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The flow in a rigid model of vocal folds is numerically solved with a Navier Stokes solver (Castem) and with two asymptotic
models of the flow (Interacting Boundary Layer theory and a Reduced Navier Stokes theory). Numerical results are very
close, showing that asymptotic models are useful to analyse and solve the flow. From computations, we propose a simple
formula predicting the pressure drop along the constriction and we compare it to experimental measurements.
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1 Introduction

Bearing in mind applications in voiced sound production, we wish to describe the flow in the glottis. The now common simple
mechanical model [8] is such that the vocal folds are approximated by rigid masses attached to strings whose oscillations are
driven by the hydrodynamic force. Roughly speaking, the loss of pressure due to reduced section causes (by the Bernoulli
law) the closure of the channel and elasticity of the wall is the restoring force which opens the channel again; so a self
oscillating régime appears. Hence, in order to predict in “real time” the pressure on the folds, one has to solve quickly the
Navier Stokes equations; this is impossible at this time, so that up to now, very simplified boundary layer theories are used.
We are looking for a prediction of the pressure Pg at the glottis knowing the geometry (here oversimplified) and the pressure
Pt in the trachea (the axisymmetrical point of view has been studied by Young et al. [12]).

We use strong approximations: The flow is supposed to be 2D, laminar, and steady. In this framework we will cross compare
numerical resolution of the Navier Stokes equations (NS) and resolution of two asymptotic models (Sychev et al. [9]). Those
two models are first, the Interacting Boundary Layer theory (IBL) which is the boundary layer theory with a strong coupling
with the ideal fluid and second, a simplified “reduced” set of Navier Stokes equations (RNSP). We will see that these three
approaches give nearly the same results, comparisons with experiments will show the limits of the hypotheses as the flow
becomes turbulent in the jet region.

2 Experimental set-up

The “vocal folds” are mounted at the end of a pipe connected to a pressure reservoir (see Fig. 1). These experimental vocal
folds are two half-cylinders of radius Rg = 0.01 m (of length 0.03 m), the glottis throat is hg (typical values range from
0.003 m to 0.0008 m). The small ratio of glottis throat versus its length justifies 2D approximation. The half-width of the
channel is then called h0 with h0 = (Rg + hg/2) and this length will be used to adimensionalise the equations. The degree
of stenosis is defined as α = Rg/(Rg + hg/2). Experiments are done in a moving geometry (variable hg); in fact only the
upper fold is moving at frequency 35 Hz. We supposed as already mentioned a steady flow even if the geometry is moving,
some experimental unsteady effects are seen on the right part of Fig. 5. The experiments give the pressure drop between the
center and the end of the constriction (which is Pg with dimensions on Figs. 1 and 5, the total pressure pressure drop Pt).
These pressures are denoted P̃g , P̃t without dimension on Fig. 2.
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Fig. 1 The obstacles are two half-circles of width wd = 2Rg and of height Rg = αh0 (the channel half height is h0).
The flow is induced by the pressure drop Pt from a pressure reservoir (at the left). The out flow creates a jet in an room at
pressure patm. Pressure is measured at the throat patm + Pg , that is this pressure that we want to predict.

3 Equations

3.1 Navier Stokes

In order to non-dimensionalize the Newtonian steady laminar incompressible bidimensional Navier Stokes equations (NS),
we use U0 the entry velocity for the velocities, h0 for the lengths, ρU2

0 for variations of pressures. The Reynolds number
is Re = U0h0/ν. As boundary conditions, we impose a flat entry velocity profile of value (ū(0, ȳ), v̄(0, ȳ)) = (1, 0) (a
Poiseuille one with maximal value 3/2 gives the same results) and zero velocity on the wall (the bump is centered in x̄g). We
impose symmetry condition on the axis ȳ = 0: ∂ū(x̄, 0)/∂ȳ = 0 and v̄(x̄, 0) = 0. A zero constant pressure is imposed at exit
p̄(x̄out, ȳ) = 0, this latter condition corresponding to a simple implementation of an open boundary condition (Gresho [4]).
The system is solved with the numerical finite element code Castem 2000 [1] on a mesh of quadrangles (80 x 16 vertices).
The computed value of the pressure at the entrance (p̄(x̄int, ȳ)) allows then to evaluate the total pressure drop.

3.2 Reduced Navier Stokes/Prandtl equations

The results have been compared to a first kind of simplification obtained from Navier Stokes equations by supposing that
the transverse scale is the width of the channel h0 itself and that this scale is smaller than the longitudinal one. Supposing
that the Reynolds number is large, we neglect some viscous effects and consider only longitudinal variations of pressure. We
do it in a boundary layer theory spirit (Gersten and Herwig [3]), we recover Prandtl equations but with different boundary
conditions. The main differences are first, that the transverse variable is bounded, which is not the case in boundary layer
theory where we have to match “at infinity” with the ideal fluid and second, that the pressure is not given by the ideal fluid
but is a result of the computation. So, because these equations may as well be seen as a reduced system obtained from Navier
Stokes equations, we call this system RNSP (Reduced Navier Stokes/ Prandtl).

To settle the equations, u is scaled by U0, v by U0/ Re, x by h0 Re, y by h0, and p by ρU2
0 , with Reynolds number

Re = U0h0/ν, which is assumed large. The flow is supposed quasistatic: The Strouhal number is low and the spatial
acceleration is large. We obtain:
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The boundary conditions are: No slip ũ(x̃, ỹ = h̃(x̃)) = 0, ṽ(x̃, ỹ = h̃(x̃)) = 0 at the upper wall defined by h̃(x̃) (whose
dimension is h0) and symmetry (∂ỹũ(x̃, ỹ = 0) = 0, ṽ(x̃, ỹ = 0) = 0). At the entrance, the pressure is zero and the first
velocity profile is given, for example a flat profile ũ = 1, ṽ = 0. As long ũ > 0, the system is marching in x̃ (or parabolic),
there is no outflow condition. The system is solved with finite differences (2500 × 1000 points) and at each station x̃ one
has to find by a Newton iteration the value of the pressure p̃(x̃) for the fitting of the boundary condition for ṽ. The total
pressure drop is a result of the computation.

3.3 Integral IBL

The Integral Interacting Boundary Layer equations (IBL) may be deduced from Navier Stokes equations (or from those
RNSP equations) supposing that the Reynolds number is large and that viscous effects are restricted to a thin layer near the
wall. We simplify further the Prandtl boundary layer equations by using the integral von Kármán equation (Schlichting [10]),
and with the same previous scales, this gives the following coupled system (2). This interacting system may be understood
as follows.
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First, the ideal fluid promotes the variations of the boundary layer and more precisely the variations of the boundary layer
displacement thickness δ̃1.

Second, in growing, the displacement thickness δ̃1 retroacts on the ideal fluid through the flux conservation.
The two equations are strongly coupled and are solved with the Le Balleur [6] “semi-inverse” method.

d
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(
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+

δ̃1

ũe

(
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dũe
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. (2)

Initial condition are for example δ̃1(0) = 0 and ũe(0) = 1. To solve this system, a closure relationship linking the shape
function H and friction function f2 to the velocity and the displacement thickness is needed. Defining Λ1 = δ̃2

1dũe/dx̃, the
system is closed from the resolution of the Falkner-Skan system as follows

H =

{
2.5905e−0.37098Λ1 , if Λ1 < 0.6
2.074, if Λ1 > 0.6

}
, f2 = 1.05

(−H−1 + 4H−2) .

This closure allows flow separation for decelerated flows. Those simplifications are in the spirit of Lorthois et al. [7], but
here 2D. Kalse et al. [5] used recently nearly the same modelisation. As a result, the pressure is computed by Bernoulli law
from the computed velocity ũe(x̃).

We compare then the NS results with the RNSP and IBL results. Examples are represented on Figs. 2 and 4 where we
used Rg as longitudinal scale to plot the curves; numerically in (1) and (2), the radius is of length Rg/(h0 Re). Of course,
this length is finite and small in the computations which are done for a finite value of the Reynolds number.

4 Numerical results: Relative pressure drops

Some computations have been done on various geometries: on circles, on ellipses, on exponential walls, or on arcs of sine.
It has been observed that the IBL, RNSP, and NS results were the same (in the range 0 < α < 0.8, 100 < Re < 1000). For
larger values of α, the boundary layer thickness at the throat is very thin, as is seen below eq. (3). So, NS needs a careful
mesh refinement near the wall that we did not attempt to do, because we preferred to focus on the simplified problems. For
those values of α close to 1, IBL and RNSP nevertheless give the same results. As the acceleration is large in the stenosis, the
solution does not depend on the initial velocity profile (nor on the value of δ̃1(0)). Iso pressures computed by Navier Stokes
are “sufficiently” close to perpendiculars to the axis to justify RNSP description. We observed that the pressure distribution
at the wall has nearly always the same shape, seen on Fig. 2, on a moderate case of degree of stenosis of α = 0.75 and
Re = 500. This pressure curve has a well known shape: A pressure drop at the throat and recompression with a plateau due
to the jet. As expected, we obtain the order of magnitude of the size of the recirculation after the cylinders: h0 Re. Fig. 2
is a comparison between the pressures computed by IBL, RNSP, and NS; the larger arrow represents the maximal pressure
drop P̃m, the second arrow (in size) represents the pressure drop between output and input (P̃t > 0), and the smaller arrow
represents the pressure drop between the throat (where P̃g < 0) and the output.

We observed that cutting the computation domain in the downstream jet (i.e., where flow separation occurs) is not a
problem for Castem (in the range used, 0 < α < 0.8, 100 < Re < 1000); so downstream seems to have a negligible
influence on upstream. For the RNSP system, the resolution is done in marching in x, and so, the flow at station x ignores
downstream conditions. RNSP equations present nevertheless a difficulty in the separated flow region: There is an intrinsinc
numerical instability due to the negative velocity which causes trouble if the separation bulb is too large, as is the case here.
Consequently, we use the so-called FLARE approximation which consists in removing the u∂u/∂x term when u is negative,
preventing any downstream information and allowing separation to be computed. We observed that if the discretization step
is too small, numerical problems reappear. Nevertheless, as all the curves are nearly the same, the FLARE approximation
is here validated by the full Navier Stokes computation and by the IBL computation where Falkner-Skan profiles were
computed without approximation.

This very weak influence of downstream on upstream may be understood because, as already mentioned, the eqs. (1)
are parabolic in x (if u > 0). The IBL equations (2) may be solved with a streamwise marching as well (this result is not
obvious and depends of the kind of interaction between the boundary layer and the perfect fluid, Le Balleur [6]; ultimate
justifications are linked with the Triple Deck theory). IBL equations allow to compute flow separation.

Even with those approximations, NS, RNSP, and IBL give very similar results. Computational time is of course far shorter
for the RNSP and IBL than for NS.
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Fig. 2 A comparison between computed non-dimensional pressure for the three models (NS, IBL and RNSP, in this last
case the wall has been smoothed in x = ±1 to avoid an infinite slope, this was not the case for NS and IBL), here α = 0.75,
Re = 500. The upper half geometry is plotted as well (the smoothed one is not plotted). It is observed that the ratio: Pressure
at the glottis divided by maximum pressure drop is nearly constant (Ke = P̃t/P̃m ! 0.82). Likewise, the ratio: P ressure at
the output divided by the pressure drop betwen the output and the glottis is nearly constant (Kt = P̃t/(P̃t − P̃g) ! 0.86).
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Fig. 3 A very crude estimation: We replace the 2D obstacle by a triangle (!), if
this obstacle is a circle the width is wd = 2R0, the height is αh0, the channel half
height is h0 = R0/α. This is now the flow in a converging channel of total angle
2β, the fictitious sink is at position O, the distance (OM) from the curent point to
the sink allows a simple estimation of the displacement thickness.

5 Numerical results: Estimating the boundary layer thickness at the throat δ̃1c

The estimation of the boundary layer thickness is the key for evaluation of velocities and pressures. It is based on the fact that
the stenosis is a kind of convergent channel (of half angle β with a sink at the apex). It is a classical result that there exists a
selfsimilar solution (Schlichting [10]) whose boundary layer thickness divided by the distance to the sink is 0.779β1/2 Re1/2

(where Re is constructed with the half flux). Approximating the obstacle of total width wd and of height αh0 to a triangle,
the throat is at distance (OG) = (1 − α)h0

√
1 + (wd/(2αh0))2 from the apex, the half angle is β = tan−1(2αh0/wd). In

the case of a circle (wd = 2R0, h0 = R0/α) this distance (OG) is (1 − α)
√

2h0 and the angle is β = π/4, so that, in h0
scale:

δ̃1c = 0.779(π/2)1/2(1 − α) Re−1/2 . (3)

We tested this order of magnitude (with RNSP and IBL) to be exact for a triangular glottis and to be correct for other
geometries. This estimate is in fact more precise for α > 0.8 than the one proposed by Lorthois et al. [7] in an axi-symmetrical
pipe. This allows us to deduce a simplified formula for the dimentionalized pressure drop at the glottis. Knowing U0, h0, α,
and Re = h0U0/ν, the velocity is derived from flux conservation, and is corrected by the displacement thickness; Bernoulli
law is written between the entrance and the throat, and the approximate pressure drop follows:

Pt − Pg $ − ρU2
0

2

(
1

(1 − α − δ̃1c)2
− 1

)
. (4)

Furthermore we find that the ratio representing the viscous losses is nearly constant: Pt/(Pt − Pg) $ Kt = 0.86.
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This estimation of the boundary layer thickness is then used to approximate the non dimensional skin friction near the
throat where H = 2.07 and the velocity is about (1 − α)−1:

τ̃ $ Hf2(1 − α)−1

δ̃1c

$ (1 − α)−2 Re1/2 . (5)

The skin friction is plotted on Fig. 4, where it has been rescaled by (5). We see that this estimate may be improved but gives
the good order of magnitude as the skin friction is very large. The position of the point of separation is nearly the same for
the three codes.
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Fig. 4 A comparison between computed skin friction divided by (0.47 ∗ 2.07)(1 − α)−1/δ̃1c ! (1 − α)−2 Re1/2 for the
three models (NS, IBL and RNSP, in this last case the wall has been smoothed in (x − xg)/Rg = ±1 to avoid an infinite
slope, this was not the case for NS and IBL), here α = 0.75, Re = 500. The upper half geometry is plotted as well (the
smoothed one is not plotted). The position of the point of separation (where τ̃ = 0) is nearly the same in the three models.

6 Experiments

The numerical work is done supposing an imposed entrance velocity. As experiments are done at imposed pressure drop,
we have to adjust the input velocity in the IBL code in order to obtain the experimental pressure drop. The numerical error
between the experimental measurements and the prediction of the IBL resolution for the value of Pg is about 15% in steady
cases. On Fig. 5 we plot Pt/(Pt − Pg) which is about 0.85 in a steady case. The right part of the Figure shows the same
curve for an oscillating experiment. The numerical ratio computed by the IBL code is nearly constant, but the experimental
one shows the neglected unsteady effects. Other experimental comparisons with a more simplified boundary layer code is
found in Vilain et al. [11].

7 Conclusion

Knowing the flux, and supposing laminar steady flow, an evaluation of boundary layer thickness issued from boundary layer
theory was obtained. This evaluation leads to an estimation of the skin friction and of the pressure drop at the throat. Those
estimates fit well the Interacting Boundary Layer, Reduced Navier Stokes, and Navier Stokes codes. The complete Navier
Stokes resolution has the following drawbacks; first, it is far slower than the RNSP resolution, which is slower than the
IBL resolution. Second, the boundary layer is so thin (as predicted by formula (3)) that one has to be very careful with
the mesh in the throat. This analysis shows how usefull asymptotic theory is to analyze and understand the flow. From the
experimental point of view, the under-prediction of the ratio Pt/(Pt − Pg) is probably due to the turbulent transition of the
jet after the point of separation. A steady theory gives then some trends and the order of magnitude for the pressure drop
but, to go further in the speech régimes, some unsteady effects have to be included. Preliminary results [2] for the resolution
of unsteady RNSP equations give a good trend for the dephasing of the pressure in a constricted pipe.
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Fig. 5 Plot of Pt/(Pt −Pg) as function of Pt in Pa. The left part (Pt < 750Pa) represents from top to bottom experimental
ratio for hg = 0.99mm and hg = 3.36mm, computed ratio with IBL for hg = 3.36mm and hg = 0.99mm. The right
part (Pt > 730Pa) is devoted to an unsteady experiment (0.32 < hg < 0.86mm), the computed ratio (with the IBL steady
theory) is nearly constant (for 730Pa < Pt < 980Pa), the experimental one shows the unsteady effect.
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