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Abstract.
The collapse and spreading of granular columns has been the subject of sustained interest in the last years from both

mechanical and geophysical communities. Yet, in spite of this intensive research, the adequate rheology allowing for a reliable
continuum modeling of the dynamics of granular column collapse is still open to discussion. Essentially, continuum models
rely on shallow-water approximation for which dissipation and sedimentation processes are taken into account through the
introduction of ad hoc laws. However, the rheological origin of the experimental scaling laws exhibited by the granular
columns when spreading remains unclear. On these grounds, we adopt an alternative approach consisting of studying the
collapse of columns of material obeying a Bingham rheology. Therefore we carried out series of numerical simulations using
the Gerris Flow Solver solving the time dependent incompressible Navier-Stokes equation in two dimensions for the specified
rheology. We first check that the mass exhibit similar scaling laws as those shown by granular columns. Then we investigate
in which extent rheological parameters do reflect on these scaling laws. A comparative analysis of Bingham and granular flow
characteristics ensues.
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THE GRANULAR COLLAPSE

Because it provides a simple, yet rich model for catas-
trophic natural flows, the collapse and spreading of gran-
ular material has been extensively studied in recent years,
experimentally [3, 6, 4, 1, 7], and also numerically us-
ing discrete methods [11, 10] and theoretical modeling
[5, 2]. As an example, different stages of a 2D numerical
collapse with an aspect ratio a = 9.1 can be seen in Fig-
ure 1 (taken from [10]). Many mechanisms contribute to
the global behavior, such as local deposition, interaction
with the substrate, mass propagation in the flow induced
by the vertical acceleration. However, the most interest-
ing result lies in the experimental scaling laws exhibited
by the deposit left once the flow resulting from the col-
lapse has come to a rest. If H0 and L0 are respectively
the initial height and initial radius of the column, and
a = L0/H0 is the initial aspect ratio, then the final length
of the deposit L obeys the following relation:

L−L0

L0
=
{

λ1a si a < a0
λ2aα si a > a0

(1)

where a0, λ1 and λ2 slightly vary with the grains prop-
erties (characteristic values for sand in 3D are a0 = 1.7,
λ1 = 1.24 and λ2 = 1.6, see [6], while [3] finds for
glass beads a0 = 0.74, λ1 = 1.35 and λ2 = 2), whereas
α is dependent only on the geometry: α = 1/2 in 3D
and α = 2/3 in 2D. Figure 2, taken from [3], shows
an example of 3D experimental points for various flow

FIGURE 1. Four stages of the collapse of a 2D numerical
column simulated by contact dynamics with an initial aspect
ratio a = 9.1 [10]. Black identify grains whose cumulated
displacement exceeds the mean grains diameter.

conditions. This scaling law, which implies non-trivial
dissipation mechanisms, is not yet elucidated. More
specifically, it remains unclear how much it depends
on the geometry on the one hand, and on the actual
rheology of the flowing material on the other hand.
Since the rheology of granular material is in itself a
long lasting riddle, an alternative way of improving our



FIGURE 2. Normalized final height (top) and run-out dis-
tance (bottom) as a function of the aspect ratio a for different
granular material. The experiments are 3D. Graph taken from
[3].

understanding of the column collapse dynamics is to
check whether any prescribed rheology allows us for the
recovering of the scaling law.
In this contribution, we present preliminary numerical
results on the collapse of a Bingham fluid, for which
both the initial geometry of the column and the rheolog-
ical parameters were varied. Therefore, the Gerris Flow
Solver was applied.

THE BINGHAM COLLAPSE

The Bingham rheology

Bingham fluids are characterized by their ability to
resist shear at low stresses, while they flow like new-
tonian viscous fluids at higher stresses. This implies
the existence of a yield value for the shear stress τy,
which separates the rigid and the viscous response of the
Bigham fluid. This behavior can be written as follows:

∂u
∂ z

=
{

0 , τ < τy
(τ− τ0)/µ , τ ≥ τy

(2)

where µ is the viscosity.
Just as granular material resist flowing when the shear
stress is below the so-called internal angle of friction,
and hence exhibit solid-like behavior, Bingham fluid
have the ability to remain solid, and most importantly,
to stop flowing when the stress becomes small. This
analogy makes Bingham fluid a suitable candidate for
testing the column collapse scaling laws on more general
grounds than the granular media experiments.

The numerical method

The Bingham column collapse was performed in 2D
using the Gerris Flow Solver which solves the time de-
pendent incompressible Navier-Stokes equation in two
dimensions for the rheology specified in equation (2).
More details about the numerical method will be found
in [8]. A condition of non-slipping at the horizontal plane
is implemented. The non-dimensional equation is solved
in the domain of size Hm; in the following, we con-
sider the normalized viscosity µ/(ρ(gHm)3/2), the nor-
malized yield stress τy/(ρgHm), and the normalized time
t/(Hm/g)1/2. Four sets of simulations were performed
for two values of the viscosity µ = 1.10−3 and µ =
5.10−3, and three values of the yield stress τy = 1.10−2,
τy = 2.10−2 and τy = 4.10−2. As an example, Fig 3
shows the collapse of a column with an aspect ratio a = 6
at different times.

COMPARING THE SCALING LAWS

The run-out

The normalized run-out distance (L−L0)/L0 is plot-
ted against a in Fig 4 for the four sets of simulations
performed. We observe that the general trend shown
by the points differs from experimental results shown
in Fig 2, specifically for small aspect ratios (namely
a < 1). However, for larger aspect ratios, a power-law
approximation seems acceptable, in agreement with the
experimental scaling law observed for granular material
(see equation (1)). The corresponding exponents are
reported in Fig 5: the values obtained are much higher
than the value 2/3 observed in the scaling (1). This
discrepancy can be related to the difference of energy
dissipation mechanisms at the base of the collapsing
column: while the agitation and many collision existing
at the base of the granular column is very efficient
and induce smaller exponent, the smoother deforma-
tion characterizing the Bingham collapse implies less
dissipation and leads to larger exponent. Consistently,



FIGURE 3. Example of the collapse of a column with a = 6,
µ = 1.10−3 and τy = 1.10−2. In the bottom graph, the profiles
coincides with times t = 0, t = 0.5, t = 1, t = 1.5, t = 2, 3 and
t = 4, where time is normalized by

√
Hm/g

FIGURE 4. Normalized run-out distance (L− L0)/L0 as a
function of the aspect ratio a for 4 series of simulations with
varying viscosity µ and varying yield stress τy.

increasing the value of the yield stress τy leads to rapidly
increasing exponents. The influence of the value of
the viscosity µ , which we expect to be dominating in
the lateral spreading, is comparatively very weak. This
suggests that the origin of the exponents essentially lies
in the early stages of the collapse.

FIGURE 5. Normalized run-out distance (L− L0)/L0 as a
function of the aspect ratio a for a > 1 (bottom). The straight
lines show the best power-law fits, while the corresponding
exponents are plotted as a function of τy in the top graph.

The final height

The normalized final height of the deposit H/L0 is
plotted against the aspect ratio a in Fig 6. The general
behavior is similar to the experimental granular collapse
reported in Fig 2. For very small aspect ratio, only the
edge of the squat column flows in response to gravity
while the center remains solid: this is due to the existence
of the yield stress which plays for Bingham fluids a role
similar to the role played by the angle of friction in
granular material. Hence we observed that H/L0 = a.
For larger aspect ratios, H/L0 becomes independent of
a, and is essentially dominated by the value of both
µ and τy. For larger value of τy, a peaked behavior
emerges around intermediate values of a: we probably
see here "erosion effect", namely the material falling
with increasing momentum destroys the large solid core
preserved by a stress under the yield τy for intermediate
values of a.

CONCLUSION

Although a power-law scaling seems a reasonable ap-
proximation of the behavior of the run-out for Bingham
column collapse, important features distinguish it from
the behavior of its granular counterpart. In first place, the
value of the exponent of the power law are much higher,
but most importantly, they seem to be very sensitive to
the rheological parameters. We can thus suspect that the
Bingham model does not capture the energy dissipation
occurring in granular collapse, which obey complex
mechanisms not yet fully explained. However, it allows
one to discriminate between the effects of geometry



FIGURE 6. Normalized final height of the deposit H/L0 as
a function of the aspect ratio a

and rheology, and determinate whether the scaling law
results at first order from the early stage of the collapse
or from the lateral spreading. More simulations will be
carried out in this perspective, and more comparison
between the time evolution of the flow, and the shape
of the deposit, will be done. In addition, implementing
a slipping or mixed condition at the horizontal plane
should bring us closer to the granular collapse phe-
nomenology.
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