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 A B S T R A C T

This article provides numerical results for a laminar gas flow at small velocities in the ‘‘looped thermosyphon’’, 
or ‘‘natural circulation loop’’ : a closed configuration composed of two horizontal adiabatic pipes and two 
vertical pipes with different fixed wall temperature. To this extent, following Paolucci (1982; 1994) we 
construct a low-Mach number model capable of taking into account the periodicity and the discontinuities 
intrinsic to this configuration. This compressible model is richer than the Boussinesq model since it describes 
the pressure variation and is adapted to the description of flows driven by large temperature gradients. 
We settle averaged equations through the pipes of small radius compared to the length, this gives a one 
dimensional system of equations of mass, momentum and energy with two pressures, a dynamical one and 
a thermodynamical one only function of time. We construct a quasi-exact solution in a laminar and steady-
state regime. We approach the low-Mach averaged 1D Model with a coupled numerical method based on the 
characteristics method considering the presence of the periodic conditions and the discontinuous gravity term 
with Dirac distributions as derivatives at the corners. The numerical results are confronted and validated by 
the aforementioned reference solution to determine their accuracy.
1. Introduction

Modeling gas flows in a network of heated or cooled pipes is 
crucial in a wide range of engineering applications. We are interested 
in cases where the gas velocity is low enough that the Mach number 
remains much smaller than one—a condition frequently encountered in 
practical systems. Such low-speed gas flows occur in many industries 
involving gas transport through pipelines and complex pipe networks. 
In particular, the increasing demand for the transportation of liquefied 
natural gas (LNG) has raised numerous questions about the behavior of 
gas flows in pipe systems subjected to temperature variations. One of 
the most simple archetypal flow problems in an arrangement of pipes 
with heat exchange is the ‘‘thermosyphon’’ or ‘‘natural circulation loop’’ 
(see Fig.  1 for a schematic representation). The looped thermosyphon is 
a closed pipeline configuration of length 4𝐿 where the gas is confined 
at some mean pressure in the gravity field and flows in a loop (here, 
a square) from one tube to another. The one at temperature 𝑇𝑓  cools 
the gas, making it denser causing it to descend, while the one at 
temperature 𝑇𝑐 heats it, making it less dense and consequently move 
up. The two remaining segments are adiabatic, with no heat exchange. 

∗ Corresponding author.
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These combined thermal effects drive a continuous, buoyancy-induced 
circulation. We will study this configuration in curvilinear coordinates 
with the axial coordinate 𝑥, taking values in [0, 4𝐿]. The point 𝑥 = 0 is 
the bottom left corner, corresponding with the inlet of the heated pipe. 
As the domain is closed with periodic boundary conditions, the points 
𝑥 = 0 and 𝑥 = 4𝐿 coincide. Moreover, the outlet of every pipe coincides 
with the inlet of the contiguous pipe.

The most common approximation of the Navier–Stokes equations 
assuming little overall density variations is the Boussinesq model [1]; 
this is equivalent to the hypothesis of incompressible flow (null velocity 
divergence) and small variations of pressure and temperature. Pressure 
remains close to the hydrostatic pressure and there is a linear relation 
between density and temperature variations. Furthermore, ‘‘density 
variations are neglected where they are not multiplied by gravity 𝑔’’ as 
stated historically by Boussinesq in [1]. One can indeed find in the liter-
ature both experimental studies and numerical simulations based on a 
Boussinesq assumptions for configurations similar to the thermosyphon 
described above. These works are often motivated by industrial ap-
plications, aiming at specific analyses of temperature behavior. Some 
examples are given in [2–7].
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Fig. 1. A sketch of the geometry of the looped thermosyphon (natural circu-
lation loop): a closed pipe of length 4𝐿 where the gas is confined and flows 
between the temperatures 𝑇𝑓  (cooled, it is denser, and falls) and 𝑇𝑐 (heated, 
it is less dense and moves up). The inclination of the pipes 𝜃 depends on the 
geometry: in the heated pipe is 𝜋

2
, in the cooled one is − 𝜋

2
 and in the others 

0 and 𝜋.

Concerning the simulation of gas flows, several works tackle config-
urations far more complex than the thermosyphon. Analyzing the most 
common choices in physical, mathematical, and numerical modeling 
is still useful. A common issue is dealing with non-linear conservative 
hyperbolic equations; it is common to simplify some terms in the 
momentum equations such as the non-linear or the gravity terms; usual 
choices are a Boussinesq or an isothermal assumption, see for exam-
ple [8–11]. A frequent choice is to use an averaged one-dimensional 
model instead of the full three-dimensional one and to simplify the mo-
mentum equation as in [10,12,13]. They neglect the non-linear and the 
inclination terms and do not use the energy equation; the former carries 
on the simulation through an electrical analogy, while the latter uses a 
transfer function model coupled with a linear interpolation of available 
temperature measurements instead of the energy equation. Another 
application of an electrical analogy is proposed by [14–16] explore 
some alternatives. Concerning the numerical schemes, it is possible to 
use finite differences combined with the method of characteristics as 
in [12]. In contrast, others have made some comparisons between finite 
differences and finite elements, like [17,18] or used only finite elements 
like [19].

In 1982, to add compressibility effects to the Boussinesq model, 
Paolucci introduced an alternative approach to remove the compress-
ible effect of sound waves (much faster than the average fluid flow) 
from the governing equations [20]. He obtained a ‘‘low-Mach number’’ 
model for the three-dimensional Navier–Stokes equations for general 
domains by means of an asymptotic analysis of the low-Mach limit. 
One of the key features of Paolucci’s approach is the splitting of the 
pressure into two terms: a thermodynamic one taking into account 
global compressible effects (only function of time, not on space, noted 
𝑃 (𝑡)) of the dominant order and function of temperature only and 
a dynamic one associated to velocity changes (noted 𝛱 , function of 
space and time) of the order of magnitude of squared Mach, function 
of temperature and position. This model is then applied to studying 
a differentially heated cavity [21], the first of many works on the 
2 
Table 1
Nomenclature.
 Description Symbol Unit  
 Courant–Friedrichs–Lewy number CFL –  
 Specific heat at constant pressure 𝐶𝑝 m2 s−2 K−1  
 Pipe diameter, Radius 𝐷,𝑅 m  
 Rate of strain tensor D s−1  
 Modified Fannig 𝑓 m s−1  
 Heat transfer coefficient ℎ kg s−3 K−1  
 Thermal conductivity 𝑘 kg m s−3 K−1 
 Loop length 𝐿 m  
 Mean pressure across section 𝑝 kg m−1 s−2  
 Thermodynamic pressure function of time 𝑃 (𝑡) kg m−1 s−2  
 Radial coordinates 𝑟 m  
 Specific gas constant r m2 s−2 K−1  
 Pipe surface 𝑆 m2  
 Time 𝑡 s  
 Mean temperature across section 𝑇 (𝑥, 𝑡) K  
 Cold temperature 𝑇𝑐 K  
 Fluid temperature 𝑇𝑓 K  
 Longitudinal velocity 𝑢𝑥(𝑥, 𝑟, 𝑡) m s−1  
 Mean longitudinal velocity 𝑢(𝑥, 𝑡) m s−1  
 Longitudinal coordinate 𝑥 m  
 Heat capacity ratio 𝛾 –  
 Angle of the pipe 𝜃 –  
 Dynamic viscosity 𝜇 kg m−1 s−1  
 Dynamic pressure 𝛱 kg m−1 s−2  
 Density 𝜌(𝑥, 𝑡) kg m−3  
 Shear stress at the wall 𝜏𝑥 s−1  

differentially heated cavity with a low-Mach model. In [22], they derive 
numerical reference solutions for steady natural convection flows by 
varying the Rayleigh number and the viscosity law. In [23], we see the 
effort of performing low-Mach simulations through different methods, 
using an asymptotic expansion and developing an algorithm for the 
fully compressible Navier–Stokes equations with particular attention 
to the discretization when the Mach number is low. Over time the 
assumption of low-Mach number has been extended to more com-
plex physical problems like in [24–27]. During the last decades, the 
low-Mach model has greatly interested the scientific community. For 
example [28–36] apply this approximation in many fields. Recently 
in [37], we can see how to extend to low-Mach regimes the methods for 
reduced models through proper orthogonal decomposition of Navier–
Stokes equations coupled with thermal effects. In [38] they perform 
an asymptotic analysis combining the asymptotic limit of several small 
parameters, including the Mach number.

We have seen how, in pipe flows, the state of the art is Boussinesq-
based and how the low-Mach assumption is employed in many fields. 
In this paper, we develop Paolucci [21] approach by applying the low-
Mach expansion in a complex geometric configuration with corners and 
periodicity.

The paper is organized as follows: in Section 2, we derive an 
unsteady and one-dimensional low-Mach model inspired from Paolucci 
for pipe flows based on an asymptotic expansion. In particular, we 
exploit the small gas velocity to have the Mach number tending to 
zero and apply the tools of perturbation theory to obtain a simplified 
model. Additionally, we summarize the features of the Boussinesq 
model and show the differences with the low-Mach model. In Sec-
tion 3, we construct a laminar steady reference solution for pipes. 
In Section 3.2 we see how to construct an analytical solution  for 
the thermosyphon at constant kinematic viscosity. Additionally, we 
prove on the thermosyphon the classical limit of our model for small 
temperature differences. In Section 4, we present the numerical algo-
rithm we have implemented and explain how the discontinuities of 
the gravity term give issues to the simulation and how we addressed 
them. In Section 5, we show some numerical results (compared with the 
analytical solution) obtained with the implementation of our algorithm.
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2. The model

2.1. Thin layer compressible Navier–Stokes

We consider the compressible, laminar flow of a Newtonian ideal 
gas in a pipe of radius 𝑅 and length 𝐿 (see Table  1 for symbols). The 
pipe has an angle of inclination 𝜃 with horizontal, the gravitational 
acceleration is 𝑔 (see Fig.  2). 

Thermodynamical coefficients are supposed constant. The specific 
heat capacity at constant pressure is 𝐶𝑝, the thermal expansion coef-
ficient 𝛼 = (− 1

𝜌
𝜕𝜌
𝜕𝑇

|

|

|𝑝
) = 1∕𝑇  for ideal fluid. The ratio 𝛾 of the heat 

capacity at constant pressure 𝐶𝑝 to the heat capacity at constant volume 
𝐶𝑣, allows to write 𝐶𝑝 ∶=

𝛾r
𝛾−1  with r specific constant of the gas. 

The flow is assumed to be axisymmetric, 𝑟 is the radial coordinate. 
The compressible Navier–Stokes equations are non-dimensionalized 
using the classical Reynolds number 𝑅𝑒, Mach number 𝑀𝑎, Froude 
number 𝐹𝑟, and Prandtl number 𝑃𝑟. Assuming the pipe is slender, 
with 𝑅∕𝐿 ≪ 1, the equations can be simplified to a thin-layer Navier–
Stokes system. In this limit, longitudinal second-order derivatives in the 
momentum and energy equations can be neglected, and the pressure 
is therefore uniform in the radial direction. This leads to a system 
analogous to the axisymmetric boundary layer equations, as described 
in [39].

The resulting system remains two-dimensional. We integrate those 
equations across the section as usual to obtain one-dimensional equa-
tions. This averaging technique is classical and is used in many thin 
layer configurations in fluid mechanics (compressible flow in pipes
[15], shallow water equations, [40], flow in arteries [41]...). The thin 
layer compressible Navier–Stokes section-averaged system written back 
with dimensions and using 𝐼𝑆 (𝑢𝑥) ∶= ∫ 𝑅

0 2𝜋𝑢𝑥(𝑥, 𝑟, 𝑡)𝑟d𝑟 as a shorthand 
reads: 

𝜕
𝜕𝑡
𝐼𝑆 (𝜌) +

𝜕
𝜕𝑥

𝐼𝑆 (𝜌𝑢𝑥) = 0, (1a)
𝜕
𝜕𝑡
𝐼𝑆 (𝜌𝑢𝑥) +

𝜕
𝜕𝑥

𝐼𝑆 (𝜌𝑢2𝑥) +
𝜕
𝜕𝑥

𝐼𝑆 (𝑝) = −𝜏𝑤𝜋𝐷 − 𝜌𝑆𝑔 sin 𝜃, (1b)

𝜌𝐶𝑝

( 𝜕
𝜕𝑡
𝐼𝑆 (𝑇 ) +

𝜕
𝜕𝑥

𝐼𝑆 (𝑇 𝑢𝑥)
)

= 𝛼
( 𝜕
𝜕𝑡
𝐼𝑆 (𝑝) +

𝜕
𝜕𝑥

𝐼𝑆 (𝑝𝑢𝑥)
)

+ 𝐼𝑆 (𝜏 ∶ D. ) − 2𝜋𝑅𝑞𝑤, (1c)

𝜌 =
𝑝
r𝑇

, (1d)

The 1D system (1) is function of space variables 𝑥 and time vari-
able 𝑡. It is constituted of (1a) the averaged continuity equation, (1b) 
the averaged momentum equation, (1c) the averaged temperature (or 
energy) equation, and (1d) the equation of state (ideal gas law). 

The final unknowns are defined as an integral on the cross-section 
of the pipe. For example, the mean value of velocity is defined as :

𝑢(𝑥, 𝑡) =
𝐼𝑆 (𝑢𝑥(𝑥, 𝑟, 𝑡))

∫ d𝑆
=

∫ 𝑢𝑥(𝑥, 𝑟, 𝑡)d𝑆
𝑆

.

For pressure 𝑝(𝑥, 𝑡), due to the thin layer approximation, its mean value 
coincides with itself 𝐼𝑆 (𝑝(𝑥, 𝑡)) = 𝑝(𝑥, 𝑡). For quantities that vary on 
the cross-section, such as velocity, density and temperature, one has to 
provide additional hypotheses on the profile. These assumptions allow 
us, for example, to link ∫ 𝑢2𝑥𝑟d𝑟 to 𝑆𝑢2 (through the Coriolis–Boussinesq 
coefficient). This procedure is discussed in Shallow Water flows [40], in 
arterial flows [41], and in thermal flows [42]. It is possible to suppose 
a plug flow (constant velocity with 𝑟) or a Poiseuille flow [43,44] in 
which the velocity is supposed parabolic along the radial axis. The first 
one is more suitable for high Reynolds flows, and the second one is 
more suitable for lower Reynolds flows, neglecting all entrance effects 
in both cases. In the case of a Poiseuille profile, 𝐼𝑆 (𝑢2𝑥) = (4∕3)𝑢2𝑆. 
In practice (even if it is valid only for plug flows), we will say that 
𝐼𝑆 (𝑢2𝑥) = 𝑢2𝑆, as it is common for pipe flows [41]. The area of the pipe 
cross-section is 𝑆 = ∫ 𝑅

0 2𝜋𝑟d𝑟 = 𝜋𝑅2, but few extra hypotheses allow 
extend to any cross sections; hence 𝐷 is the hydraulic diameter (and 𝑅
the hydraulic radius).
3 
Fig. 2. Sketch of an oriented inclined pipe of length 𝐿, cross-section 𝑆, and 
inclination angle 𝜃, with mean axial velocity 𝑢(𝑥, 𝑡) in a gravity field 𝑔.

In the same vein, to estimate shear stress at the wall 𝜏𝑤 and 
dissipation 𝐼𝑆 (𝜏 ∶ D. ) = ∫ 𝜏𝑖𝑗𝐷𝑖𝑗d𝑆 as function of mean value of 
velocity 𝑢(𝑥, 𝑡), one has to do the same hypothesis on velocity profile. 
The general expression for 𝜏𝑤 at the wall is linked to 𝑢(𝑥, 𝑡) by the 
tabulated Fanning friction coefficient : 𝜏𝑤∕ 𝜌𝑢2

2 . In the case of laminar 
flow, 𝜏𝑤 = 4𝜇𝑢

𝑅 =
8𝜈
𝑅
2 𝜌𝑢. We suppose in the following kinematic viscosity 

𝜈 ∶= 𝜇
𝜌  to be constant (as a first approximation) and subsequently 

defined a modified Fanning coefficient as 𝑓 ∶= 8𝜈
𝑅 . The constant 𝜈

assumption will help construct the analytical solution. Relaxing this 
hypothesis for the numerical computations will not be a problem. The 
source term of the Heat Equation 𝐼𝑆 (𝜏𝑖𝑗𝐷𝑖𝑗 ) = ∫ 𝜋2𝜇𝑟

(

𝜕𝑢𝑥
𝜕𝑟

)2
d𝑟 may be 

computed in the case of the Poiseuille flow and gives 𝜋𝜏𝑤𝐷.
Finally, using the definition of the Nusselt number and the results 

of the Graetz problem [45,46], we introduce the classical [47] heat 
exchange coefficient ℎ to model exchanges with the wall. We note 
that the temperature is the velocity-averaged temperature in the Graetz 
problem. By considering a reference temperature 𝑇𝑟𝑒𝑓 , the heat flow 
through the lateral surface of the pipe is :
𝑞𝑤(𝑥, 𝑡) = ℎ(𝑇 (𝑥, 𝑡) − 𝑇𝑟𝑒𝑓 ).

Hence the values at the wall 𝜏𝑤 and 𝑞𝑤 and the bulk value 𝐼𝑆 (𝜏𝑖𝑗𝐷𝑖𝑗 ) are 
linked to the associated mean fields 𝑢(𝑥, 𝑡) and 𝑇 (𝑥, 𝑡) through empirical 
relations.

2.2. The low-Mach model

In many practical industrial applications, the gas velocity is small 
compared to the speed of sound 𝑐, which implies that the Mach number 
(𝑀𝑎) is small. This can present a singularity when working with the di-
mensionless momentum equation (1b), due to the presence of the 𝑀𝑎−2

scaling in front of the pressure term: ( 1
𝛾𝑀𝑎2

𝜕(𝑆̃𝑝̃)
𝜕𝑥̃ ). The dimensionless 

version of momentum equation (1b) is indeed : 
𝜕(𝑆̃𝜌̃𝑢̃)

𝜕𝑡
+

𝜕(𝑆̃𝜌̃𝑢̃2)
𝜕𝑥̃

+ 1
𝛾𝑀𝑎2

𝜕(𝑆̃𝑝̃)
𝜕𝑥̃

= −
𝑓
2
𝜋𝜌̃𝑢̃𝐷̃ − 1

𝐹𝑟
𝑆̃𝜌̃ sin 𝜃. (2)

Following Paolucci [20,21], a low-Mach-number model can be derived 
by performing an asymptotic expansion of the flow variables under the 
assumption 𝑀𝑎 → 0. The expansions are as follows: 
𝑢̃(𝑥, 𝑡) = 𝑢̃0(𝑥, 𝑡) +𝑀𝑎𝑢̃1(𝑥, 𝑡) + (𝑀𝑎2), (3a)

𝑇̃ (𝑥, 𝑡) = 𝑇̃0(𝑥, 𝑡) +𝑀𝑎𝑇̃1(𝑥, 𝑡) + (𝑀𝑎2), (3b)

𝑝̃(𝑥, 𝑡) = 𝑃0(𝑥, 𝑡) +𝑀𝑎𝑃1(𝑥, 𝑡) + 𝛾𝑀𝑎2𝛱̃(𝑥, 𝑡) + (𝑀𝑎3). (3c)

Substituted in the equations without dimension gives at the order 𝑀𝑎−2

and 𝑀𝑎−1 for the momentum equation (2):
𝜕𝑥̃𝑃0 = 0, 𝜕𝑥̃𝑃1 = 0.

At order (𝑀𝑎−2), the pressure is spatially uniform and hence is only 
function of time. When dimensional variables are reintroduced, this 
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corresponds to the thermodynamic pressure 𝑃 (𝑡). At order (𝑀𝑎−1), 
the perturbation in space and time will remain null by boundary 
conditions. At the next order, (1), the pressure gradient reappears 
in the momentum equation as: 1

𝛾𝑀𝑎2
𝜕(𝑆̃𝑝̃)
𝜕𝑥̃ = 𝜕(𝑆̃𝛱̃)

𝜕𝑥̃ . Re-introducing the 
dimensional variables, Eq. (1a) is not changed, Eq. (1b) is with the 
dynamic pressure 𝛱 , and Eq.  (1c) has the thermodynamic 𝑃 (𝑡) in it. 
The resulting form of the 1D low-Mach number model is: 

𝜕(𝑆𝑢)
𝜕𝑥

= −𝑆
𝜌
(
𝜕𝜌
𝜕𝑡

+ 𝑢
𝜕𝜌
𝜕𝑥

), (4a)

𝜕(𝑆𝜌𝑢)
𝜕𝑡

+
𝜕(𝑆𝑢2𝜌)

𝜕𝑥
+

𝜕(𝑆𝛱)
𝜕𝑥

= −
𝑓
2
𝜋𝜌𝑢𝐷 − 𝜌𝑆𝑔 sin 𝜃, (4b)

𝜌𝐶𝑝

(

𝜕(𝑆𝑇 )
𝜕𝑡

+ 𝑢
𝜕(𝑆𝑇 )
𝜕𝑥

)

= 𝑆𝑃 ′(𝑡) − 2𝜋𝑅𝑞𝑤, (4c)

where 𝑃 (𝑡) is the thermodynamic pressure involved in the energy 
equation, while 𝛱(𝑥, 𝑡) (the second order perturbation) is the dynamic 
pressure involved in the momentum equation.

Always following Paolucci, different formulation of the divergence 
Eq. (4a) can be settled, using the identity 𝑑𝜌 = 𝜕𝜌

𝜕𝑇 𝑑𝑇+
𝜕𝜌
𝜕𝑃 𝑑𝑃 , and taking 

into account of  (4c), the (4a) equation reads: 
𝜕(𝑆𝑢)
𝜕𝑥

= 𝐴(𝑇 , 𝑃 )𝑃 ′(𝑡) + 𝐵(𝑇 , 𝑃 )𝑞𝑤. (5)

In the case of ideal gases, 𝐴 and 𝐵 reduce to: 

𝐴(𝑇 , 𝑃 ) ∶= − 𝑆
𝛾𝑃

, 𝐵(𝑇 , 𝑃 ) ∶= −
2𝜋𝑅(𝛾 − 1)

𝛾𝑃
. (6)

By the periodicity of the closed domain (the four closed pipes) of length 
4𝐿

∫domain
𝜕𝑥(𝑆𝑢) d𝑥 = 0,  therefore ∫domain

(𝐴(𝑇 , 𝑃 )𝑃 ′(𝑡)+𝐵(𝑇 , 𝑃 )𝑞𝑤) d𝑥 = 0.

It gives the following equation for the time evolution of thermodynamic 
pressure : 

𝑃 ′(𝑡) = −
∫domain 𝐵(𝑇 , 𝑃 )𝑞𝑤 d𝑥

∫domain 𝐴(𝑇 , 𝑃 ) d𝑥
= −

2𝜋𝑅(𝛾 − 1)
4𝑆𝐿 ∫domain

𝑞𝑤 d𝑥, (7)

This relation represents the variations of thermodynamic pressure due 
to the heating (in Boussinesq approximation, it is zero).

Remark.  For numerical resolution of pressure 𝛱 , an additional Eq. (9) 
deduced from (4b) is useful for the numerical implementation. Taking 
the derivative of from (4b) with respect to 𝑥, it gives a kind of Poisson 
equation with source terms. In the source terms are terms in derivative 
of 𝑢, we define the longitudinal shear as a new variable (which is not 
null as in Boussinesq, Paolucci [20]): 

𝑠𝑥 ∶= 𝜕𝑢
𝜕𝑥

= − 1
𝛾𝑃 (𝑡)

(

𝑃 ′(𝑡) +
2𝜋𝑅(𝛾 − 1)

𝑆
𝑞𝑤

)

, (8)

those terms will appear between brackets in the final expression (9). 
In the source terms are as well terms coming from the derivative of 
sin 𝜃 at each change of direction, in the case of the thermosyphon, the 
values of sin 𝜃 are 1,0–1,0, (Fig.  1), so that a sum of four 𝛿 Dirac Deltas 
distributions will appear with weights (say in general 𝜉𝑖 corresponding 
to the magnitude of the discontinuous changes from one pipe to the 
other at each of the four corners). The equation is : 

−𝜕𝑥

(

𝜕𝑥𝛱
𝜌

)

=
[

𝜕𝑡𝑠𝑥 + 𝑢𝜕𝑥𝑠𝑥 + 𝑠2𝑥 +
𝑓𝜋𝑠𝑥𝐷
2𝑆

]

+ 𝑔
4
∑

𝑖=1
𝜉𝑖𝛿𝑖𝐿. (9)

This continuous formulation highlights the type of equation to be 
solved. In the following, we adopt a semi-discretization in time, upon 
which a splitting method inspired by the Chorin–Temam projection 
approach is applied. The numerical scheme is described in Section 4.

2.3. The Boussinesq model

In this section, we revisit the Boussinesq model to highlight its 
key differences from the low-Mach-number model. In particular, the 
4 
counterpart of Eq.  (4a) has no source term leading to the simplified 
form 𝜕𝑥(𝑆𝑢) = 0, and in heat equation there is no 𝑃 ′(𝑡) contribution, 
only convection and diffusion. Then the counterpart of (4a), (4b) and 
(4c) is the laminar 1D averaged Boussinesq problem: 

𝜕(𝑆𝑢)
𝜕𝑥

= 0, (10a)

𝜌𝑐

(

𝜕(𝑆𝑢)
𝜕𝑡

+
𝜕(𝑆𝑢2)
𝜕𝑥

)

+
𝜕(𝑆𝑝)
𝜕𝑥

= −
𝑓
2
𝜋𝜌𝑐𝑢𝐷 + 𝜌𝑆𝑔 sin 𝜃, (10b)

𝜌𝑐𝐶𝑝

(

𝜕(𝑆𝑇 )
𝜕𝑡

+ 𝑢
𝜕(𝑆𝑇 )
𝜕𝑥

)

= 2𝜋𝑅𝑞𝑤, (10c)

In Boussinesq model we have the approximation 𝜌 = 𝜌init (1 − 𝛼(𝑇 (𝑥, 𝑡) −
𝑇𝑐+𝑇𝑓

2 )); the temperature does not vary much by hypothesis, while in 
low-Mach model, larger temperature gradients may appear. In low-
Mach model the velocity varies due to a source term which is not 
present here. In the Boussinesq model, 𝑝 = 𝑃0 +𝛱 , with 𝑃0 is constant 
in both time and space (we may put in it the hydrostatic variation 
𝛱 ′

ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 (𝑥) = −𝜌init𝑔 sin 𝜃), whereas, in low-Mach model, it is only 
constant in space.

3. Reference steady analytical solutions

3.1. The steady solution for one pipe

The system of Eqs. (4), which defines the low-Mach-number aver-
aged model, admits a steady-state solution under a set of simplifying 
assumptions. First, the nonlinear convective term 𝜕𝑥(𝜌𝑢2) is neglected, 
which is a reasonable approximation for slow flows. Additionally, the 
flow is assumed to be laminar, with friction modeled as linear in 
velocity. A constant kinematic viscosity is also assumed, implying 𝜇 ∝
𝜌, and the friction factor is given by 𝑓 = 8𝜈

𝑅 . Under these assumptions, 
the steady-state equations reduce to: 

𝑄′(𝑥) = 𝐵(𝑇 , 𝑃∞)𝑞𝑤(𝑥), (11a)

𝛱 ′(𝑥) =
(

−
𝑓
𝑅𝑆

𝑄(𝑥) − 𝑔 sin 𝜃
)

𝜌(𝑥), (11b)

𝑄(𝑥)
𝑇 ′(𝑥)
𝑇 (𝑥)

= 𝐵(𝑇 , 𝑃∞)𝑞𝑤(𝑥), (11c)

where 𝑄 ∶= 𝑆𝑢 denotes the velocity flux, and 𝐵(𝑇 , 𝑃∞) is the coeffi-
cient defined in (6). We will first derive local solutions for individual 
pipe segments and subsequently extend the analysis to a complete 
thermosyphon system.

Considering a generic pipe of length 𝐿 (𝑥 takes values in the interval 
[0, 𝐿]) with inlet temperature, flux, and dynamic pressure respectively 
𝑇 (𝑥 = 0), 𝑄(𝑥 = 0), and 𝛱(𝑥 = 0), a reference temperature at the wall 
𝑇𝑟𝑒𝑓  for non-adiabatic pipes, the solutions of (11) for this pipe are: 

𝑇 (𝑥) = 𝑇𝑟𝑒𝑓 + (𝑇 (𝑥 = 0) − 𝑇𝑟𝑒𝑓 )𝑒
− 𝑥

𝜆 , 𝑄(𝑥) = 𝛤𝑇 (𝑥), (12)

𝛱(𝑥) = −
𝜆𝑃∞𝑔 sin 𝜃

r𝑇𝑟𝑒𝑓
(ln 𝑇 (𝑥) − ln 𝑇 (𝑥 = 0))

−
𝑃∞
r𝑇𝑟𝑒𝑓

(

𝑓
𝑅𝑆

𝑇𝑟𝑒𝑓𝛤 + 𝑔 sin 𝜃
)

𝑥 +𝛱(𝑥 = 0). (13)

The parameter 𝛤  represents the mass flow rate and the equivalent 
length 𝜆 represents the thermal entry length. They are defined as 
follows: 

𝛤 ∶=
𝑄(𝑥 = 0)
𝑇 (𝑥 = 0)

, 𝜆 ∶= − 𝛤
𝐵(𝑇 , 𝑃∞)ℎ

,  or 𝜆 =
𝐶𝑝

2𝜋𝑅ℎ
𝑃∞𝛤
r

. (14)

Notice that the constant thermodynamic pressure 𝑃∞ appears in a 
steady regime.

In the case of an adiabatic pipe with inclination 𝜃 = 0, the solution 
reduces to:

𝑇 (𝑥) = 𝑇 (𝑥 = 0), 𝑄(𝑥) = 𝑄(𝑥 = 0), 𝛱(𝑥) = −
𝑃∞
r

𝑓
𝑅𝑆

𝛤𝑥 +𝛱𝐼𝑁 .
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3.2. The steady analytical solution for low-Mach model for a thermosyphon

Here, we extend the previous steady analytical solution valid for 
each pipe to the thermosyphon with four pipes. Starting from the first 
pipe with 𝑇0 = 𝑇 (𝑥 = 0), this pipe is heated at temperature 𝑇𝑟𝑒𝑓 = 𝑇𝑐 , 
then at its end the temperature is 𝑇1 = 𝑇 (𝑥 = 𝐿). This temperature 
𝑇1 is constant in the second pipe (the upper adiabatic one). Then for 
the third pipe 𝑇1 = 𝑇 (𝑥 = 2𝐿) and this pipe is cooled at 𝑇𝑟𝑒𝑓 = 𝑇𝑓 . 
At the end of this third pipe, and in the fourth (adiabatic) pipe, the 
temperature is by periodicity 𝑇0. See Fig.  1 for clarity. Using (12) we 
can then express the temperatures 𝑇0 and 𝑇1 as functions of 𝜆 : 

𝑇1 =
𝑇𝑐𝑒

𝐿
𝜆 + 𝑇𝑓

𝑒
𝐿
𝜆 + 1

, 𝑇0 =
𝑇𝑓 𝑒

𝐿
𝜆 + 𝑇𝑐

𝑒
𝐿
𝜆 + 1

,
𝑇0
𝑇1

=
𝑇𝑓 𝑒

𝐿
𝜆 + 𝑇𝑐

𝑇𝑐𝑒
𝐿
𝜆 + 𝑇𝑓

. (15)

The conservation of the mass in space imposes the ratio between 
velocity and temperature to be constant throughout the thermosyphon 
due to periodicity of the domain. Defining 𝑄0 in fourth and 𝑄1 in 
second:

𝛤 =
𝑄0
𝑇0

=
𝑄1
𝑇1

.

Consequently, 𝛤  and 𝜆 are global unknowns with the same value on 
each pipe.

The conservation of the mass in time imposes that the integral of the 
density over the domain in the stationary regime is equal to that of the 
density in the initial state (we define initial conditions by a subscript, 
for example 𝜌init). We have by global mass conservation: 

∫

4𝐿

0
𝜌d𝑥 = ∫

4𝐿

0
𝜌initd𝑥. (16)

The right hand side comes from initial condition and is just 𝑃initr𝑇init
4𝐿. The 

left-hand side can be rewritten and decoupled, by computing all the 
integrals in each pipe and making some manipulations, we can write 
Eq. (16) as : 
𝑃∞
𝑃init

𝜆
𝐿
𝑇init

(

𝐿
𝜆

(

1
𝑇𝑐

+ 1
𝑇𝑓

+ 1
𝑇0

+ 1
𝑇1

)

+ ln
𝑇1
𝑇0

(

1
𝑇𝑐

− 1
𝑇𝑓

))

= 4. (17)

We need another relation to close the system. For that, we impose that 
the value of 𝛱 at the outlet of the first pipe is equal to the value of 𝛱
at the inlet of the second pipe, and so on to obtain a second expression 
(18). Indeed, using (13) the continuity condition between the first and 
second pipes is:

𝛱1 = −
𝑔𝜆𝑃∞
r𝑇𝑐

ln
𝑇1
𝑇0

−
𝑃∞𝐿
r𝑇𝑐

(
𝑓
𝑅𝑆

𝑇𝑐𝛤 + 𝑔) +𝛱0;

while between the second and the third 𝛱2 = 𝛱1 −
𝑃∞𝑓𝐿𝛤
r𝑅𝑆 . The other 

two continuity conditions are similar. Combining all the continuity 
conditions, we have: 
𝑔𝑅𝑆
𝑓𝛤

(

𝜆
𝐿

ln
𝑇1
𝑇0

(

1
𝑇𝑐

+ 1
𝑇𝑓

)

−
(

1
𝑇𝑓

− 1
𝑇𝑐

))

+ 4 = 0. (18)

The system (17)–(18) has to be solved to obtain the final solution. But 
they are highly non-linear and it is not possible to decouple them. 
Nevertheless we can combine these equations to generate a new one 
that is a function of only 𝜆. To simplify this last expression we introduce 
a parameter without dimension 𝐺1

𝐺1 =
𝑃𝑟𝐺𝑎

128𝑁𝑢𝐷
.

which is linked to the Galilei number, Prandtl number and Nusselt 
number :

𝐺𝑎 =
𝑔𝐷3𝜌2init

𝜇2
, 𝑃 𝑟 = 𝜇𝐶𝑝∕𝑘, 𝑁𝑢𝐷 = ℎ𝐷

𝑘
.

Furthermore, we define the dimensionless quantity 𝜀 ∶= 𝑇𝑐−𝑇𝑓
𝑇𝑐+𝑇𝑓

 (smaller 
than one by definition). Combining (17) and (18) by exploiting (15) 
5 
gives the final transcendental dimensionless relation linking all the 
quantities:

1−
𝐺1𝐷
𝜆

𝜀+ 1 − 𝜀2

1 − 𝜀2 tanh2 𝐿
2𝜆

− 𝜆
𝐿

(

𝜀 −
𝐺1𝐷
𝜆

)

ln

(

1 + 2𝜀
tanh 𝐿

2𝜆

1 − 𝜀 tanh 𝐿
2𝜆

)

= 0.

(19)

The procedure we follow to find the unknown parameters consists 
in finding 𝜆 solving Eq. (19), then constructing 𝑇0 and 𝑇1 by using (15) 
and finally computing 𝛤  and 𝑃∞ by using Eqs. (18) and (14).

We can use an iterative approach such as the Newton method to 
numerically solve Eq. (19). After computing all the unknowns, the 
reference solution is ready to validate the numerical results.

3.3. Linearized solution

When the difference of temperatures between heated and cooled 
wall is small, i.e. when 𝜀 ≪ 1, a Taylor expansion of the previous 
relation (19) is:
2
𝐺1

𝜆
𝐷

+ 𝜀
(

2 𝜆
𝐿

tanh 𝐿
2𝜆

− 1
)

+𝜀2
(

−2 𝜆
𝐿

tanh2 𝐿
2𝜆

+ 1
𝐺1

𝜆
𝐷

tanh2 𝐿
2𝜆

− 2
𝐺1

𝜆
𝐷

tanh 𝐿
2𝜆

− 1
)

= (𝜀3).

(20)

By dominant balance we guess that
2
𝐺1

𝜆
𝐷

= (𝜀),

so that: 
2
𝐺1

𝜆
𝐷

+ 𝜀
(

2 𝜆
𝐿

tanh 𝐿
2𝜆

− 1
)

= 0. (21)

We will see at the end of this section that this equation represents the 
Boussinesq continuity equation for a thermosyphon.

Exploring other asymptotic limits of (20) shows that 𝐿
2𝜆 → 0 is 

not physically possible, as 𝜆 and 𝐿 are at least comparable. The other 
possibility is 𝐿2𝜆 → ∞. Under this assumption, we have that: tanh 𝐿

2𝜆 ≈ 1.
As a consequence, we obtain the following linearization for 𝜆:
𝜆 ≈ 𝑅𝐺1𝜀.

In order to find by linearization the expression of 𝑃∞, Eq. (17) is 
rewritten with 𝜀, it gives:

1 + 1 − 𝜀2

1 − 𝜀2 tanh2 𝐿
2𝜆

− 𝜆
𝐿
𝜀 log

(

1 + 2𝜀
tanh 𝐿

2𝜆

1 − 𝜀 tanh 𝐿
2𝜆

)

= 2
𝑃init
𝑃∞

𝑇𝑓
𝑇init

(1 + 𝜀).

By Taylor expansion, it gives :

2
(

1 −
𝑃init
𝑃∞

𝑇𝑓
𝑇init

)

− 2𝜀
𝑃init
𝑃∞

𝑇𝑓
𝑇init

+ 𝜀2
(

−1 − 2 𝜆
𝐿

tanh 𝐿
2𝜆

+ tanh2 𝐿
2𝜆

)

+ (𝜀3) = 0.

By dominant balance: 1 − 𝑃𝑖
𝑃∞

𝑇𝑓
𝑇𝑖

= (𝜀), this gives an estimation of 𝑃∞
by making a balance between the first two terms, obtaining: 

𝑃∞ = 𝑃init
𝑇𝑓
𝑇init

(1 + 𝜀) + (𝜀2). (22)

this last equation is the linear estimation for 𝑃∞ we were searching for. 
The total variation for 𝑃  is given by:

𝛥𝑃 = 𝑃∞ − 𝑃init = 𝑃init

( 𝑇𝑓
𝑇init

(1 + 𝜀) − 1
)

+ (𝜀2).

From this expression, one see that if 𝑇init is lesser or greater that 2
1
𝑇𝑐

+ 1
𝑇𝑓

, 
then the pressure drop is negative or positive.
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Fig. 3. Behavior of the characteristic length 𝜆 as a function of the character-
istic dimensionless number 𝐺1 by varying the relative temperature rise 𝜀 for 
both the low-Mach and the Boussinesq models.

Fig. 4. Behavior of the characteristic length 𝜆 as a function of the character-
istic dimensionless number 𝐺2 by varying the relative temperature rise 𝜀 for 
both the low-Mach and the Boussinesq models. For the low-Mach model, we 
consider several admissible values of 𝜀, while for the Boussinesq one, we use 
a small 𝜀. We show the asymptotic limit at infinity.

3.4. Comparison with the classical limit (Boussinesq)

As just suggested when obtaining (21), we may now come back 
to the Boussinesq model to compare with previous solution of the 
low-Mach model. To solve the system (10), we also impose continuity 
conditions for the dynamic pressure along the whole loop: between the 
first and the second pipes, and between the second and third pipes, they 
are :

𝛱1 = −
8𝜇
𝜋𝑅4

𝑄𝐿+ 𝛼𝜌𝑐𝑔 ∫

𝐿

0
(𝑇 (𝑥) − 𝑇𝑟)d𝑥+𝛱0 and 𝛱2 = −

8𝜇
𝜋𝑅4

𝑄𝐿+𝛱1.

Similar expressions arise for the other two continuity conditions. Let 
us now define the Grashof number at the radius scale: 𝐺𝑟 ∶= 𝛼𝛥𝑇𝑐𝐺𝑎, 
with 𝛥𝑇𝑐 = 𝑇𝑐 − 𝑇𝑓 , and the Boussinesq counterpart of 𝐺1 as:

𝐺2 =
𝑃𝑟𝐺𝑟 𝑅 = 𝐺1𝛼𝛥𝑇𝑐

𝑅 = 𝜀
𝐺1𝐷 .
128𝑁𝑢𝐷 𝐿 𝐿 𝐿

6 
Fig. 5. Placement of our variables on the mesh: velocities and temperature at 
the center of the cells 𝑖 ± 1

2
 while dynamic pressure at the nodes 𝑖.

By making the sum of the four equations, we obtain the following final 
relation, which is the counterpart of Eq.  (19) and which is exactly Eq. 
(21) for 𝐺1𝜀 ≈ 1 and 𝜀 approach 0: 
1
𝐺2

= 𝐿
2𝜆

− tanh 𝐿
2𝜆

. (23)

So we expect the values we found for 𝜆 as a function of 𝐺1 to be 
the same for both models as 𝜀 → 0. Fig.  3 shows how 𝜆

𝐿  varies as 
a function of 𝐺1 for different values of 𝜀 for a low-Mach model. We 
see that for small enough values of 𝜀, the results obtained for a low-
Mach model coincide with those of a Boussinesq model. The behavior 
of 𝜆 as a function of 𝐺2 is comparable to that as a function of 𝐺1; the 
main difference is that, in this case, we see the asymptotic limits. We 
expect that for 𝐺1𝜀 ≈ 1 and consequently 𝐺2 ≈ 𝐷

𝐿  the low-Mach tends 
to Boussinesq. Moreover, we find a polynomial asymptotic behavior as 
𝜆
𝐿 → ∞. In this case, 𝐿

2𝜆 → 0 and by exploiting the series expansion of 
the hyperbolic tangent, Eq. (23) gives:
𝜆
𝐿

≈ 1
3
√

24
𝐺

1
3
2 .

It is possible to see these limit behaviors in Fig.  4 where we take 
𝐿∕𝐷 = 10.

4. General algorithm

At this stage we have constructed a low-Mach model and an an-
alytical solution for the simulation of a gas flow throughout a ther-
mosyphon. An algorithm is here proposed for a numerical simulation. 
Let us remind the final system, equations we want to solve with 0 ≤
𝑥 ≤ 4𝐿 and 𝑡 > 0 are: 

𝑠𝑥 ∶= 𝜕𝑢
𝜕𝑥

= − 1
𝛾𝑃 (𝑡)

(

𝑃 ′(𝑡) +
2𝜋𝑅(𝛾 − 1)

𝑆
𝑞𝑤

)

, (24a)

𝜕𝑡𝑢 + 𝑢𝜕𝑥𝑢 +
𝜕𝑥𝛱
𝜌

= −
𝑓
2
𝜋𝑢𝐷

𝑆
− 𝑔 sin 𝜃, (24b)

𝑃 ′(𝑡) = −
2𝜋𝑅(𝛾 − 1)

𝑆|𝛺|
∫𝛺

𝑞𝑤, (24c)

𝜌𝐶𝑝

(

𝜕(𝑆𝑇 )
𝜕𝑡

+ 𝑢
𝜕(𝑆𝑇 )
𝜕𝑥

)

= 𝑆𝑃 ′(𝑡) − 2𝜋𝑅𝑞𝑤, (24d)

𝑞𝑤 ∶ = ℎ(𝑇 − 𝑇𝑟𝑒𝑓 ). (24e)

The resulting system consists of four equations for the four unknowns 
𝑢, 𝑇 ,𝛱 , and 𝑃 , supplemented by the closure relation for 𝑞𝑤 and the 
equation of state for the density. It is important to note, however, that 
the model does not explicitly include an evolution equation for 𝛱 . 
Instead, 𝛱 must be determined so that the quasi-incompressibility con-
straint is satisfied. In this framework, 𝛱 acts as a Lagrange multiplier 
ensuring that the velocity field satisfies this constraint, leading to an 
elliptic equation derived from the momentum equation. 

In the following, we construct a coupled numerical algorithm, in 
which we put together several discretization techniques. Even if every 
technique is well known by itself, we propose a way to combine them 
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Fig. 6. Performance analysis : Error profile for temperature and velocity for a laminar flow at small velocities through a thermosyphon with total length 
𝐿 = 0.25 m, diameter 𝐷 = 0.03 m, and imposed temperatures at the walls 𝑇𝑐 = 300.15 K and 𝑇𝑓 = 260.15 K.
that takes advantage of the best features of each of them.  The mesh and 
the numerical scheme are based on a staggered grid approach, where 
𝛱 is defined at cell centers, while 𝜌 and 𝑇  are defined at the interfaces, 
together with the velocity (see Fig.  5). This approach is chosen to 
enable a simple and explicit discretization of the convective terms in 
the mass and momentum equations (see  [48–51]). Alternatively, one 
could also retain a velocity–pressure/density formalism and apply an 
interpolation for the density during the correction step.

The algorithm is the following.

Algorithm for 𝑇
We apply the method of characteristics [28] described to  Eq.  (24d). 

We express Eq. (24d) on every pipe as:
𝜕𝑇 (𝑥, 𝑡)

𝜕𝑡
+ 𝑢(𝑥, 𝑡)

𝜕𝑇 (𝑥, 𝑡)
𝜕𝑥

= 𝑓 (𝑥, 𝑡) ∀𝑥 ∈ [0, 𝐿], 𝑡 ∈ (0, 𝑇 ],

𝑇 (𝑥, 0) = 𝑇𝑖(𝑥) ∀𝑥 ∈ [0, 𝐿],

𝑇 (0, 𝑡) = 𝑇0(𝑡) ∀𝑡 ∈ (0, 𝑇 ].

where 𝑇𝑖 ∈ ∞([0, 𝐿]), 𝑇0 ∈ ∞((0, 𝑇 ]) and:

𝑓 (𝑥, 𝑡) = 1
𝜌𝐶𝑝

𝑃 ′(𝑡) − 2𝜋𝑅
𝐶𝑝𝜌𝑆

𝑞𝑤 =
(𝛾 − 1)𝑇 (𝑥, 𝑡)

𝛾𝑃 (𝑡)
𝑃 ′(𝑡)

−
2ℎ𝜋𝑅(𝛾 − 1)𝑇 (𝑥, 𝑡)

𝑆𝛾𝑃 (𝑡)
(𝑇 (𝑥, 𝑡) − 𝑇𝑟𝑒𝑓 ).

Set the temperature at the foot of the characteristic, 𝑇̂ 𝑛 ∶= 𝑇 (𝜁𝑛𝑖 , 𝑡
𝑛), and 

the discrete field 𝑇 𝑛 ≈ 𝑇 (⋅, 𝑡𝑛). We choose the following fully discretized 
scheme:

𝑇 𝑛+1
𝑖+1∕2 =

𝑇̂ 𝑛
𝑖+1∕2 + 𝑇 𝑛

𝑖+1∕2𝛥𝑡
(

(𝛾−1)
𝛾𝑃 (𝑡𝑛)𝑃

′(𝑡𝑛) + 2𝜋𝑅(𝛾−1)ℎ
𝛾𝑆𝑃 (𝑡𝑛) 𝑇𝑟𝑒𝑓

)

1 + 𝛥𝑡
2𝜋𝑅(𝛾−1)𝑇 𝑛

𝑖+1∕2ℎ

𝛾𝑆𝑃 (𝑡𝑛)

.

Computation of the integral of 𝑞𝑤
Supposing the temperature is regular enough, a good approximation 

of its integral over the domain derives by the trapezoidal rule: 

∫ 𝑞𝑛+1𝑤 d𝑥 = ∫ ℎ(𝑇 𝑛+1 − 𝑇𝑟𝑒𝑓 )d𝑥 ≈
𝑁−1
∑

ℎ(𝑇 𝑛+1
𝑖+1∕2 − 𝑇𝑟𝑒𝑓 )𝛥𝑥.
𝛺 𝛺 𝑖=0

7 
Computation of 𝑃
Thanks to the discretization of the integral of 𝑞𝑤 we discretize (24c) 

via the following implicit Euler scheme:

𝑃 𝑛+1 = 𝑃 𝑛 − 𝛥𝑡
2𝜋𝑅(𝛾 − 1)

𝑆|𝛺|
∫𝛺

𝑞𝑛+1𝑤 d𝑥.

Computation of 𝑠𝑥
Eq.  (24a) can be rewritten as:

𝑠𝑥 =
2𝜋𝑅(𝛾 − 1)

𝛾𝑆𝑃

(

1
|𝛺|

∫𝛺
𝑞𝑤d𝑥 − 𝑞𝑤

)

.

Thanks to the definition of 𝑇  at the interface 𝑖 + 1
2 , a discrete 

expression for 𝑠𝑥 can be written as: 

𝑠𝑛+1𝑥 𝑖+1∕2 =
2𝜋𝑅(𝛾 − 1)
𝛾𝑆𝑃 𝑛+1

(

1
|𝛺|

∫𝛺
𝑞𝑛+1𝑤 d𝑥 − 𝑞𝑤𝑛+1

𝑖+1∕2

)

. (25)

Computation of 𝛱 and 𝑢
We apply a projection-correction scheme to solve the coupled prob-

lem in velocity–pressure using the formalism of Chorin-Temam. To 
do so, we introduce an intermediate velocity 𝑢∗ and use the quasi-
incompressibility constraint 𝜕𝑥𝑢 = 𝑠𝑥 at time 𝑛+1 computed with (25). 
We use a time semi-discretization and split Eq.  (24b) into two parts: :

• Prediction step : 
𝑢∗ − 𝑢𝑛

𝛥𝑡
+ 𝑢𝑛𝑠𝑥

𝑛+1 = −𝑓𝜋𝑢∗𝑅
𝑆
, (26)

• Correction step : 
𝑢𝑛+1 − 𝑢∗

𝛥𝑡
= − 1

𝜌𝑛+1
𝜕𝛱𝑛+1

𝜕𝑥
− 𝑔 sin 𝜃. (27)

Equation for 𝛱 . By applying the divergence operator to the correc-
tion step (27), we derive an elliptic equation governing 𝛱 . Note the 
presence of sin 𝜃, which represents the inclination of the pipe. In the 
case of a thermosyphon, this inclination can vary from one section to 
another, leading to a discontinuity. As a result, a Dirac delta appears 
in the right-hand side of the equation for the pressure. 

− 𝜕𝑥

(

1
𝜌
𝜕𝛱
𝜕𝑥

)

= 𝑔
4
∑

𝜉𝑗𝛿𝑥̂𝑗 +
1
𝛥𝑡

(𝜕𝑥𝑢∗ − 𝑠𝑥
𝑛+1). (28)
𝑗=1
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Table 2
Physical parameter values used in the numerical results.
 Description Symbol Value Unit  
 Loop length 𝐿 0.125 m  
 Pipe diameter 𝐷 0.03 m  
 Cold temperature 𝑇𝑐 300.15 K  
 Fluid temperature 𝑇𝑓 260.15∕280.15 K  
 Thermal conductivity 𝑘 0.0224 kg m s−3 K−1 
 Dynamic viscosity 𝜇 1.66 × 10−5 kg m−1 s−1  
 Specific heat at constant pressure 𝐶𝑝 1039 m2 s−2 K−1  
 Heat capacity ratio 𝛾 1.4 –  
 Courant–Friedrichs–Lewy number CFL 4 –  

The elliptic equation is discretized and solved using a Finite Volume 
Method. Using the relation (1d), we introduce 𝑇̄𝑖+1∕2, the value of the 
temperature, which must be recomputed at cell interfaces for use in the 
pressure equation scheme. The scheme for the pressure reads at node 𝑖
centered on the cell 𝐾𝑖 = [𝑥𝑖−1∕2, 𝑥𝑖+1∕2]: 

−
𝑇̄𝑖−1∕2
𝛥𝑥𝑖

𝛱𝑖−1 +
𝑇̄𝑖−1∕2 + 𝑇̄𝑖+1∕2

𝛥𝑥𝑖
𝛱𝑖 −

𝑇̄𝑖+1∕2
𝛥𝑥𝑖

𝛱𝑖+1 = 𝑏𝑖, (29)

with 𝑏𝑖 is defined as: 

𝑏𝑖 = 𝑔
4
∑

𝑗=1
𝜉𝑗𝛿𝑖(𝑗),𝑖 +

𝑃
𝑟𝛥𝑡

((𝑢∗𝑖+1∕2 − 𝑢∗𝑖−1∕2) − 𝛥𝑥𝑖 𝑠𝑥
𝑛+1
𝑖 ). (30)

where 𝑖(𝑗) denotes the index 𝑖 of the mesh node at which the 𝑗th 
discontinuity, corresponding to the inclination at 𝑥̂𝑗 is located. At a 
given node 𝑖, and following the approach proposed in [52] to handle 
the piecewise nature of the temperature, we have to estimate the 
temperature at the interface, typically through harmonic averaging :

𝑇̄𝑖+1∕2 =
2𝑇̄𝑖𝑇̄𝑖+1
𝑇̄𝑖 + 𝑇̄𝑖+1

,

with 𝑇̄𝑖 which can be estimated at node 𝑖 by 𝑇̄𝑖 = (𝑇𝑖+1∕2 + 𝑇𝑖−1∕2)∕2. 
Similarly, for 𝑖 ∈ {1, 2, 3, 4}, 𝜉𝑗 has to be estimated with a method based 
on the same work [52,53]. For a discontinuity located at a node 𝑖 such 
that 𝑖 = 𝑖(𝑗), we have :

𝜉𝑗 =
𝑇̄𝑖

𝑇̄𝑖+1 + 𝑇̄𝑖
𝜉𝑗 .

where 𝜉𝑗 represents the corresponding amplitude coefficients 𝜕𝑥(sin 𝜃) =
∑4

𝑗=1 𝜉𝑗𝛿(𝑥 − 𝑥̂𝑗 ).  Owing to the use of a staggered grid, with the 
temperature defined at cell interfaces, 𝑢∗ is naturally evaluated at 𝑖+1∕2
and directly provided by the prediction step (26). In the context of the 
1D model considered here, the chosen strategy has the advantage of 
being straightforward to implement and is particularly well-suited for 
network-based coupling, as planned in future developments. 

5. Numerical results

Let us briefly show the methodology used to analyze the numerical 
results obtained by implementing our algorithms on a standard Linux 
i7-9850H CPU. We start by showing the convergence results in space. 
Then we compare the numerically computed 𝑇 , 𝑢, 𝑃  and 𝛱 with the 
reference solution. We do that at the final time the numerical curves 
converge to a stationary solution. Finally, we analyze what happens by 
varying some of the physical parameters of the problem. We summarize 
in Table  2 the physical parameter we used.

Fig.  6 shows the order of convergence of our algorithms. It confirms 
that our algorithms are of the first order in space for temperature and 
velocity.

Figs.  7, 8, and 9 show the typical results obtained for pressure and 
velocity. Let us notice that the numerical solution is well-superposed 
to the reference one, the profile of temperature and velocity is the 
same up to a scale factor, and the global variation of speed is small, 
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Fig. 7. Comparison between the reference solution (in red) and the converged 
numerical solution (in blue) for the temperature for a laminar flow at small 
velocities through a thermosyphon with as a number of nodes 𝑁𝑥 = 100 000, 
final time 𝑇 = 10 s, length 𝐿 = 2 m, imposed temperatures at the walls 
𝑇𝑐 = 300.15 K and 𝑇𝑓 = 260.15 K, 𝐶𝐹𝐿 = 4.

Fig. 8. Comparison between the reference solution (in red) and the converged 
numerical solution (in blue) for the velocity for a laminar flow at small 
velocities through a thermosyphon with as a number of nodes 𝑁𝑥 = 100 000, 
final time 𝑇 = 10 s, length 𝐿 = 2 m, imposed temperatures at the walls 
𝑇𝑐 = 300.15 K and 𝑇𝑓 = 260.15 K, 𝐶𝐹𝐿 = 4.

as expected. We also notice that the dynamic pressure in the adiabatic 
pipes is linear with a small slope, almost constant. This slope becomes 
more significant with smaller values of the radius.

Fig.  10 shows the behavior of the thermodynamic pressure 𝑃  as a 
function of time. In this case, we change some physical parameters. We 
take 𝑇𝑐 = 300.15 K and 𝑇𝑓 = 290.15 K so that 𝜀 is small enough. We take 
𝐿 = 8 m to assure that the condition 𝐿 > 2𝜆. We consider two different 
sets of initial values for thermodynamic pressure and temperature. In 
a first case 𝑃𝑖 = 202 650 Pa, 𝑇𝑖 = 293.07 K so that 𝑃∞ > 𝑃𝑖. In a second 
case 𝑃𝑖 = 205 416 Pa, 𝑇𝑖 = 297.07 K so that 𝑃∞ < 𝑃𝑖. We have chosen 
the initial values so that the ratio 𝑃𝑖𝑇𝑖  is the same. This choice allows 
us to have the same asymptotic stationary estimations. We see that for 
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Fig. 9. Comparison between the reference solution (in red) and the converged 
numerical solution (in blue) for the dynamic pressure for a laminar flow at 
small velocities through a thermosyphon with as a number of nodes 𝑁𝑥 =
100 000, final time 𝑇 = 10 s, length 𝐿 = 2 m, imposed temperatures at the 
walls 𝑇𝑐 = 300.15 K and 𝑇𝑓 = 260.15 K, 𝐶𝐹𝐿 = 4.

Fig. 10. Two examples of thermodynamic pressure profiles for a laminar flow 
at small velocities through a thermosyphon as a function time with as a 
number of nodes 𝑁𝑥 = 25 597, final time 𝑇 = 150 s, total length 𝐿 = 8 m, 
imposed temperatures at the walls 𝑇𝑐 = 300.15 K and 𝑇𝑓 = 290.15 K, so that 
𝜀 = 0.017. For the orange pressure 𝑃𝑖 = 202 650 Pa and 𝑇𝑖 = 293.07 K, while for 
the blue one 𝑃𝑖 = 205 416 Pa and 𝑇𝑖 = 297.07 K.

large enough values of 𝑡, they tend asymptotically after an oscillation 
to  the stationary value we computed through the analytical solution.

Fig.  11 shows how the temperature varies along 𝑥 with the conduc-
tivity 𝑘. The reference temperatures are reached faster as 𝑘 becomes 
bigger. Notice that only for sufficiently large values of 𝑘 the reference 
temperatures are attained. Moreover, the Péclet number varies between 
42.29 and 178.70 for values of 𝑘 between 0.0124 and 0.0524. Here, we 
have 𝐿 = 1 m.

Table  3 shows the values of the dimensionless number character-
istic of the problem. Notice that the value of Reynolds matches the 
assumption of laminar flow and that the value of the Mach number 
is small. Given that the relative temperature difference 𝜀 is 0.0345, 
the values of 𝐺1 and 𝐺2 tell us how far we are from the Boussinesq 
regime. This is confirmed by the product 𝐺1𝜀 which is of order 102, 
far from 1 and by the ratio diameter to length 𝐷∕𝐿, which is 0.03, 
far from 𝐺 . Notice that, thanks to the low-Mach model, we can take 
2

9 
Fig. 11. Temperature profile for a laminar flow at small velocities through 
a thermosyphon by varying the conductivity k with as the number of nodes 
𝑁𝑥 = 3997, final time 𝑇 = 10 s, length 𝐿 = 1 m, imposed temperatures at 
the walls 𝑇𝑐 = 300.15 K and 𝑇𝑓 = 280.15 K. The Péclet number varies between 
42.29 and 178.70 for values of 𝑘 between 0.0124 and 0.0524.

Table 3
The values of the dimensionless numbers characteristic of a laminar flow at 
small velocities through a thermosyphon with total length 𝐿 = 1 m, diameter 
𝐷 = 0.03 m, and imposed temperatures at the walls 𝑇𝑐 = 300.15 K and 
𝑇𝑓 = 280.15 K.
 𝑅𝑒 𝑀𝑎 𝑃𝑟 𝑁𝑢 𝑃𝑒 𝐺𝑎 𝐺𝑟 𝐺1 𝐺2  
 128.48 1.67 10−4 0.77 3.66 95.08 1.38 106 9.52 104 2.27 103 2.35 

a temperature difference as large as we want, and, thanks to the 
characteristics method, we can take a CFL condition bigger than 1.

6. Conclusions and future developments

We focused on the physical modeling and numerical simulation 
of gas flows at low velocities, with an eye toward engineering appli-
cations such as temperature-driven laminar flows in closed pipeline 
configurations. Our study was based on the one-dimensional, averaged, 
compressible Navier–Stokes equations under the low-Mach-number ap-
proximation, following the formulation proposed by Paolucci. Initially, 
we assumed a stationary laminar regime and neglected the nonlinear 
advection term, enabling us to derive a quasi-analytical solution to the 
fully coupled system. We compared this low-Mach model to its coun-
terpart the classical Boussinesq approximation, demonstrating that the 
former offers a more accurate representation of the underlying physics. 
Subsequently, we developed a coupled numerical algorithm for the full 
set of governing equations, primarily using finite difference schemes. 
We also designed an algorithm to solve the characteristic equations and 
employed it to compute the temperature field and constructed a linear 
system to solve the elliptic equation governing the dynamic pressure.

Although a detailed comparison with experimental data is beyond 
the scope of this paper, it remains a promising direction for future 
work. Such a study would involve benchmarking the numerical solu-
tions obtained here with experimental results for looped thermosyphon 
configurations, using different solvers and physical models (eg: 2D 
Boussinesq with FreeFem++ and 3D models with OpenFOAM. How-
ever, the primary focus of this paper is to establish an analytical 
reference solution, which provides a clear framework for understanding 
the low Mach number gas flows in these networks.

From the numerical point of view, it would be possible to enrich the 
algorithms to make them more efficient, for example, by using second-
order schemes. It could also be possible to try techniques like finite 
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elements, finite volumes methods, spectral methods instead of finite 
differences. Possible future developments could be the analysis of a 
turbulent regime, which presents no difficulties in the 1D framework 
and extending the algorithm to pipeline networks. The numerical al-
gorithm is adapted to the extension to configurations with more pipes 
if conditions at the junctions are taken into consideration. Moreover, 
we must also consider an extension to a non-ideal gas, to non-constant 
𝐶𝑝(𝑇 ) or 𝜈(𝑇 ), to the non-constant cross-section and non-cylindrical 
pipes.
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