
PHYSICAL REVIEW E 111, 055401 (2025)

Exploring the gravity-driven failure of a cohesive granular column

Fanshuo Ma
Sorbonne Université, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005 Paris, France

Pierre-Yves Lagrée and Lydie Staron
Sorbonne Université, CNRS - UMR 7190, Institut Jean Le Rond d’Alembert, F-75005 Paris, France

and Sorbonne Université, CNRS, Institut Jean Le Rond d’Alembert, F-75005 Paris, France

(Received 4 November 2024; accepted 3 April 2025; published 8 May 2025)

Discrete two-dimensional simulations of cohesive granular collapse are carried out with a focus on the failure
process. The existence of a reliable criterion to characterize the failure orientation is discussed. A criterion
based on the distribution of the grains’ cumulative displacement over the duration of the failure is selected.
Questioning its reliability, it appears that a criterion based on grain displacement is fragile in the face of variations
of system geometry and stability. Nevertheless, the measure of failure plane orientation appears fairly robust
against moderate variations of the displacement criterion and against fluctuations of cohesive states close to the
stability limit. This suggests that the measure of the failure orientation at the stability limit is reliable information.
However, this work stresses the elusive nature of cohesive granular failure and the important role of fluctuations
in granular matter in general.
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I. INTRODUCTION

The complexity of granular material is probably best sum-
marized in their ability to behave both like a solid or a liquid
and to coexist as either static or flowing within a distance of a
few grain diameters [1,2]. This phenomenology has provided
engineers and researchers with a long-lasting issue, that of the
formation of shear bands: their width, their orientation, the
force distribution within, among other questions [3–5].

Most commonly, shear bands are associated with triaxial
shear tests. These tests are commonly used to derive the me-
chanical properties of soil samples and predict the behavior
of soils on a larger scale [6,7]. But shear-banding is also an
inexhaustible source of findings in the study of model granular
matter [8–12]. The addition of adhesion at contacts is an
occasion for further questions [13,14].

Be it in a triaxial test or in a Jenike shear cell, the onset
of a shear band, namely, the failure of the sample, occurs in a
controlled environment [15]. Either the volume, the stress, or
the strain is monitored, and the onset of failure may be made
visible by the evolution of the stress-strain curve.

However, granular failures do not happen only in labs and
controlled environments. They may be unwanted occurrences
in a manufacturing line, or a roadside collapsing rocky bank,
or any breaking under gravity of a cohesive agglomerate, as
can be amply found around us.

Yet, the gravity-driven failure of cohesive granular systems
has attracted a somewhat moderate interest, though opening
interesting research alleys. In Ref. [16], Restagno et al. (2004)
develop a simple model based on cohesion and friction and
show how the maximum angle of stability, heap height, and
cohesion are related; the work suggests how a thorough study
of the failure plane localization would provide information on
the properties of adhesion forces.

In Ref. [17], Gans et al. (2023) investigate experimentally
the failure of cohesive granular columns, measuring failure
angles and stressing the difficulty of the characterization of
a failure mode. In Ref. [18], Staron et al. (2023) investigate
numerically the failure of cohesive columns and attempt to
measure the orientation of the failure plane. They propose that
approaching incipient failure would allow for a measure of the
internal friction properties of the material. They also underline
the difficulty of the measure and the dispersion of the data.

In this contribution, we apply two-dimensional (2D) dis-
crete simulations to investigate thoroughly the failure of
cohesive granular columns. We try to disentangle the effect
of system geometry and contact adhesion in the signature of
the failure. In particular, we question the distribution of grain
displacement, and its interpretation in terms of providing a
reliable criterion to identify failure onset. A displacement cri-
terion based on the discrimination of diffuse bulk motion and
failure-induced motion is first proposed. Exploring different
system sizes, the robustness of the criterion can be discussed
in the light of the influence of the geometry. Approaching
incipient failures is then undertaken, which provides further
discussion on the robustness of the displacement criterion
against contact adhesion and system stability.

The numerical method and simulation settings are pre-
sented in Sec. II. The grain displacement distribution and
its interpretation are presented in Sec. III, together with a
tentative chronology of the failure. The influence of the col-
umn height is discussed in Sec. IV. Section V explores the
approach of the stability limit. Finally, Sec. VI discusses the
results, concluding on the elusive nature of cohesive gravity-
driven failure in granular systems, yet on the robustness of the
measure of failure characteristics. It also stresses the need for
a comprehensive description of the stability limit in terms of
the system’s state.
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FIG. 1. Signorini’s condition supplemented with a contact adhe-
sive threshold Fc giving the domain of nonzero contact normal force
N depending on the inter-grain gap δ (left), and Amontons-Coulomb
law relating tangential force T to contact slip velocity v (right).

II. NUMERICAL FAILURES

A. Simulation method and protocol

1. The contact dynamics algorithm

The columns are simulated with a contact dynamics (CD)
algorithm applied in 2D, modeling rigid disks interacting
through adhesive contacts [18–20]. The disks or grains have
a diameter randomly chosen in the interval [4 × 10−3 m; 6 ×
10−3 m], and a mean diameter d = 5 × 10−3 m. This slight
size dispersion prevents crystalline ordering.

Contacts are made adhesive through the introduction of a
negative force threshold −Fc in Signorini’s contact graph (see
Fig. 1). This threshold specifies the acceptable values of the
contact normal force N . Either the distance δ at contact is
positive, i.e., corresponding to a gap, and the contact force
N is zero, or δ � 0, implying a contact, and N can take any
values such that N � −Fc is compatible with the equations of
dynamics. The adhesive forces are short-ranged, meaning that
a cohesive contact is lost as soon as it opens. In other words,
we do not assume the existence of a debonding or rupture
distance at contact for cohesion to be lost, as is the case for
capillary bonds [14,21].

In addition, an Amontons-Coulomb friction law is imple-
mented. The contact friction is set by the microscopic friction
coefficient μm. The tangential force threshold is supplemented
with the adhesive force threshold: sliding is permitted
when the tangential force has reached μm(N + Fc). The
microscopic coefficient of friction is not varied: μm = 0.2.
The grains interact through inelastic collisions, with a
coefficient of restitution e = 0. Their volumetric density is
ρ = 0.1 kg m−2.

The adhesive force threshold Fc is given in number of
grains mean weight through the introduction of a granular
Bond number Bog [22,23]:

Fc = Bogmi jg, (1)

with mi j = 2( 1
mi

+ 1
mj

)−1, and i and j are the two grains in
contact. The adhesive force threshold gives the maximum
resistance of adhesive contacts compared to the grains’ mean
weight, which seems a sensible option for gravity-driven fail-
ures. By varying the Bond number Bog = Fc/mg, we thus tune
the intensity of the mean cohesive properties of the simulated
systems. However, the physical process by which microscopic
contact adhesion relates to the macroscopic cohesive stress τc

is not yet entirely clear [21,24].

R

H

FIG. 2. A granular step with height H = 60d and base R =
160d , counting 10 070 grains, early after the right-hand-side wall
was removed (at 0.046

√
H/g). The gray intensity features the grain

velocity.

A comprehensive presentation of the CD method will be
found in Radjai and Richefeu [20].

2. Generation of initial states

The systems are generated by rain deposition of np grains
in a rectangular container; np varies from 4711 for the smallest
columns to 20 133 for the tallest ones. The deposition is car-
ried out with a reduced gravity (divided by 10) to prevent large
velocities inducing undue overlap at contacts. Contacts are
initially adhesion-free, with a friction coefficient μm = 0.2,
permitting grains to form a dense packing with a volume frac-
tion φ ≈ 0.82. When systems have reached equilibrium, and
all grains are at rest, a large adhesive contact force is applied at
every contact in order to allow for the sintering of the structure
(Bog = 200).

The diameter d of the grains is randomly chosen in the
interval [4 × 10−3 m; 6 × 10−3 m]. The random function as-
signing the sequence of diameters allows for the generation of
different initial states in terms of grains and contact arrange-
ments. Following this procedure, three independent initial
states allowing for three independent simulations were per-
formed for each set of (H, Bog) studied.

The columns are bounded on the left-hand side by a rigid
vertical wall (Fig. 2). They have a width R ≈ 160d and an
initial height H ranging from 30d to 120d . For all values
of H , the geometry is squat enough so that failures remain
unaffected by the presence of the left wall. In the following,
we denote H̄ = H/d the nondimensional height, and, more
generally, L̄ = L/d any length made nondimensional by divi-
sion by d .

B. Collapse simulations

At the start of each simulation, the right wall containing
the system is removed, a failure develops, and material starts
flowing. The present work focuses on failures and their onset,
but not on the ensuing spreading. We hence concentrate on the
first instants of the collapse evolution, recording the system
state every �t = 2 × 10−4 s, namely, at every computational
time step dt .

Our main objective is to question the existence of a robust
criterion to capture the characteristic of the failure, based on
simple physical quantities, and which would be valid over
a large range of experimental conditions: different system
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FIG. 3. Evolution of the normalized mean grain velocity
〈V 〉/√gd with normalized time t/T during the collapse of a step
with H̄ = 60 and np = 10070 (T = √

H/g). Independent runs and
the corresponding average are shown. Instants Ti = 0, T1 = 0.046,
T2 = 0.675, T3 = 1.286, T4 = 1.829, and Tf = 3.465 are also dis-
played (see Fig. 4).

geometry, different grains adhesion. The existence of such a
criterion is first discussed in Sec. III a proposition is made, to
be explored in the following.

In a first series of simulations, the Bond number is set to
Bog = 50, and the height H̄ is varied between 30 and 120
(Sec. IV). We focus on the occurrence of failures, in partic-
ular their orientation. We relate the failure orientation to the
column height, and compare our results with experimental
findings by Gans [17]. We can then discuss the validity of the
criterion identified in Sec. III regarding the column geometry.

In a second set of simulations, we set the height to
H̄ = 60, and try to capture the stability limit, or incipient
failure, by varying the Bond number Bog (Sec. V). This allows
for discussing the robustness of the identification of the failure
regarding the relative stability of the column.

III. DISCRIMINATING DIFFUSE MOTION
FROM FAILURE ONSET

This section discusses the existence of a rational criterion
to capture the onset of a gravity-driven failure, and describes
its main characteristics. The existence of two types of motion
in the collapse dynamics is considered, namely the diffuse
motion accompanying small deformation within the bulk, and
larger motion accompanying the failure itself and ensuing
spreading. Focussing on the distribution of grains individual
displacement during collapse, and showing the existence of a
cutoff value between bulk diffuse motion and failure-induced
dynamics, we draw a chronology of the failure process,
and accordingly, propose a criterion to characterize the
failure onset.

To investigate this phenomenology, a single geometry is
first considered as a benchmark test. We choose a cohesive
step with H̄ = 60 in height and R̄ = 160 in width, composed
of np = 10 070 grains (displayed in Fig. 4). The adhesion level

Ti

T1

T2

T3

T4

Tf

FIG. 4. Snapshots of the collapse dynamics for H = 60d at dif-
ferent instants: Ti = 0, T1 = 0.046, T2 = 0.675, T3 = 1.286, T4 =
1.829, and Tf = 3.465. Grains with a velocity higher than the av-
erage level are colored in black. A linear gray scale is set to grains
falling in the interval [0 : V ].

is set to Bog = 50. Three independent simulations, generated
from three different initial states, are carried out. At the start
of each simulation, the system, initially kept stable by the
right-hand-side wall now being removed, loses equilibrium
and starts flowing.
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A. Collapse Dynamics

Figure 3 shows the time evolution of the normalized mean
grain velocity 〈V 〉/√gd = ( 1

np

∑np

i=1 vi )/
√

gd for each of the
three simulations, together with the averaged value. Starting
from zero, the velocity steadily increases until the peak value
is reached at time ≈ 1.3T . Then the systems decelerate until
reaching rest at ≈ 3.5T (T = √

H/g ≈ 0.175 s.).
To achieve a comprehensive decomposition of the sys-

tem motion, five representative instants of the evolution
are considered: after the first computational time step
Ti = ti/T ≈ 0, soon after the initial state T1 = t1/T ≈ 0.046,
during the velocity increase T2 ≈ 0.675, at the maximum ve-
locity T3 ≈ 1.286, during the slowdown T4 ≈ 1.829 and when
rest is being reached Tf ≈ 3.465. All these instants are shown
on the time evolution of 〈V 〉/√gd in Fig. 3. The correspond-
ing snapshots of the state of the system are displayed in Fig. 4
for one given run. Grain’s velocity is encoded in a gray scale
based on the instantaneous value of the mean velocity 〈V 〉(t ).
Accordingly, at each moment t , grains with velocity larger
than 〈V 〉(t ) are colored in black, while a linear gray scale is
set to grains with velocity in the interval [0 : 〈V 〉(t )].

At Ti, despite no motion being noticeable to the naked eye
and 〈V 〉 being very low, the bulk exhibits a uniform motion,
yet very small: almost all grains are colored in black, except
for those near the wall and bottom. This velocity distribution
shows the existence of a diffuse motion involving the whole
bulk but for the boundaries held by rigid walls.

Nearly immediately afterward, at T1, the mean displace-
ment concentrates in the right upper corner. At T2, a visible
fracturing has emerged, followed by visible system deforma-
tion. A collapsing motion starts unfolding and develops from
T2 to Tf during which diffuse motion becomes invisible, and
collapsing dynamics dominates.

The mean velocity decreases as spreading develops and
a “deposit” forms. Finally, the whole system reaches rest at
≈Tf . Diffuse motion still occurs at Tf as packing rearrange-
ments take place in the bulk.

We see here how the failure flow is combined with diffuse
motion (or “plastic motion” as termed by Ref. [25]), char-
acterized by a much smaller displacement amplitude. Since
this work focuses on the macroscopic motion related to the
failure onset, a displacement threshold needs to be chosen to
distinguish the two kinds of grain motion.

B. Diffuse motion and failure motion

To direct and support a choice, we consider displacement
values r̄d = rd/d in the interval [0.01 : 1.00]. For each value
of r̄d , we count the number nd of grains i whose cumulative
displacement at Tf , r̄i

f , exceeds r̄d :

nd = Card
{
i
∣∣ r̄i

f > r̄d
}
.

Then we form the function F (r̄d ) = nd/np which is a sort of
complementary function of the cumulative distribution func-
tion over the time interval [0 : Tf ] characterizing the grain
displacement. Accordingly, for each value of r̄d , F (r̄d ) gives
the probability of having been displaced beyond r̄d at time Tf ,
namely, at the end of the collapse.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.151

F

rd/d

run 1
run 2
run 3
mean

FIG. 5. Distribution F of the total displacement of grains at
T = 3.5, with rd ∈ [0 : 5d] (interval not shown completely). For
each value r̄d , F (r̄d ) gives the proportion of grains which have been
displaced a greater distance than r̄d at T = 3.5. The outcome of three
independent runs (symbols) and the average (solid line) are shown.

Applying this definition, we compute F (r̄d ) for the three
runs featured in Fig. 3; the corresponding mean evolution of
F with r̄d is also shown (Fig. 5).

We observe a very reproducible behavior. Two distinct
trends in the evolution of F with r̄d are visible. First, a
sharp decrease shows how the detection of small motion
is sensitive to the choice of the displacement criterion:
increasing r̄d makes a number of grains weakly displaced
suddenly invisible. This trend characterizes the domain of
small displacements, which includes the domain of diffuse
motion.

Next, after a smooth transition, F becomes weakly sensi-
tive to the value of r̄d : the grains displaced beyond one given
value are likely to go further in their displacement. This trend
characterizes larger displacements, a domain in which failure
dynamics is expected to fall.

The evolution characterizing small displacements can be
extrapolated up to the value of r̄d for which virtually no
displacement being part of diffuse motion can be detected,
namely for which F = 0 (Fig. 5). For the system consid-
ered here (H̄ = 60 and a = H/R = 0.375) this occurs for
r̄d ≈ 0.15. We chose this value as a displacement cutoff value,
or threshold, allowing for detecting the onset of the failure. We
denote this threshold value Rth = 0.15d in the following. The
value of nd evaluated at r̄d = R̄th is then denoted Nth.

C. Failure chronology

The choice of R̄th was directed to filter out diffuse mo-
tion and to detect failure-related displacement only. The
time variations of Nth, reflecting the number of grains in-
volved in failure-related motion, are also expected to reflect
failure onset.

Following this idea, we denote as �Nth(t ) the variation of
Nth between two computation times t and t + �t :

�Nth(t ) = Nth(t + �t ) − Nth(t ). (2)

The evolution of �Nth with time and the normalized system
average velocity V/

√
gd are shown in Fig. 6 for one given

run for illustration. This figure, showing both evolutions,
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FIG. 6. Time-derivative �Nth(t ) = Nth(t + �t ) − Nth(t ) of the
number of grains having overpassed the displacement threshold
Rth = 0.15d (full line), and corresponding mean grain velocity 〈V 〉
(dashed line) in the course of time.

allows for connecting the variations of Nth and the system
mean motion.

We observe a clear peak value of �Nth, coinciding with a
sudden and large increment of Nth, whereas the average ve-
locity at this moment is still small. The surge of �Nth is short,
and �Nth decreases to ≈0 well before the system reaches its
maximum average velocity. This means that the failure and
subsequent collapse develops at a rather constant Nth: nearly
all grains involved in the failure are dragged in the dynamics
over a short and early time span.

A criterion is needed to locate the failure onset in time.
Based on the shape of �Nth (as shown in Fig. 6 for one
example run), we define different instants to capture the col-
lective displacement of the grains. In particular, we focus on
the decrease phase of the evolution �Nth, after a large number
of grains have suddenly been displaced beyond the threshold
Rth, and the systems seems to be relaxing (namely, the failure
develops without involving new grains).

We introduce �Nth,max the maximum value that �Nth

reaches. We define τz as the moment when �Nth undergoes a
decrease of z% of its maximum value, or, equivalently, when
it is reduced to �Nth,max(1 − z/100) = �Nth(τz ). Following
this notation, the time when the peak �Nth,max occurs is
denoted τ0.

An example of this chronology is displayed in Fig. 7. The
main virtue of this logic is that it can be applied to any system,
possibly failing and flowing with different momentum, and
following a different dynamics. It defines an alternative mea-
sure of time that describes an equivalent state in terms of grain
displacement. This is, however, true provided the value of Rth

remains the same from one run to the other. This last point,
namely the robustness of a choice for Rth, and the validity of
its value, is studied in the following sections.

An obvious choice for locating the failure in time is the
peak value. Indeed, in the specific case H̄ = 60, an incipient
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Δ
N

th

t/T

FIG. 7. Chronology of a failure for one example simulation with
H̄ = 60, using the evolution of �Nth; the instants τz are represented
for z = 0, z = 60, and z = 80.

failure could be characterized at τ0 (as can be seen in Fig. 8).
We will see, however, that this is not necessarily the case for
all values of H , and the distribution of displaced grains may
be less regular. Yet we use the favorable case of H̄ = 60 to
study the evolution of the spatial distribution of the displaced
grains in time.

Deciding which instant τz best characterizes the failure
is not a straightforward process. This instant must comply
with the following requirements: (i) it should correspond to
a well-defined interface between displaced and static grains,
(ii) it should correspond to a slow evolution of the shape of
the interface, away from a sharp propagation episode. These
aspects are investigated in the following.

D. Failure onset and propagation

The way grains are set in motion during the destabilization
is displayed in Fig. 8 for one example run, using the dis-
placement threshold Rth/d = 0.15. Grains displaced beyond
Rth/d = 0.15 are colored in black. We note that time τ0 is a
good candidate for characterizing the failure. Yet we see that
it coincides with a small number of grains: the fact that the
increment of Nth is maximum at this moment does not mean
that Nth is large. We also note that the pattern drawn by the
displaced grains is mostly changing between τ75 and τ90.

To obtain a more quantitative notion of these observations,
and based on the work of Refs. [17,18], we assume that the
interface between static and displaced grains can be approx-
imated by a linear fit. Considering for each run the time
evolution of �Nth, we capture at each instant τz the orientation
of the interface α and the error of the fitting procedure, with
z varying between 0 and 90. The result is plotted in Fig. 9
as a function of Nth,max(1 − z/100), describing the interval
[τ0, τ90]. The three simulations together with the average
value are shown.

A first observation is the scattering of the results across
the different independent runs, which is not surprising for
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τ 0

τ 60

τ 75

τ 90

FIG. 8. Grains displaced beyond Rth = 0.15d (in black) at instant
τ0, τ60, τ75, and τ90 for an example run with H̄ = 60.

granular matter, yet to be noticed [18,26]. All three runs
exhibit the same tendencies, and the average behavior renders
this general trend. We observe how the interface orientation α

remains rather steady up to τ80 [Fig. 9(a)]. After τ75 is reached
[namely, when �Nth has decreased up to (1–75%) �Nth,max],
each simulation sees the interface orientation rapidly decreas-
ing. We may understand this trend as the onset of an erosive
propagation of the failure. The error associated with the linear
regression becomes smaller, with a significant improvement
between τ70 and τ80 [Fig. 9(b)].

Following all these observations, it becomes apparent that
the gravity-driven failure of a cohesive granular material is
an elusive process. From the analysis of Fig. 9, we resolve
that the interface is best captured at τ75, thereby achieving a
trade-off between a steady period far from rapid evolution,
and a decreasing error and better precision. Together with the
choice R̄th = 0.15, we assume that this criterion can deliver a
trustworthy signature of the failure.

The validity of this choice needs nevertheless to be ques-
tioned. Is it robust against the geometry of the columns, in

FIG. 9. (a) Evolution of the orientation α of the static or dis-
placed interface and (b) evolution of the corresponding linear fit error
in the interval τ0 to τ80.

particular their heights? Is it valid for any value of the contact
adhesion Bog, namely, for different stability conditions?

These questions are addressed in the following, question-
ing the value of Rth while investigating the influence of the
systems height and the approach of the stability limit through
dedicated simulation series.

IV. INFLUENCE OF COLUMN HEIGHT

In this section, columns with heights H̄ ranging from 30 to
120 are considered. For each value of H̄ , three independent
simulations, i.e., with a different initial grain arrangement, are
performed. The contact adhesion intensity is set to Bog = 50.
We investigate how the failure process is affected by the
system height and how capturing the failure onset and failure
characteristics might be challenged by the system geometry.

A. On the distribution of displacement

Higher columns mean that grains fall from a higher point.
They reach the ground and come to rest having been dis-
placed a greater distance with a greater velocity. This obvious
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FIG. 10. Influence of column height H̄ on the displacement dis-
tribution F .

statement signifies that the distribution of displacement is
expected to depend significantly on the height of the system.

Applying the same procedure as in Sec. III, i.e., varying
r̄d in the interval [0.01 : 1.00] and counting the number nd

of grains whose cumulative displacement exceeds r̄d at Tf ,
we plot the displacement distribution F for all systems with
H̄ ∈ [30 : 120]. We recall that in all these cases, the con-
tact adhesion strength is Bog = 50. The result is displayed in
Fig. 10. We observe very clearly how larger height induces
larger displacements, leading to a larger proportion of dis-
placed grains beyond 5d at Tf (rd/d = 5 not shown here).
Concomitantly, the peak characterizing the larger probability
of small displacements is flattened.

In Sec. III, we have discussed the existence of a dis-
placement criterion based on the identification of a displace-
ment threshold Rth to discriminate small displacements—
understood as a signature of diffuse motion—and larger
displacements—understood as the signature of failure dynam-
ics. Such a criterion is likely to be affected by the variability
of the distribution shape. This is illustrated in Fig. 10 for
H̄ = 40, H̄ = 60, and H̄ = 80. Extrapolating the peak down
to the value of r̄d for which F would be zero, we derive
R̄th for each value of H̄ . We obtain R̄th = 0.087 for H̄ = 40,
R̄th = 0.151 for H̄ = 60, and R̄th = 0.276 for H̄ = 80.
Namely, the displacement threshold R̄th, based on the dis-
placement probability function, and meant to serve as a
general criterion to identify failures, increases with H̄ .

B. Sensitivity of the measure of failure orientation
on the displacement criterion

The analysis discussed in Sec. III based on the displace-
ment distribution exhibited by the failure of a step of height
H̄ = 60, and for a contact adhesion Bond number Bog = 50,
led to the conclusion that a correct criterion to filter out failure
dynamics from diffuse motion was a displacement thresh-
old R̄th = 0.15. Ideally, the same criterion should be used to
characterize the failure of differing systems if they are to be
compared.

Figure 10 is in immediate conflict with this statement:
how could a criterion, based on the displacement distribu-
tion during failure, remain a consistent choice for systems

FIG. 11. Influence of the displacement threshold Rth on the mea-
sure of the orientation α of the failure angle (here in degrees).
Measures from independent runs are open symbols, while the cor-
responding mean values are solid symbols.

with a configuration coinciding with a different displacement
distribution?

To answer this sensitive question, we consider the columns
with H̄ = 40 and H̄ = 80. For each value of H̄ , we either
chose R̄th = 0.15, as was suggested by the analysis presented
in Sec. III for H̄ = 60 (Fig. 5), or we chose the consistent
value suggested by the displacement distribution at the
corresponding height, namely, R̄th = 0.087 for H̄ = 40, and
R̄th = 0.087 for H̄ = 80 (Fig. 10). Applying the procedure
described in Sec. III, we then measure the failure angle
adopting the two different values of R̄th for each value of H̄ .

The result is displayed in Fig. 11, showing the failure angle
α depending on R̄th for the two heights H̄ = 40 and H̄ = 80.
For each H̄ , the results stemming from three independent runs
and the mean value are given.

We observe for each height how changing the displace-
ment criterion affects the estimated value of the failure angle.
However, the difference remains smaller than the dispersion
of the data. Moreover, changing the displacement criterion
does not change the behavior of the mean values, namely, the
decrease of the failure angle with increasing height. Hence,
the sensitivity of the measure on the displacement criterion,
although visible, is not significant here.

Therefore, in the following, we adopt a single displacement
criterion R̄th for characterizing the failure of all systems. We
stick to the criterion that emerged from the analysis of the
failure of a column with height H̄ = 60 (Sec. III), namely,
R̄th = 0.15.

C. Questioning failure’s linear shape

Now that we have opted for a single failure criterion
(R̄th = 0.15) independently of H̄ , we measure the orientation
of the failure angle α for each system, including all values
H̄ ∈ [30 : 120]. The results are shown in Fig. 12, where α(H )
is plotted for each independent run, together with the aver-
age value. We observe a well-defined regular decrease of α

with increasing height, from ≈63◦ for H̄ = 30 to ≈45◦ for
H̄ = 120.

A similar trend is observed experimentally by Gans
et al. in Ref. [17,27] using particle image velocimetry (PIV)
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FIG. 12. Failure angle α as a function of the column height H/d
for Bog = 50.

pictures of the failure of cohesion-controlled cohesive
columns. Note that the use of PIV techniques also implies
a constant displacement threshold for all heights, set by the
definition of the pictures and/or the acquisition frequency of
the camera.

This observation, namely, the decrease of the failure angle
with step height, is of no obvious practical use. Yet if one
assumes the cohesive granular matter to be an ideal Coulomb
material, then one may attempt a guess at the internal friction
from the evolution displayed in Fig. 12.

An ideal Coulomb material, satisfying τ = μσn + τc at
equilibrium, with τc being the cohesive stress and μ = tan ϕ

the coefficient of internal friction, would imply a relation be-
tween the failure angle α and the friction angle ϕ if the failure
was linear. In that case, at incipient failure, α = ϕ/2 + π/4
should be satisfied [16–18].

At incipient failure, the yielding height Hy, defined as the
minimum height over which failure systematically occurs,
is reached. Considering the result H̄y = 0.45Bog from Ref.
[28] and Bog = 50 in the present simulation series, the yield-
ing height for the here-simulated columns is approximately
H̄y = 22. The corresponding failure angle can be estimated
by extrapolating the evolution shown in Fig. 12. We reckon
α(Hy) ≈ 67◦.

We can hence deduce the internal friction angle ϕ = 2(α −
π/4) = 44◦, giving μ = tan ϕ = 0.96. This huge figure is
simply unrealistic.

This nonsensical result may be an indication that cohesive
granular matter does not behave like an ideal Coulomb mate-
rial. Or, most likely, this could be a token that the assumption
of a linear failure becomes unrealistic for short columns. Gans
relates in Ref. [27] that, for small aspect ratios, columns break
in two parts from their base, leading to unduly large failure
angles. In our case, we observe, for short columns, what
resembles a tumbling behavior following a vertical failure,
rather than the smooth sliding of a detached corner along a
linear failure plane (Fig. 13).

The increase of the failure angle with the decreasing height
can thus be understood as resulting from a complex size-
dependent breaking dynamics of the cohesive system. The

FIG. 13. Tumbling or toppling failure for squat columns: (top)
for H̄ = 20 and Bog = 40, at t/T = 0.79 and t/T = 1.43; (bottom)
for H̄ = 25 and Bog = 50, at t/T = 0.78 and t/T = 2.13. Black
shows grains displaced more than 0.25d .

increasing proximity of the bottom in then expected to induce
finite-size effects.

D. Section conclusion

We studied the failure of systems with different heights
far from the stability limit. We have shown that the grain
displacement distribution during failure is affected by the
initial height of the system. This blurs the definition of a single
displacement criterion to characterize the failure onset in all
systems. We have investigated the sensitivity of the failure
characterization to the displacement criterion and concluded
that it was not significant. The ensuing plot of the failure angle
as a function of system height gave an evolution consistent
with experimental measurements. It gives a means of ruling
out the linearity of failure for small system height. At any
rate, we conclude that the failure of small systems cannot
be interpreted in terms of material behavior, at least in this
configuration.

V. APPROACHING INCIPIENT FAILURE

A. Detecting the stability limit

Investigating the stability limit for different cohesion
would mean considering granular columns with different
heights H̄ ∈ [30, 120], as in Sec. IV. For each height, incipient
failure could be approached using a bisection (or dichotomy)
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FIG. 14. Total displacement of the system center of mass RG/d
between final and initial states as a function of contact adhesion
Bog for a system with H̄ = 60. Inset shows same thing but for an
alternative simulation (run B).

method. First, an interval of Bond numbers in which incipient
failure falls is identified, bounded by a stable state (larger
value of the Bond number) and a yielding state (lower value of
the Bond number). This interval is then narrowed by succes-
sively choosing a value of the Bond number halfway between
the two bounds, selecting the interval where incipient failure
falls. After repeating this procedure a number of times, we
should reach a state very close to incipient failure. Let us
denote by By the value of the Bond number corresponding to
the yielding state for any value of H .

Although the procedure is simple, approaching By is not
necessarily a smooth process. Indeed, columns exhibit a
puzzling behavior close to the stability limit, reflecting the
increasing role of disorder and fluctuations when approaching
a critical state like incipient failure. Accordingly, the initial
packing arrangement induces a large variability of results. In
addition, a slightly unstable system starting to yield slumps
under the yielding height and may thereby stabilize. This
makes the identification of stability ambiguous, unless one
decides that no yielding at all must occur. In the case of 2D
simulation, that would mean unduly large values of the Bond
number. The complexity of the response of the systems hence
forms a tangible limitation to the bisection method.

Nevertheless, there is no question that increasing contact
adhesion leads in general to a more stable state. This is illus-
trated in Fig. 14 for an example system with height H̄ = 60d .
The total displacement of the system center of mass RG/d
between final and initial states is plotted as a function of the
contact adhesion, i.e., the Bond number Bog. Expectedly, we
observe how lower values of Bog induce a larger displacement
of the center of mass RG. More to the point, we observe a dis-
continuity in the evolution of RG. This corresponds to a sharp
transition in the displacement of the center of mass, between
small (RG/d < 1) and larger (RG/d > 2) displacements. This
transition may be interpreted as the passage through the sta-
bility limit.

These different behaviors are also illustrated in Fig. 15,
where the time evolution of the mean velocity is shown for

FIG. 15. Evolution of the system average velocity at H̄ = 60 for
four different Bond numbers corresponding to the circled data point
in Fig. 14.

this same column of height H̄ = 60, for four specific values
of the Bond number (circled points in Fig.14). For small
Bond (Bog = 50), namely, a weak contact adhesion, the large
velocity reveals a fully developing collapse, eventually stabi-
lizing completely. For an intermediate value (Bog = 190), the
velocity no longer increases immediately but goes through a
phase of low values, betraying slow deformation, which even-
tually leads to a peak revealing a collapse. For a slightly larger
Bond value (Bog = 191), the system is stable; the velocity no
longer increases but remains at a very low level, bespeaking a
slow creep. For a much larger Bond value (Bog = 360), creep
motion is still visible.

This “regular” behavior is, however, no absolute rule,
and other systems (such as “run B” in the inset graph in
Fig. 14) may oppose the previously described simple scenario
of stability. In the run B case, differing only by the grain
arrangement in the initial state, lower values of the contact
adhesion Bog lead to a more stable system. A first interpreta-
tion may be that, by making bonds more fragile by lowering
Bog, we allow the system to break a net of contacts that was
imposing a fatal stress to the system, thereby getting rid of a
threat to stability.

Another interpretation is that the sole position of the center
of mass is no sufficient quantification of the stability of the
system, which is indeed very likely. We notice that the two
last stable occurrences in Fig. 15 (Bog = 191 and Bog = 360),
although never collapsing, never attain a zero velocity. Beside
the occasional detachment of individual grains from the edge
of the column, velocity fluctuations develop and take place
steadily all through the rest of the simulation. We observe here
a numerical artifact induced by the existence of an adhesive
force threshold at contacts: while gravity tends to separate
grains and causes contact to open, the adhesive threshold
reverses the motion and causes contacts to close again [29].
Because no damping at contact is introduced in the contact
dynamics methods, as is the case in molecular dynamics,
contacts oscillate without opening and generate correspond-
ing velocity oscillations. These oscillations are yet of small
amplitude: the maximum oscillations are of the order of 0.05√

gd (
√

gd ≈ 0.22 in this work).
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FIG. 16. Grain total displacement distribution at Tf for the four
values of the contact adhesion corresponding to the circled data
points in Fig. 14: Bog = 50 (large collapse), Bog = 190 (smaller
delayed collapse), Bog = 191, and Bog = 360 (stable states). For a
system with H̄ = 60.

These oscillations occur essentially at large adhesion (large
Bond number Bog), when the stability of the system allows
for perilous equilibrium configurations. Weighty clusters of
grains may then challenge the adhesive strength of contacts,
leading to long-lasting attraction-repulsion sequences. In con-
trast, fully developed collapses, such as occurs for Bog = 50,
lead to a complete relaxation of contact stresses and a truly
zero-velocity final rest.

B. Failure angle at critical state

It would certainly be most interesting to have access to the
failure angle at incipient failure. Indeed, if the hypothesis of an
ideal Coulomb material was correct, that would immediately
give us an estimation of the internal friction of the material.
However, Sec. IV has shown how the failure characteristics
are affected by the height and dynamics of the failing sys-
tem. There is no reason to suppose that investigating the
failure of systems at the approach of the stability limit needs
less caution.

Approaching the stability limit means that grains become
less mobile: the distribution of grains displacement will be af-
fected. Figure 16, for instance, shows the distribution of grain
displacement, F , for all simulations featured in Fig. 15: for
a small contact adhesion Bog = 50, corresponding to a large
collapse, for an intermediate value Bog = 190 corresponding
to a smaller collapse, for a slightly larger one Bog = 191 cor-
responding to a stable state, and for a much larger Bog = 360.
We observe how increasing the contact adhesion is reflected
by an increase of the proportion of grains displaced a small
distance (<d), but a rapid decrease of the proportion of grains
displaced of a larger distance, eventually falling to zero. The
larger displacements at high cohesion coincide with an initial
crumbling of the edge of the column, characterized by the de-
tachment of individual grains poorly anchored on the packing
side. However, the significant increase of small displacements
with adhesion strength is less obvious to explain. It very likely
coincides with a general slumping of the structure, where
diffuse arrangements of grains in the bulk occur; a definite
statement would, however, require a dedicated work.
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FIG. 17. Position of the static or failing interface for a displace-
ment criterion Rth/d = 0.15 close to the stability limit for Bog = 200,
195, 193, and Bog = 191, for a system with H̄ = 60. Inset shows
corresponding orientation α of the failure.

The variability of the grain displacement distribution F
with Bog makes it unlikely that it may serve as a basis for
electing a displacement threshold Rth for detecting the failure,
as attempted in Sec. III. Hence, rather than trying to establish
a criterion to detect failures, we try to assert the sensitivity of
the measure to the criterion. More specifically, we examine
which changes in the measurement are brought by changes
in the displacement criterion Rth. We also question the effect
of different adhesion Bog close to the stability limit on the
identification of the failure.

1. Getting closer to By

The example simulation featured in Fig. 14 (H̄ = 60) gives
us an adequate set of collapses to probe the effect of contact
adhesion Bog onto the failure orientation at the approach of
stability limit. From the final position of the center of mass
depending on contact adhesion, we may suppose that the
values Bog = 200, 195, 193, and Bog = 191 are all realistic
candidates for the critical Bond value By.

We suppose that the displacement criterion R̄th = 0.15 is
appropriate to detect the occurrence of a failure in this interval
of adhesion. Applying the procedure described in Sec. III,
we analyze each simulation and derive the orientation of the
failure plane.

The outcome is displayed in Fig. 17, showing the signature
of the failure for each simulation given by the static-displaced
material interface; the inset graph shows the corresponding
orientation as a function of the adhesion Bog. Both graphs
show that little difference is induced by variations of the
value of Bog at the approach of the stability limit or incipient
failure: the variations of failure angle α are smaller than 3◦.
It gives a mean failure orientation of α = 51.6◦, leading to a
friction angle of ϕ = 13.2 and a friction coefficient μ ≈ 0.23.
These values are small, however they are perfectly realistic
for 2D numerical spherical grains with inter-grain friction
μc = 0.2 [30].
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FIG. 18. Orientation of the failure at stability limit
(Bog = By ≈ 191) for a system with H̄ = 60 as a function of
the displacement criterion Rth applied for the detection of failure.
For comparison, the orientation of the failure for the same system
but with Bog = 50 is also shown.

We hence conclude that the uncertainty related to the deter-
mination of By at the stability limit has no crucial consequence
on the measure of the failure angle.

2. Sensitivity to the displacement criterion Rth at stability limit By

Another difficulty in detecting the failure close to the sta-
bility limit is that the distribution of the displacement of the
grains no longer displays a smooth shape that allows us to dis-
criminate between diffuse and failure-related motion. Instead,
a general slump seems to emerge from which no signature
of an incipient failure comes out (Fig. 16). For this reason,
electing a reliable displacement criterion to detect failure is
difficult and uncertain.

Because of this uncertainty, it is important to assert the
sensitivity of the measure to the displacement criterion. We
consider the same system as used so far to illustrate this
section, with H̄ = 60 (featured in Figs. 14–17).

The previous paragraph has convinced us that a small de-
gree of uncertainty on the estimation of the adhesion at the
stability limit By has no tangible effect on the failure charac-
terization. We thus feel confident in choosing Bog = By ≈ 191
as a system at the stability limit, it being the smallest value of
adhesion for which that system remains apparently stable in
terms of grain displacement (Fig. 14). Following the steps de-
scribed in Sec. III, we apply a different displacement threshold
to detect the failure: we test the values Rth = 0.05, 0.10, 0.15,
0.20, and 0.25.

The outcome is displayed in Fig. 18. The variations of
α with Rth remain small: the extremal cases Rth = 0.05 and
Rth = 0.25 imply a difference of ≈3◦ between the two mea-
sures of α, when the interval of criterion Rth ∈ [0.10 : 0.20]
induces only ≈1.1◦ variation. In this latter case, the measure
of α seems robust against small variations in Rth.

Interestingly, carrying the same analysis but away from
the stability limit with a much lower adhesion Bog = 50 gives
exactly the same conclusion. However, for all values of Rth,
the measure of α is lower of about ≈3◦.

C. Section conclusion

In this section, we have approached the stability limit for
an example system, namely, a column with H̄ = 60. Doing
so, we come across the complexity of the response of granular
systems in general and occasional unexpected behavior such
as the stability being increased by lowering contact adhesion.
Although this last instance is by no mean a general obser-
vation, it stresses the fact that the stability limit in granular
systems may be difficult to approach, all the more for the small
systems as studied here.

We observe that stability is nevertheless accompanied by
a slight slump of the structure. The fact that the simulations
are 2D and grains are disks certainly amplifies this phe-
nomena; however, we believe the latter remains relevant for
real systems, at least in the range of moderate adhesion as
applied here.

The onset of a failure at the stability limit was character-
ized and shows that small variations of the value of contact
adhesion close to the stability limit poorly affect the failure
orientation. The characterization of the failure is also fairly
robust against the displacement criterion applied in the range
[0.1d : 0.2d].

VI. DISCUSSION

We have carried out simulation series of cohesive granular
collapse, focusing on the failure process. More specifically,
the existence of a reliable criterion to characterize the failure,
specifically its orientation, was discussed. In a first step, a
criterion was elected based on the distribution of the grains
cumulative displacement over the duration of the failure and
backed by the study of failure time-evolution of an example
system. The elusive nature of granular failure was, however,
made fully apparent.

The effect of both system initial height and contact adhe-
sive properties on the value and definition of a displacement
criterion was then investigated. Essentially, the conclusions
are as follows:

(i) The system geometry, in particular its height, has a sig-
nificant influence on the value of the displacement criterion.

(ii) The system cohesion stemming from contact adhesion
changes the displacement distribution shape and blurs the
definition of a criterion.

(iii) The measure of a failure plane orientation is rather
robust against small variations of the criterion and against
imprecisions in the identification of the stability limit.

The work stresses that a finer quantification of the stabil-
ity limit in an unconfined yielding situation is nevertheless
needed. Yet, it suggests that imprecisions in the selection of a
failure criterion should have a marginal effect on the measure
of the failure orientation.

However, it is important to clarify what “robust” and
“marginal effect” means in the present study. Granular pack-
ings are, intrinsically, disordered systems. Their behavior is
the result of complex interactions between many bodies and
often falls into a dispersion interval around a mean trend. This
is, for instance, the case for the angle of stability [26].

In the present study, the failure angle was measured.
Uncertainty may result from the measuring methodology;
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FIG. 19. Range of values of failure orientation �α measured in
Sec. IV for different system heights H and different displacement
criteria Rth for a contact adhesion Bog = 50.

however, a certain dispersion of the measure is expected
simply because of the disordered nature of the systems [18],
as explained below.

Considering different system heights H and different
displacement criteria Rth, the failure of three independent
systems was analyzed, namely, systems differing only by
the geometrical arrangement of the grains (see generation
method in Sec. II A). The dispersion of the results �α can
thus be evaluated as the distance separating the maximum and
minimum angle α measured for these three independent runs
at a given H and Rth. The result is summarized in Fig. 19,
where the dispersion �α is plotted for each system size H
investigated (and each Rth when the measure was performed).
A large scattering can be observed: 5.28◦ on average, espe-
cially for small systems. A peak �α = 10◦ arises for H̄ = 40,
and the minimum dispersion of �α = 2◦ deg is observed for
H̄ = 120. From this general evolution, we may conclude that
any dispersion less than 3◦ can be coined “marginal,” and the
criterion used “fairly robust.” This is not entirely satisfying in
the perspective of measuring fine variations, but it is correct
to discuss a general trend.

Certainly the small size of the samples amplifies the role
of fluctuations and increases the dispersion in the data, as
suggested by Fig. 19. Yet it allows for a detailed look into the
destabilization mechanism. This includes identifying clues of
a tumbling motion and dismissing the likelihood of a linear
failure for small systems. This also permits singling out
nontrivial equilibrium situations, where decreasing contact
adhesion leads to an apparently more stable construction. This
stresses the need for a more detailed description and under-
standing of the stability of a cohesive granular packing under
gravity, possibly including the cohesive force network and the
contact density and anisotropy.

In the same line, although the distribution of the grain
displacement is instructive, it is alone insufficient to filter out
the effect of geometry and cohesion. The orientation of the
displacement, their variation in time, or a measure of the local
volume fraction, are candidates to improve the identification
of the failure.

Another aspect of interest is the influence of time. When
increasing the contact adhesion, and thus the overall cohesion
of the packing, we encounter systems which remain stable for
a certain lapse of time but eventually fail. How long should a
simulation run for us to be confident in the system’s stability?
How does ageing manifest itself in the packing structure?
How does one filter out numerical effects?

Finally, an important question is the relevance of model co-
hesive granular samples to geotechnical applications. There is
an obvious issue of system size, which might, however, not be
so crucial for large discrete simulations for which finite-size
effects can be, if not ruled out, circumvented. A fundamental
issue is, however, the initial state of the samples. Soils result
from a complex history, very different from general laboratory
or computing conditions. It seems thus important to aim at
a thorough understanding of the effect of initial conditions
onto failure onset: Text initial compaction, initial stress dis-
tribution, etc. Larger systems than the “toy models” studied
in the present contribution may then bring interesting insight
in soil failure. In particular, the shape of the failure might be
questioned, and the observation of circular shape, generally
met in situ, may then open new research alleys.
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