρ, the gravity g and
the geometrical parameters: width L, orifice height D, thickness W, the filling height
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FIGURE 4. (Colour online) Experimental mass flow rate Q in the rectangular silo versus
the height of orifice D for two sizes of particles d. (a) W = 40 mm, the dashed
(respectively full) line represents the equation Q= c1D3/2 where c1 = 2.79 g s−1 mm−3/2

(respectively c1 = 2.65 g s−1 mm−3/2) is obtained using a least-squares fit. (b) W =
3.5 mm, the dashed (respectively full) line represents the equation Q = c2D where c2 =

0.58 g s−1 mm−1 (respectively c2=0.43 g s−1 mm−1) is obtained using a least-squares fit.

hp and the grain size d. Standard application of dimensional analysis or Π theorem
gives us the relation between non-dimensional numbers (eight quantities, three units,
which gives five non-dimensional numbers). The flux must scale like ρ`2√g` where
` is any of D, W, hp, d (and `2

√
` any combination of these lengths), and this flux

must also be a function of the geometric ratios e.g. D/W, d/D, hp/W, L/D (note that
if we use the mass of grains in the silo, this will give us an extra parameter with
dimension, which can be reduced to a new dimensional number, the packing fraction
φb). Classical experiments on silos show that the flux is independent from the width
L (if large enough), from the filling height hp (if large enough) and from the grain
size d (if small enough). We can therefore neglect the corresponding geometric ratios.
This then reduces Q/(ρ`2√g`) (where ` is any of D,W) to a function of the aperture
aspect ratio A=D/W only.

If W is large, the problem becomes bi-dimensional and D/W has no influence
anymore. The velocity then scales like

√
gD, the size of the aperture being scaled by

D, and the flux per transverse unit Q/W is ρD
√

gD. This gives the equivalent for
this rectangular geometry of the Hagen–Beverloo relation (Beverloo, Leniger & Van
de Velde 1961; see a translation of the original article of Hagen in Tighe & Sperl
2007)

Q∝WρφbD
√

gD. (3.1)

This scaling relation was recovered experimentally for a bottom aperture, spanning
the width of a rectangular silo, by severals authors (Choi, Kudrolli & Bazant 2005;
Benyamine et al. 2014). This behaviour is also observed in our experimental set-up
with a side aperture. It can be seen in figure 4(a) where the flow rate is plotted as
a function of the outlet length D for two particle diameters and for the larger silo
thickness W = 40 mm. For a given particle diameter the data are well described by
(3.1), see the full line and the dashed line in the figure. Therefore, following the Π
theorem, the relevant normalisation for the flow rate seems to be ρ

√
gW5, giving for

the former relationship
Q

ρφb

√
gW5
= cD

(
D
W

)3/2

. (3.2)
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FIGURE 5. (Colour online) Experiments in the rectangular silo for a given particle
diameter, d = 190 µm, and various silo widths, W. (a) Dimensionless mass flow rate
Q/(ρφb

√
gW5) as a function of D/W. The dashed line represents equation (3.2) with

cD = 0.51, the dashed-dotted line represents equation (3.3) with cW = 0.68 and the solid
line represents (3.4) with the same parameters. (b) Corresponding dimensionless discharge
velocity uD/

√
gd as a function of D/d. The dashed lines represent equation (3.5) with the

same parameters.

In the following section this scaling will be compared to the data obtained for the
rectangular silo.

3.2. Experimental results for the rectangular silo

Figure 5(a) represents the dimensionless flow rate QA = Q/(ρφb

√
gW5) versus the

aperture aspect ratio A = D/W, for various thicknesses W and lengths D of the
orifice and for a given diameter of particle d = 190 µm. In this representation the
data collapse as suggested by the Π theorem.

As expected, for large thicknesses (D/W � 1), QA follows a power law with an
exponent 3/2 corresponding to the Hagen–Beverloo relation (3.2), see the dashed line
in the figure. However, for large values of D/W (i.e. thin enough silos), an important
experimental result is that the dimensionless flow rate of particles depends linearly on
the aperture aspect ratio (see the dashed-dotted line in figure 5a):

Q

ρφb

√
gW5
= cW

D
W
. (3.3)

This can also be seen in figure 4(b) where the flow rate is plotted versus the aperture
length D for the smallest thickness explored W = 3.5 mm and for two particles
diameters d. For a given particle diameter the flow rate indeed exhibits a linear trend
Q ∝ D. The transition between these two regimes occurs around a specific aperture
ratio Ac ≈ 2. According to these two asymptotic regimes, we can thus propose a
fitting formula for the flow rate:

Q

ρφb

√
gW5
= cD

(
D
W

)3/2 1√
1+ (cD/cW)2D/W

. (3.4)

As illustrated in figure 5(a) (solid lines), this formula describes well the flow rate
dependency on aperture dimensions in any regime, with the fitting parameters cD =

0.51 and cW = 0.68.
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These two regimes can be interpreted in term of the (horizontal) discharge velocity
uD =Q/ρφbWD, which can be expressed using (3.4) as

uD = cD

√
gD

1√
1+ (cD/cW)2D/W

. (3.5)

This relation again describes the data very well whatever the silo width as can be
seen in figure 5(b) (dashed lines). The first regime corresponds to the classical Hagen–
Beverloo relation with a velocity which scales with the aperture length:

(D/W) <Ac, uD = cD

√
gD. (3.6)

Whereas in the second regime the discharge velocity scales with the aperture width:

(D/W) >Ac, uD = cW

√
gW. (3.7)

This gives a velocity scaling with the smallest of the two lengths W and D.
Historically the Hagen–Beverloo relation was explained with the concept of a ‘free-

fall arch’ located at the outlet, from which the particles fall freely. Several recent
experiments and numerical simulations question this hypothesis. From an experimental
point of view, Janda et al. (2012) and Rubio-Largo et al. (2015) showed that the
granular medium remains dense, with a small dilation, close to the outlet and that the
particles do not undergo a free fall. These observations were validated using discrete
simulation (Rubio-Largo et al. 2015). Moreover Navier–Stokes simulations, assuming
a continuum frictional rheology of the granular media, have been successfully used
to recover the Hagen–Beverloo scaling as in Staron et al. (2012, 2014), Dunatunga &
Kamrin (2015) and Davier & Bertails-Descoubes (2016), with very different numerical
methods.

The fact that we recover the Hagen–Beverloo relation with a vertical aperture
also tends to refute this concept, as pointed out by Sheldon & Durian (2010).
Based on these observations, we performed a continuum simulation, using our
Navier–Stokes solver with the granular rheology, to test whether we can reproduce at
least qualitatively the experimental behaviour.

3.3. Comparison with continuum numerical simulations
We first performed continuum numerical simulations in the 2-D case. To compare
with the experimental results we have plotted in figure 6(a) the dimensionless flow
rate QA = Q/(

√
gW5) versus the aperture aspect ratio A = D/W, using the same

series of data but rescaled several times with each width W used for the pseudo-3-D
simulations. In a pure bi-dimensional flow (red circles), the Navier–Stokes simulations
recover the Hagen–Beverloo scaling, equation (3.2) (dashed line). This suggests that
the µ(I) fluid rheology provides consistent results for the discharge of a silo with a
side-located aperture.

Then, to mimic the effects of the lateral walls from a Hele-Shaw point of view,
we added the friction term proportional to the pressure and aligned with the velocity,
equation (2.4), and we varied the pseudo-width W (see the different symbols in
figure 6a). We first notice that when the aperture ratio is small, similar to the
experimental case, the data of the pseudo-3-D simulations are superimposed onto
the 2-D simulations, and we recover the Hagen–Beverloo scaling, equation (3.2).
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(a) (b)

FIGURE 6. (Colour online) Continuum simulations results in two dimensions and in
pseudo three dimensions for various W with H=360d, L=90d and D=45d. (a) Flow rate
Q normalised by

√
gW5 as a function of D/W. The dashed line represents equation (3.2)

with cD = 0.76, the dashed-dotted line represents equation (3.3), with cW = 1.49, and the
solid line represents equation (3.4), with the same parameters. (b) Mean horizontal velocity
at the orifice u/

√
gd, as a function of D/d. The dashed lines represent equation (3.5), with

the same parameters.

When increasing the aperture ratio, we observe a departure from this scaling towards
a regime where QA ∝ A (see the dashed-dotted line). We can see that we do not
completely reach this regime due to the numerical upper limit of achievable values
for f w, however the data are well described by (3.4) with cD = 0.76 and cW = 1.49
(solid line).

Following the experimental section, the dimensionless mean horizontal velocity at
the outlet, ū/

√
gd, is plotted versus the dimensionless outlet length D/d in figure 6(b).

We observe the same trends as for the experimental data: in the regime controlled by
the outlet length D, the velocity tends toward the Hagen–Beverloo scaling ((3.6) and
2-D data) whereas when the ratio A increases, the velocity tends toward the regime
controlled by the silo width given by (3.7). Again each series of data for a given W
are fairly well described by (3.5) (dashed lines).

In the continuum simulation, the width of the silo appears only in the term
describing the side wall friction, which suggests that the second regime is controlled
by this term. It is interesting to note that in the regime dominated by the lateral
friction the flow rate per unit length at a given D is lower than in the first regime.
Even if we cannot fully reach the second regime (A � 1), we carry on with the
analysis and present some comparisons of the details of the internal fields at the limit
of the numerical model.

Figure 7 shows the velocity field and the streamlines of both the experimental and
the numerical runs for increasing silo width. The numerical velocity field (figure 7b)
is qualitatively very similar to the experimental velocity field (figure 7a). In both
configurations, the streamlines tend to vertical lines upward from the orifice at a
distance which decreases when W increases. On the same figures, we observe that
the flowing zone is found to be thinner when the lateral friction increases (i.e. when
W decreases). The limit of the stagnant zone for various outlet sizes D is plotted in
figure 8 both for the experiment (a), and the continuum simulation (b), in the regime
dominated by the lateral friction. Interestingly this position does not depend on D in
either cases, but depends strongly on W.
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W3.5 mm W10 mm W20 mm W40 mm W13.5d W45d W180d

W13.5d W45d W180dW3.5 mm W10 mm W20 mm W40 mm

(a) (b)

(c) (d )

FIGURE 7. (Colour online) Velocity field (a,b) and streamlines (c,d) for the experiment
(a,c) with D= 20 mm, d= 1129 µm and W=[3.5, 10, 20, 40] mm, and for the continuum
simulation (b,d) with D= 56.25d and W = [13.5d, 45d, 180d].

0 0.4 0.8 1.2 0 0.25 0.50 0.75 1.00

1.6

2.4

3.2

0.8

1.2

1.6

0.4

0.8

(a) (b)

FIGURE 8. (Colour online) Limit of the stagnant zone for various D: (a) experiments with
W = 5 mm and (b) continuum simulations with W = 17.4d.

We may explain these behaviours at small W by looking at the Navier–Stokes
equations. Let us consider a steady flow (implying that we neglect inertia). As the
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0.4 0.5 0.6 0.7 0.8 0 1.5 3.0 4.5 6.0
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FIGURE 9. (Colour online) Continuum simulation results: angle of inclination θ of the
central streamline at the orifice relative to vertical for various W (a) versus D/L, (b) versus
D/W. The dashed line represents equation (3.11) with γ1 = 0.56 and γ2 = 0.25.

friction at the walls increases when W decreases, the friction term (of magnitude
µwp/W) will be at most as large as gravity (ρg). The gradients of the stress tensor are
of order µsp/L. This order of magnitude may be rewritten as (µs/µw)(W/L)µwp/W. It
is clearly smaller than µwp/W as (µs/µw)=O(1) and (W/L)� 1. Hence, as the wall
friction increases to balance gravity, the momentum equation can be approximated
as:

0'
2µwp

W
O
(
µsW
µwL

)
e+ ρg−

2µwp
W

u
|u|
, (3.8)

where e is a unit vector in the main direction of the force resulting from internal
friction. The velocity u is aligned with gravity at first order, the more so as the
thickness decreases. This is noticeable in figure 7(c,d) where for small W the
streamlines are clearly more vertical than for larger W. To quantify this effect, we
have plotted the angle of inclination θ of the central streamline at the orifice relative
to the vertical in figure 9. If we note u0 the horizontal velocity at the centre of the
outlet and U0 the norm of the velocity at this position, we can write sin θ = u0/U0
(note that u0 is proportional to the previously defined discharge velocity uD, as
we will see in § A.2). We observe in figure 9(a) that this angle decreases slightly
with D and strongly with W as expected. More interestingly, if plotted versus D/W
(figure 9b), the data superimpose. In order to study the scaling relation of sin θ , we
then turn to the dependency of the norm of the velocity U0 and horizontal velocity
u0 on W and D. In figure 10 we have represented the norm of the velocity U0/

√
gd

on the central streamline at the orifice versus D/d for various W. Surprisingly we
can see that the norm of the velocity does not significantly depend on W. The data
can be described by

U0 = cU

√
gD, (3.9)

with cU = 1.2. This suggests that the kinetic energy always scales like ρgD whatever
the lateral friction. For the horizontal velocity u0, since the flow rate Q∝ u0WD, from
(3.4), we can write

u0 ∝
√

gD

√
1

1+ (cD/cW)2D/W
. (3.10)
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30 40 50 60 70
7.2

8.0

8.8

9.6

10.4

FIGURE 10. (Colour online) Continuum simulation results: norm of the velocity U0/
√

gd
on the central streamline at the orifice versus D/d for various W. The dashed line
represents equation (3.9) with cU = 1.2.

W3.5 mm W10 mm W20 mm W40 mm W13.5d W45d W180d

(a) (b)

FIGURE 11. (Colour online) Profiles of the top surface of granular materials for various
W at constant time steps: (a) experiments with D = 25 mm, d = 190 µm, time interval
1te= 0.5 s, (b) continuum simulation with D= 56.25d and time interval 1ts/

√
d/g= 9.5.

We can thus obtain

sin θ =
√

γ1

1+ γ2D/W
. (3.11)

Moreover we see that the data in figure 9(b) are well described by this formulation
with γ1 = 0.56 and γ2 = 0.25, with the fitting parameter γ2 = 0.25 corresponding to
(cD/cW)

2
= 0.26.

Finally figure 11 shows the time evolution of the top surface of granular material
for various silo widths for (a) the experiment and (b) the continuum simulation.
From experiments we can see that the surface of particles begins to tilt in the early
stage for a small width W, whereas it remains constant till the last stage for the
largest W. The tilted interface exhibits a slope starting from the wall opposite to
the outlet and reaches a flattened surface, or sometimes even a small bump, on
the wall containing the outlet. The slope of the interface is higher than the angle
of repose for W = 3.5 mm, and smaller than the angle of repose for W = 10 mm.
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10010–1 101

100

10–1

0.45x

FIGURE 12. (Colour online) Experimental results in the cylindrical silo: dimensionless
mass flow rate Q/(ρφb

√
gW5) as a function of the aperture aspect ratio D/W. The

dashed line represents equation (3.2) with cD= 0.49, and the dashed-dotted line represents
equation (3.3) with cW = 0.46.

In continuum simulations, we explored a smaller range of W, the smallest W case
W = 13.5d, is comparable to the case W = 20 mm in the experiments, but we clearly
recover the same trend: the larger the thickness W, the longer the interface remains
symmetrical. Note also that the no-slip conditions imposed at the wall are not exactly
the same as in the experiments, where a sliding velocity is observed. Nevertheless, the
same qualitative profiles are obtained. This behaviour is consistent with the previous
observation: for large W, the flow far from the outlet is symmetrical. For small W,
the lateral friction breaks this symmetry and localises the flow on the side of the
outlet, which inclines the surface in this direction.

3.4. Experimental results in the cylindrical silo
The previous results were given for a simplified geometry, with a rectangular silo
and an outlet which spans the width of the silo. Experimentally we also performed
measurements of the flow rate for a cylindrical silo, with an outlet located at its side
as schematised in figure 1(b). This situation generates a flow in a fully 3-D geometry,
and is of practical interest. To characterise the different roles played by the length D
and the width W of the outlet, we have plotted in figure 12 the dimensionless mass
flow rate Q/(ρφb

√
gW5) as a function of the aperture aspect ratio D/W, as done in

the rectangular configuration.
As suggested by the Π theorem in § 3.1 the data superimpose in this representation.

Moreover, we observe the same behaviours as in rectangular silos. For large W, the
flow rate follows the Hagen–Beverloo relation ((3.2), dashed line in the figure) and
for small W, the flow rate follows (3.3) (dashed-dotted line in the figure) suggesting
that the flow is dominated by the lateral friction. Over the whole range, the data are
well correlated by (3.4) (solid line in the figure) with cD = 0.49 and cW = 0.46. The
fitting parameter cw is found to be slightly smaller than that in the rectangular silo.
This suggests that the dissipation is higher in the cylinder, and more specifically in the
regime controlled by the lateral friction where we can assume that the friction with a
smooth lateral wall is smaller than that with an erodible granular media. Consequently,
the transition between the two regimes occurs for a smaller aperture aspect
ratio Ac ≈ 1.
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FIGURE 13. (Colour online) Mass flow rate Q as a function of D/W for various d for
(a,c) rectangular silos and (b,d) cylindrical silos, normalised in (a,b) by (ρφb

√
gW5) and

in (c,d) by ρφb

√
gW5GD(D/d)GW(W/d) (see (3.12)) with the fitting parameters βD=βW =

0.1, αD = 1 and αW = 0.46 (see appendix A). The dashed and dashed-dotted lines are the
same as in figures 5 and 12.

3.5. Dependency of the flow rate on the particle diameter
The previous results are shown for a given small particle diameter d = 190 µm. In
this section we focus on the influence of the particle diameter. We have shown that
the flow rate of discharge of a silo with a lateral outlet depends on the aperture
aspect ratio A=D/W, and exhibits two regimes of flow described by (3.2) for small
A and by (3.3) for large A. When the particle diameter is varied, these scaling
relations seem to remain valid, as can been seen in figure 4(a,b) where the flow rate
is plotted versus D for two particle diameters, d = 190 µm and d = 1129 µm, in
the two regimes. In each regime the same scaling is found for the two grain sizes,
however we observe a shift of these relations towards smaller flow rates when the
particle diameter increases. This behaviour can be seen in figure 13(a,c) where the
dimensionless flow rate QA=Q/ρφb

√
gW5 is plotted as a function of D/W for both

the rectangular silos and the cylindrical silo for all the batch of particles we used.
The two regimes are recovered whatever the particle diameter, see the dashed line
and the dashed-dotted line. However there is a significant scattering of the data above
the relation fitted for the smallest particle size d= 190 µm.

To model the dependency of the flow rate on the particle diameter, we follow the
work of Janda et al. (2012). In this framework we suppose that the particle size has
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to be accounted for through the number of beads in the aperture via a geometrical
function, significant when this number is small. We take the two dimensions of
the aperture into account and thus we suppose that the flow rate depends on two
geometrical functions based on the number of beads in the aperture length D/d and
in the aperture width W/d. The details of this approach and its validation using a 2-D
discrete numerical simulation are given in the appendix. This yields the following
expression for the flow rate:

Q=C′lρφbGD

(
D
d

)
GW

(
W
d

)
F
(

D
W

)
WD
√

gD, (3.12)

with GD(D/d) = [1 − αDe−βD(D/d)], GW(W/d) = [1 − αWe−βW (W/d)] and F(D/W) =
√

1/[1+ γ2D/W].
Figure 13 shows the normalised flow rate using the geometrical functions,

Q/[ρφbGD(D/d)GW(W/d)
√

gW5], as a function of the aperture aspect ratio D/W
for the whole range of particle diameters for (c) rectangular silos and (d) cylindrical
silos. In this representation the data collapse and can be well adjusted by the same
asymptotic relations in two regimes as in figures 5 and 12.

We propose additional analysis in the appendix. The 2-D discrete numerical
simulation shows that the velocity at the outlet may follow the same geometrical
relation than the volume fraction. As the continuum simulation described correctly
most of the observations on the discharge of a silo with a lateral aperture for a given
particle diameter we wonder if the continuum simulation is able to recover partially
the dependency on the particle size of the flow rate. Indeed, the µ(I) rheology
contains the information on the particle diameter in the definition of the inertial
number I = d

√
2D2/(

√
p/ρ). Even though a dependency on the particle diameter

is observed in the 2-D case, the profiles present a larger asymmetry than the one
predicted by the 2-D discrete simulations. This can be due to the fact that the volume
fraction has been assumed to be uniform, whereas the complete µ(I)-rheology, that
includes a φ(I) relation, would predict a dilation of the granular medium when it is
sheared.

4. Conclusion and perspectives
Using experiments, 2-D discrete simulations and continuum simulations we have

studied the discharge of a silo with a lateral orifice. Experimentally we have observed
two regimes of flow, either in a rectangular silo with an orifice spanning the thickness
W of the silo or in a cylindrical silo. The first regime, observed for small aperture
aspect ratios A = D/W, corresponds to the well-known Hagen–Beverloo regime
with a flow rate Q ∝ WD3/2. The second regime, observed for large aperture aspect
ratios A > Ac, follows Q ∝ W3/2D. We have proposed an empirical relation which
predicts the flow rate depending on the aperture dimensions and which recovers both
regimes. The continuum simulation, using the frictional µ(I) rheology and solved
in two dimensions with an additional force to take into account the wall friction in
a Hele-Shaw spirit, is found to describe qualitatively these two regimes and most
of the internal details of the flow field observed experimentally in the rectangular
silo, notably the fact that the velocity field is aligned with gravity when lateral wall
friction is large. The dependency on the silo width suggests that the large A regime
is dominated by the lateral friction, and it seems reasonable to think that the small
A regime is controlled by the internal friction.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ite

 P
ar

is
 7

 D
id

er
ot

, o
n 

09
 N

ov
 2

01
7 

at
 1

1:
00

:3
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

7.
54

3

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.543


Discharge of granular media from silos with a lateral orifice 477

We have found that the particle diameter matters only when the number of
beads through the smallest orifice dimension is sufficiently small. The flow rate
dependency on this parameter can be reasonably described using two geometrical
functions G`(`/d) = 1 − αe−β`/d based respectively on W and on D. A large part
of this behaviour is well reproduced using 2-D discrete simulations. Interestingly a
dependency on the particle diameter is also observed in the 2-D continuum simulation
but it predicts different velocity profiles which can be due to the fact that in the
continuum simulation the volume fraction does not vary.

In future work these promising observations need to be confirmed by conducting
systematic 3-D simulations. Preliminary 3-D continuum simulation results indicate
that the Hagen–Beverloo relation is obtained for a silo with bottom aperture. Extra
developments have to be done to include realistic boundary conditions to represent
particle–wall friction as well as the volume fraction variation φ(I).
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Appendix A. Additional analysis
In this section we focus on the influence of the particle diameter. We first present

an analysis of the experimental results based on the work of Janda et al. (2012). We
then discuss the role of the particle diameter on the flow close to the outlet using
2-D contact dynamics simulations. Finally, we compare these results to the continuum
numerical simulations.

A.1. Experimental results and discussion
To take the dependency on the particle diameter into account, as observed in
figure 13(a,b), we suppose that the observations made experimentally by Janda
et al. (2012), and numerically by Zhou et al. (2015) for a two-dimensional silo with
an orifice placed at the bottom of the silo remain valid in our geometry. We make
the following assumptions:

(i) We suppose that the horizontal velocity profile together with the density profile
at the outlet are self-similar when varying the length of the hole R=D/2. The flow
rate is then given by

Q= ρW
∫∫ R

−R
φ(y)u(y) dy= cρWDφ̄ū, (A 1)

where c is a constant of integration and φ̄ and ū represent the mean density and the
mean horizontal velocity at the outlet respectively. The flow rate is then determined
by these two quantities.
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(ii) Following (3.5), the mean horizontal velocity tends asymptotically as d
decreases towards

ξv
√

gD

√
1

1+ γ2D/W
= ξv

√
gDF(D/W), (A 2)

where F(D/W)=
√

1/[1+ γ2D/W], which corresponds to the value for infinitely small
particles.

(iii) The granular medium tends to dilate at the outlet to maintain the flow. However
for a large number of beads in the aperture, we suppose that it tends towards a fraction
of the bulk density asymptotically, ξφφb, with ξφ a constant.

(iv) We suppose that both the mean density and the mean velocity depend on
the number of beads in the aperture via a geometrical function. To take the two
dimensions of the aperture into account, we suppose that the flow rate depends on
two geometrical functions based on the number of beads in the aperture length D/d,
and in the aperture width W/d. We assume that this geometrical function can be
fitted by an exponential saturation

Q=C′lρφbGD

(
D
d

)
GW

(
W
d

)
F
(

D
W

)
WD
√

gD, (A 3)

with GD(D/d)= [1− αDe−βD(D/d)] and GW(W/d)= [1− αWe−βW (W/d)].
To test these hypotheses, we isolated each geometrical function by plotting the

dimensionless flow rate Q/(ρφbWDF(D/W)
√

gD) as a function of the number of
beads in the typical length `/d for the two regimes (i) ` = D and (ii) ` = W. In
figure 14(a,c) all the data for the rectangular silo are plotted and no clear trend
can be observed. However, when considering each regime separately, as done in
figure 14(b,d), i.e. by selecting the experiments corresponding to the first regime
`=D (and the second regime `=W), taking D< 1.8W (respectively D> 2.2W), and
considering a large number of beads in the second direction of the orifice W > 10d
(respectively D> 20d), the remaining data superimpose and can be well adjusted by
an exponential saturation with the fitting parameters αD = 1, βD = 0.1, αW = 0.46 and
βW = 0.1 (see the black lines in the figures). These parameters are of the same order
of magnitude as that of the literature for both geometrical functions. It is interesting to
note that the same β is recovered in the two directions. The same procedure has been
followed for the cylindrical silo. Again, we find that both geometrical functions can
be well adjusted by an exponential saturation, with the fitting parameters αD = 0.59,
βD = 0.08, αW = 0.61, and βW = 0.08, in agreement with the literature.

As shown in figure 13(c,d) it seems that the geometrical functions built on the
two dimensions of the aperture correctly describe the dependency of the flow rate on
the particle diameter. To further test some of the assumptions, we performed a 2-D
discrete simulation of the discharge flow of a silo from a lateral orifice that allows to
study the effective velocity and volume fraction profiles.

A.2. Discrete simulations in two dimensions
Discrete particle simulations are described in § 2.2. In this two-dimensional
configuration, following the same methodology as for the bottom orifice done
experimentally by Janda et al. (2012) and with a 2-D discrete simulation by Zhou
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FIGURE 14. (Colour online) Experimental results obtained with rectangular silos:
dimensionless flow rate Q/(ρφbWDF(D/W)

√
gD) versus (a,b) D/d and (c,d) W/d.

Selected experimental runs: (a,c) all the runs, (b) D < 1.8W and W > 10d, (d) D >
2.2W and D > 20d. The full lines represent the geometrical functions GD(D/d) = [1 −
αDe−βD(D/d)] and GW(W/d) = [1 − αWe−βW (W/d)] with αD = 1, βD = 0.1, αW = 0.46 and
βW = 0.1 respectively.

et al. (2015), we are able to test most of the hypotheses (i) to (iv) made in the
previous section for the Hagen–Beverloo regime.

(i) We have first assumed that at the lateral outlet, the horizontal velocity profile
together with the density profile are self-similar when varying the length of the hole
R=D/2. Figure 15(a–c) shows the vertical profile of the volume fraction, φ, of the
horizontal velocity, u, and of the vertical velocity, v, for various aperture lengths, D,
for a given particle diameter d=2 mm. The vertical axis, y, is oriented upward and its
origin is located at the middle of the outlet. Similar to the case of an aperture placed
at the bottom of the silo, the volume fraction profile is found to be self-similar when
normalised by the mean volume fraction, φ̄ as shown in figure 15(d). The self-similar
profile is slightly dissymmetrical, the top of the profile exhibiting a slightly higher
dilatancy at the edge than at the bottom. Nevertheless, it can be well fitted by

φ(y)= φ̄γ (νφ)
[

1−
( y

R

)2
]νφ

, (A 4)

where γ (ν) = (2/
√

π)Γ (ν + 3/2)/Γ (ν + 1). The fitting parameter, νφ = 0.21 ± 0.01,
obtained using the least squares method, is similar to that obtained for a bottom
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FIGURE 15. (Colour online) (a–f ) Flow of particles of diameter of d= 2 mm for different
outlet diameters. Vertical profiles of (a) the volume fraction, φ, (b) the horizontal velocity,
u, and (c) the vertical velocity, v, versus the vertical position, y. Vertical profiles of (d)
the volume fraction normalised by the mean volume fraction, φ̄, (e) the horizontal velocity
made dimensionless by the mean horizontal velocity, ū, and ( f ) the vertical velocity made
dimensionless by the mean vertical velocity, v̄, versus the position normalised by the outlet
radius (R=D/2). The full lines represent in (d) equation (A 4) with νφ = 0.21 and in (e)
equation (A 5) with νv = 0.38 respectively.

aperture νφ = 0.19 ± 0.01 by Zhou et al. (2015). In the same way, once normalised
by the mean horizontal velocity, ū, the horizontal velocity profile is found to be
self-similar and well adjusted by

u(y)= ūγ (νv)
[

1−
( y

R

)2
]νv
, (A 5)

with the fitting parameter, νv = 0.38 ± 0.01 obtained using the least-squares method.
This parameter is identical to that obtained for the vertical velocity by Zhou et al.
(2015) in the silo with a bottom aperture. Finally, the horizontal velocity profile is also
found to be self-similar. The self-similar profile is clearly non-symmetric, exhibiting
mainly a linear profile on the main part of outlet with a maximum close to the top
where the velocity decreases toward the edge. The first hypothesis is hence fulfilled
and the flow rate is given by Q= cρDφ̄ū, where c is a constant.

To test the hypotheses (ii)–(iv), we plotted the mean volume fraction, φ̄ and the
mean horizontal and vertical velocities, ū and v̄, as a function of the aperture length,
D, for two particles diameters, d= 2 mm (E) and d= 6 mm (A), as seen in figure 16
(a–c). Clearly, all the variables depend on the particle diameters. In figure 16(d–f ),
the same variables are plotted, normalised by the assumed asymptotic behaviour,
as a function of the number of beads in the aperture. The data collapse on single
curves, as observed for the silo with a bottom aperture, which are well adjusted by
an exponential saturation as expected,

φ̄ = ξφφb
[
1− αφe−β(D/d)

]
= ξφφbGφ

(
D
d

)
, (A 6)
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FIGURE 16. (a) Mean volume fraction at the outlet, φ̄, (b) mean horizontal velocity,
ū, and (c) mean vertical velocity, v̄, versus the diameter apertures D, for two particle
diameters. (d) Mean volume fraction at the outlet, φ̄, normalised by the bulk volume
fraction, φb, (e) mean horizontal velocity, ū, made dimensionless by

√
gd and ( f ) mean

vertical velocity, v̄, made dimensionless by
√

gd, versus the number of beads in the
apertures D/d, for two particle diameters. The full line represent in (d) equation (A 6)
with ξφ = 0.87, αφ = 0.44 and β = 0.15, in (e) equation (A 7) with ξu= 1.2, αu= 0.98 and
β = 0.15 and in ( f ) equation (A 8) with ξv = 0.45, αv = 0.78 and β = 0.15, respectively.

ū= ξu

√
gD
[
1− αue−β(D/d)

]
= ξu

√
gDGu

(
D
d

)
, (A 7)

v̄ = ξv
√

gD
[
1− αve−β(D/d)

]
= ξv

√
gDGv

(
D
d

)
, (A 8)

with the fitting parameters β = 0.15, ξφ = 0.87, αφ = 0.44, ξu = 1.2, αu = 0.98, ξv =
0.45, αv= 0.78, obtained using the least-squares method. Once again, these parameters
closely match those obtained by Zhou et al. (2015) for the bottom configuration. The
same β, fitted on the volume fraction, is found to correctly adjust the mean velocity
variations. This suggests that the same phenomenon is involved in the variation at
the outlet of the volume fraction and of the velocities with respect to the particle
size. These equations also suggest that in the Hagen–Beverloo regime, the angle of
inclination of the streamline at the outlet, defined as tan(θ)= ū/v̄ has low dependency
on the outlet size D through a geometrical function Gu/Gv. Finally the flow rate is
given by

Q=C′lρφb

√
gDGφ

(
D
d

)
Gu

(
D
d

)
≈C′lρφb

√
gDG

(
D
d

)
, (A 9)

where C′l = ξφξvγ (νv)γ (νφ)
∫ 1

0 (1− t2) dt= 1.08 and G= [1− αe−β(D/d)] with α= αφ +
αu. In the range of number of beads in the aperture (D/d> 6), the approximation of
G≈GuGφ leads to less than 5 % of error. This equation adjusts the data well with the
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FIGURE 17. Flow rate made dimensionless by
√

gd3 versus the number of beads in the
aperture D/d for the 2-D case, (a) discrete simulation, (b) continuum simulation. The full
lines represent equation (A 9) with (a) C′l = 1.08 and (b) C′l = 0.78.

fitting parameter C′l = 1.08, as seen in figure 17, and is similar to (A 3) considering
W =∞.

Using 2-D discrete simulations we have shown that the dependence of the flow rate
on the particle size can be modelled using a geometrical function which depends only
on the number of beads in the aperture. This geometrical function is seen to influence
both the volume fraction at the outlet, bigger particles leading to a dilation, and the
velocity, bigger particles leading to slower flow. It would be interesting in future work
to conduct 3-D discrete simulations to see if we recover the same geometrical function
for the number of beads in the silo width, in the regime dominated by the lateral
friction, as suggested by the experimental results.

A.3. Continuum simulation
We have seen in § 3 that the continuum simulation described correctly most of the
observations on the discharge of a silo with a lateral aperture, for various D and
various W but for a given particle diameter. However the µ(I) rheology contains
the information on the particle diameter in the definition of the inertial number
I = d

√
2D2/(

√
p/ρ). In this section we wonder if the continuum simulation is able

to recover partially the dependency on the particle size of the flow rate. Indeed, even
if this simulation considers a constant volume fraction, the 2-D discrete simulations
have shown that the velocity at the outlet may follow the same geometrical relation
than the volume fraction.

Figure 18 presents the vertical profile at the outlet of the horizontal velocity, the
vertical velocity and the norm of the velocity, for a given particle diameter in the 2-D
case. Interestingly, when normalised by the mean value, these profiles are again found
to be self-similar. However, contrary to the discrete simulations, the horizontal velocity
profile exhibits a strong asymmetry between the top and the bottom of the outlet. As
a consequence, the adjustment by the (A 5) with the fitting parameter νu= 0.31± 0.01
obtained using least-squares method is not satisfactory. However the vertical velocity
profile resembles the discrete simulation result. Interestingly, the profile of the norm
of the velocity is found to remain symmetrical and is well adjusted by (A 5) with
νv = 0.31.
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FIGURE 18. (Colour online) Two-dimensional continuum simulation (a,d) horizontal
velocity (b,e) vertical velocity and (c, f ) norm of the velocity, (a–c) normalised by

√
gd

versus y/d and (d–f ) normalised by the mean value versus y/R, the full lines in (d, f )
represent equation (A 5) with νv = 0.31.

Figure 19(a–c) shows the mean value of the horizontal and vertical velocities and
of the norm of the velocity, normalised by

√
gL versus the dimensionless outlet

diameter D/d for two particles diameters d= L/30 and d= L/90. Clearly these mean
velocities depend on the outlet size D, but also on the particle diameter d. Following
the discrete simulation study we have plotted in figure 19(d–f ) these velocities made
dimensionless with

√
gD versus D/d. The data corresponding to the mean horizontal

velocity (respectively to the mean norm) are reasonably well adjusted by (A 7) with
the fitting parameters β = 0.05, ξu = 0.78 and αu = 0.25 (respectively ξU = 1.06 and
αU= 0.28). The value of β is sensibly lower than the value obtained experimentally or
in the discrete simulation. However the same tendency than observed in the discrete
simulation is recovered. This is not the case for the mean vertical velocity for which
the data do not follow the asymptotic behaviour in

√
gD. However this velocity is

not involved in the flow rate and the (A 9) using the fitting parameters predicts well
the flow rate, see the full line in figure 17(b).

Finally we have done the same analysis in the pseudo-3-D continuum simulation,
in the regime controlled by the side wall friction. Figure 20(a) presents the profile
of the horizontal velocity at the outlet for various D. In this regime, the profiles
present the same asymmetric shape than in the Hagen–Beverloo profile, nevertheless
the velocity does not seem to depend on D anymore. Figure 20(b) shows the mean
horizontal velocity, normalised by

√
gW versus W/d for data corresponding to the

second regime, D/W > 3. Clearly we do not observe the geometrical function as
suggested by the experimental results. This is not surprising as the flow is not solved
throughout the silo width, thus the I number is not expected to play any role in this
direction.

To conclude this section, we found that a dependency on the particle diameter is
observed in the 2-D continuum simulation, that the velocity profiles are self-similar
when varying the outlet length, and that the mean horizontal velocity tends
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FIGURE 19. Two-dimensional continuum simulation: (a,d) horizontal velocity, (b,e)
vertical velocity and (c, f ) norm of the velocity normalised in (a–c) by

√
gL versus D/L

and normalised in (d–f ) by
√

gD versus D/d for two particles diameters. The full lines in
(d–f ) represent equation (A 7) with the fitting parameters β = 0.05, ξu = 0.78, αu = 0.25,
ξv = 0.68, αv = 0.31, ξU = 1.06 and αU = 0.28 obtained using the least-squares method.
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FIGURE 20. (Colour online) Pseudo-3-D continuum simulation. (a) Horizontal velocity
normalised by

√
gd versus y/d at the outlet for different D and W = 13.5d; (b) mean

horizontal velocity normalised by
√

gW for D/W > 3.

asymptotically towards
√

gD, contrary to the mean vertical velocity. This behaviour is
well described by a geometrical function given by (A 7). However the profiles present
a larger asymmetry than the one predicted by the 2-D discrete simulations. This can
be due to the fact that the volume fraction has been assumed to be uniform, whereas
the complete µ(I)-rheology, that includes a φ(I) relation, would predict a dilation of
a granular media when it is sheared. The dependency on the particle diameter for
the regime controlled by the side walls is not correctly described by the pseudo-3-D
continuum simulation which does not solve the flow in the silo width direction.
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