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Abstract

Measurements of pressure in oscillating rigid replicas of vocal folds are presented.

The pressure upstream of the replica is used as input to various theoretical approx-

imations to predict the pressure within the glottis. As the vocal folds collide the

classical quasi-steady boundary layer theory fails. It appears however that for

physiologically reasonable shapes of the replicas, viscous effects are more im-

portant than the influence of the flow unsteadiness due to the wall movement. A

simple model based on a quasi-steady Bernoulli equation corrected for viscous

effect, combined with a simple boundary-layer separation model does globally

predict the observed pressure behaviour.

Pacs numbers: 43.70.Jt, 43.70.Bk



Deverge et al., JASA 3

1 Introduction

Voiced sound production, or phonation, is driven by a modulation of the flow pass-

ing through the glottis as a result of the oscillation of the vocal folds. Typically, the

fundamental oscillation frequency for a male speaker is of order of
� ���

Hz, which

is much lower than the frequency range perceptually relevant for speech (of order

of
� ���

Hz for most voiced sounds). One can therefore expect that, to simulate this

behaviour, two different models can be used, one predicting the oscillation of the

vocal folds and a second predicting the sound production. As the matter of fact, a

simple mechanical model such as a two-mass model ([1],[2], [3],[4], [5], [6]) or

a three-mass model ([7]) combined with a simplified flow model does indeed pre-

dict the self-sustained oscillations of the vocal folds. In such lumped parameter

models the mechanics of the vocal folds is approximated by rigid masses attached

to springs. The oscillations of this mass-spring system are driven by the difference

in hydrodynamic force on the vocal folds during opening and closing phases. The

contact between the vocal folds during the closure of the glottis is described as a

change in stiffness of the springs. The flow is interrupted but the movement of the

vocal folds continues as they are allowed to penetrate each other.

In earlier papers ([2], [8]) we have verified that, for conditions typical to those

encountered during phonation, a quasi-steady incompressible flow model based on
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the concept of viscous boundary layers appears to be a reasonable approximation

of the glottal flow. However, the accuracy of this flow model during the closure

of the glottis was left as an open problem. Considering the simplicity of the two-

mass model it was thought, in practice, more reasonable to ignore the deviations

from such a flow model which will certainly occur when the vocal folds collide.

However, the closing phase of the vocal folds is known to be a very important

feature of voiced sound production. This is the abrupt event which is needed to

generate the higher harmonics which are perceptually relevant for speech. Many

aspects of the voice quality or of the "naturalness" of the synthetic sounds can be

related to this particular event ([9],[10]).

During the closure of the vocal folds the quasi-steady, incompressible bound-

ary layer theory will fail because the flow channel, the glottis, becomes too thin to

allow a distinction between a frictionless main flow and viscous boundary layers.

Eventually the flow becomes dominated by viscous effects. On the other hand, the

volume flux induced by the wall displacement becomes locally larger than the flux

driven by the trans-glottal pressure difference. In such a case the flow becomes

essentially unsteady.

The goal of this study is to investigate whether both viscous and unsteady phe-

nomena are equally important as well as whether they appear simultaneously. The
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answer to this question will obviously depend upon the shape of the glottis. We

will therefore consider three different shapes. In addition to two rounded models

we will also present results for a channel with a uniform height. Such a straight

channel is interesting because we can obtain analytical solutions for the flow equa-

tions in three different limits : the steady viscous flow, the unsteady frictionless

flow and the unsteady viscous flow. In the steady viscous flow case an integral

formulation of the Boundary Layer theory is used. As shown by Ishizaka([1])

and Van Zon ([11]) an analytical formulation can be obtained for a uniform chan-

nel. The unsteady frictionless flow is based on the Bernoulli equation. Lastly,

the unsteady viscous flow approximation is obtained by assuming an equilibrium

between viscous and pressure forces in a quasi-parallel flow. This corresponds to

the lubrification theory of Reynolds ([12]).

Finally we will also compare our data with a commonly used flow model.

It is based on a correction of the steady Bernoulli equation for viscous effects

based on the assumption of a Poiseuille flow ([1]). A more elaborate description,

accounting for a non-fixed flow separation point ([13], [2]) will also be considered.

In the first section of this paper the dimensionless parameters relevant for our

study are discussed. In the second section three theories are described together

with the simplified theory based on the equation of Bernoulli corrected for friction
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losses. In section III, a brief description of the set-up and of the experimental

method used will be presented. The last part of this paper will be devoted to the

analysis of the experimental results. First, only steady flows will be considered,

this will allow us to evaluate the effects of viscosity. Second, the results obtained

for the oscillating glottis will then be presented and discussed

2 Dimensionless parameters and basic assumptions

The experiments presented here have been designed to simulate the conditions

typical of voiced sound production. In particular, the pressure differences in the

flow are small compared to the atmospheric pressure and the acoustical wave

lengths are very large compared to the length � of the glottis. One can there-

fore assume that the flow is locally incompressible.

We consider the flow through an oscillating rigid model of the vocal folds

with length � (in the flow direction) and width � . The minimum aperture of the

glottis, ��	 occurs at 
��

�	 (henceforth called the throat of the channel) and varies

in time between ����� � and ����� � . An estimate for the flow velocity is the velocity���
calculated from the pressure difference ��� − ��� across the glottis by means of
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the Bernoulli equation for steady non-viscous flows:

� � � � ��� ��� − ��� � (1)

where  is the air density which we assume to be constant. The pressures ��� and

� � correspond respectively to positions just upstream and downstream of the glot-

tis. We thus assume implicitly that ��� is the pressure in the free jet downstream

of the glottis. The fact that ��	 ! �"�$# � � � − % � and ��	 !&�'�$# � � � − % � indicates

that a quasi-one dimensional approximation for the flow should be reasonable()
'

� *�� 
�+ ,�+ - � + � + � � . This implies that the pressure is approximatively uniform in

a cross section normal to the flow direction: � ' � � 
�+ - � . The ratio � 	 !&. / between

the channel height and of the viscous boundary layer thickness . /0�$1 2��3! � � ,

where 2 is the kinematic viscosity, yields an indication for the importance of vis-

cosity. This ratio is related to the Reynolds number 465&76� � � � 	 !&2 :
� � 	. / � � �8465 7 � 	�:9 (2)

The Reynolds number 4;5 <=�
4;5 7 � �3!�� 	 �>� � � �3!&2 , based on the length � of the

channel, provides an indication for the onset of turbulence in the glottis. Using

values typical of voiced sound production, one gets 4;5 <?�@# � � � A � . A laminar

flow within the glottis can therefore be expected but the jet formed by flow sepa-

ration downstream of the glottis will be turbulent.
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A measure for the unsteadiness of the flow is the ratio of the volume flux due to

the wall movement B � ����� � − ����� ��� �C� , where f is the fundamental frequency of

the motion, and the volume flux
�>� ��D � driven by the pressure difference ��� − ���

across the glottis:

B � � ��� � − � ��� � � ���� ��	 �CE�F < � ��� � − � ��� ���	 (3)

where E�F < �GB��3! ��� is the Strouhal number based on the channel length � . In

the case of a uniform straight channel one obviously has: � 	 �G����� � because a

collision � ��� � →

�
implies an essentially unsteady flow. In the case of a more

complex geometry however the choice of a relevant length scale for ��	 is still an

open question.

3 Theoretical models

3.1 Introduction

Although the application to channels of arbitrary shapes will be presented, the

theoretical models considered here will mainly focus on the case of straight uni-

forms channel. In all cases it is considered that the edges of the inlet are al-
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ways well rounded so that any singular losses at the inlet are negligible. Because

� 	 !&�IH;H � the flow velocity
* � far upstream of the glottis is neglected and a uni-

form pressure � � is assumed. In the case of a uniform channel, at the downstream

end of the glottis the edges are considered as sharp so that the flow separation

occurs at this fixed point. It is assumed that, in all cases, the pressure in the jet

formed by this flow separation is equal to the pressure �J� far downstream of the

channel. Lastly, as explained above and because � 	 ! �"H;H � and � 	 H;H@� a

quasi-parallel flow
() � � *�� 
K+ ,�+ - � + � + � � is considered.

3.2 Inviscid unsteady flow

Strictly speaking, a purely inviscid flow theory would ignore flow separation and

thus cannot explain the modulation of the flow by the vocal folds. This corre-

sponds to the so called paradox of d’Alembert ([14], [15]). Indeed, viscous effects

induce a flow separation and the formation of a jet. Turbulent dissipation of the

kinetic energy within the jet explains the volume flow control. If one assumes a

quasi-steady behavior of the jet, this implies that the pressure in the jet is equal

to the pressure ��� downstream of the glottis. If other effects of viscosity are ne-

glected, the velocity
*�� � � at the inlet of the channel (at 
?� � ) can be related to

the velocity
*�� �3� at the channel exit by means of the Bernoulli equation for an
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incompressible flow:

 MLL -�N O � 
K� − O � � � P�Q
��  N *�� 
K� P � QR� � �

��  N *�� � � P � QR� � � � (4)

where the velocity potential O is given by:

O � 
J� − O � � ���CS �D * L 
 (5)

which is applied for 
��
� . It is further assumed that:

� � � ��  N *�� � � P � QR� � � � (6)

in other words, the unsteadiness of the flow upstream of the inlet 
C� � is ne-

glected.

For an incompressible flow through a channel of uniform Height, � , the mass

conservation law yields:

*�� 
K� − *�� � ��� −


 � L �L - 9 (7)

Combining the definition 5 for O and the equation of Bernoulli 4 yields a differ-

ential equation for the velocity
*�� � � at the inlet of the channel:

� L *�� � �L - � � � − � � Q � �� LL -�N
�
� L �L - P −

�� N *�� � � − � � L �L - P � (8)

which for given pressure difference, � � − � � and a given � can be integrated as

a function of time. For a harmonically oscillating � , the result of this integration
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converges to a value which is independent from the initial conditions.

In practice, given
*�� � � one can calculate

*�� 
K� and O � 
K� using the mass conserva-

tion law (7) and the definition (5). The pressure � 	 at 

�G
 	 is then found by

applying the equation of Bernoulli 4 between 
��T
J	 and 
��
� .

3.3 Boundary Layer solution for steady flows

For a steady flow through a channel of uniform height, � , and driven by a constant

pressure difference, ��� − ��� , the Von Kármán integral formulation of the boundary

layer equations can be integrated analytically. This solution was already discussed

by Ishizaka [1] but only in the case where the boundary layer approximation re-

mains valid over the full length � of the channel. In such a case, there is always

a frictionless core with a uniform velocity
*JU � 
J� in which the Bernoulli equation

can be applied. The frictionless core of the jet at the exit of the channel has a

velocity
* U � �3�3� ��� (equation 1). As a more simple alternative to the method of

Thwaites ([8]), a method of Pohlhausen of first order is presented here [12]. In

general the method of Polhausen assumes that the velocity profile
*�� 
K+ ,�� within

the viscous boundary layer has a simple shape which can be described by a poly-

nomial of the distance , from the wall. We use here a polynomial of first order. As

shown by Van Zon [11] using a linear velocity profile
*�� 
�+ ,���� * U � 
J� ,�!&. , where
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. is the thickness of the boundary layers the corresponding volume flux becomes:

V3W �C� * U � � − .�� (9)

where . satisfies the non-linear equation:X .� Q?Y>Z [ � � − .� �KQ]\ .� − . �_^ 2�
� V3W 9 (10)

Applying equations 9 and 10 at the exit 
T�G� and using
* U � �3�M� ��� one has

thus a set of two equations from which . <=�8. � �3� and
V W

can be obtained. OnceV W
has been calculated the viscous boundary layer . � 
J� at any arbitrary position


 can be calculated from 10. The corresponding frictionless core velocity
* U � 
J�

is obtained by application of the mass conservation law 9. Finally, the pressure is

calculated by using Bernoulli equation :

� � 
K�KQ ��  N * U � 
K� P � �?��� 9 (11)

The generalisation of this approach for channel of arbitrary length can be made as

proposed by Van Zon [11]. When the critical boundary layer thickness:

. `� �
X
Y � � −

� \a � � (12)

is reached, the volume flux and momentum flux correspond to those of a fully

developed Poiseuille flow. The critical distance 
��Cb ` at which . � b ` �>�C. ` can be
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obtained analytically for a given volume flux
VcW

using equation 10. For �edfb `
and 
:Heb ` the pressure distribution can be obtained from the Bernoulli equation

combined with the equation of mass conservation 9:

� � �?�gQ ��  V �W
� � � � − .&� � (13)

while for 
Rd
b ` the equation of Poiseuille [12] is used:

� − � � � � �  2 V3W�e� � � � − 
J� 9 (14)

Applying equations 13 and 14 at 
?�hb ` and eliminating � � b ` � yields a quadratic

equation for
V3W

. Using equation 10 in which equation 12 is substituted and for


0�8b ` a linear relationship between
V W

and b ` : V W � � 2�b ` � ! � ��i � can be obtained.

By solving the quadratic equation one finally obtains :

b `� �
� � i � � − j k7 � �� X i − � N � − � � − �

A � � X i − � � � ��� − ��� �l �  2 � � � � � − j k7 � � �&mn P (15)

where the constant i is given by:

io� �^ N
X . `� Q?Y>Z [ � � − . `� �KQp\ . `� − . ` P 9 (16)

Depending on x, p(x) can be calculated using equation 13 or 14.

The use of Thwaites’s implementation of the integral formulation of Von Kár-

mán equation applied to a channel of arbitrary shape is discussed in detail in Hof-

man ([8]). Similar results are also discussed by Pelorson [2] using the approach of
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Pohlhausen. All these approaches involve a numerical resolution which is, in prac-

tice, difficult because of the essential non-linearity of the problem [12]. A direct

solution of the equations of Prandtl is also discussed by Lagrée [16]. A systematic

comparison showed that in terms of flow separation point prediction, the method

of Pohlhausen and Twaithes are equivalent [17],[18]. Thwaites method appears

more robust numerically and therefore will be used in the following. However, in

the case of a straight uniform channel an analytical solution can be obtained as

shown previously and there is no need for any numerical resolution. In the fol-

lowing, we will refer to this analytical solution as the solution of van Zon [?].

3.4 Lubrification theory of Reynolds

The lubrification theory of Reynolds combines the assumption of a quasi-parallel

flow together with the assumption that inertial effects are negligible. As the pres-

sure forces balance the viscous ones, the velocity profile in the channel is given

by the Poiseuille formula [12]:

* � −

��  2;q �q 

� � − ,�� , 9 (17)
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This velocity profile combined with the mass conservation law:

� q �q -
� − q

V3W
q 


(18)

where: V3W �C� S 7D * L , (19)

yields the equation: �� �  2 qq 

� � � q �q 


��� q �q -
(20)

which for a channel of uniform height can be integrated to give:

� − � � � � ��� − ���� � 
=Q � �  2� � � L �L - � 

� 
 − �3�� 9 (21)

3.5 Steady Bernoulli corrected for friction

Often one seeks for a simple correction the inviscid theory by adding an extra term

to account for viscous pressure losses. This corresponds to the original approach

of Ishizaka [1]. A similar approach is proposed by Antunes and Piteau [19]. For

the sake of simplicity, and because it will be shown that the unsteadiness seem to

be less important than viscous effects, only the steady flow case will be developed

here. This choice is further supported by the fact that if one neglects the effect

of the wall movement on the mass conservation law, then the unsteady term in

Bernoulli equation should certainly be neglected as well. The wall movement is,
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indeed, the main cause of unsteadiness. In this sense, the flow model of Ishizaka

[1] is not consistent. Such an inconsistent approach might result in some poor

behaviour of the model as observed by Lous [5].

Bernoulli equation corrected for viscous pressure losses r6��/ becomes:

��  N
V W
�e� P � QR����Q?r;� / �:��� 9 (22)

Using the lubrification theory of Reynolds we find:

r6� / � 
J�>� � �  2 V W� S �D L 
� � 9 (23)

Combined with the modified Bernoulli equation 22 this Equation, when applied

at the separation point 
Js , yields a quadratic equation for
V3W

which is easily

solved for given 
 s . In a straight uniform channel one has simply: 
 s �G� and

r6��/o� � � �  2 V W �3� ! � �e� � � .

The extension of the above theory to the case of arbitrary shapes can, of course,

be done by numerically integrating equation 23. However, as the friction losses

scale with � − � they depend strongly on the channel height. It can therefore be

assumed that the losses are determined locally in a small region close to the throat,


�	 of the channel. Using a Taylor expansion, one can therefore use for the channel
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height � the approximation:

� ' ��	>Q � 
 − 
 	 � �4 (24)

where 4 is the (local) radius of curvature of the wall, we find by integrating (23)

from 
0� −∞ to 
�� ∞ [20]:

r6��/ ' Y t  2 V3W� �e� �	 � 4� 	 � % u � (25)

In order to solve for
V3W

one now needs an estimation for the height of the

channel � � 
 s � at the separation point 
 s where it is assumed in first approximation

that � � 
 s �v�@� � . The relevance of this later assumption has been discussed in

details by Hofmans [8]. In view of its simplicity the semi-empirical criterium of

Liljencrants [13]: � � 
Js ���	 � � Q?w (26)

with w3� � 9 � seems a reasonable order of magnitude [8].

In summary, 4 kinds of theoretical predictions will be considered in the fol-

lowing:

• the boundary solution which refers as the (analytical) van Zon solution in
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the case of a uniform straight channel and as the Thwaites (numerical) so-

lution in the case of a non-uniform channel

• the lubrification theory of Reynolds as developed in section (3.4)

• the steady Bernoulli theory corrected for pressure losses described in sec-

tion (3.5)

• the unsteady Bernoulli solution presented in section (3.2)

4 Experimental set-up and procedure

In order to validate the theoretical models presented in the previous sections, an

experimental set-up with oscillating vocal-folds replica is used. The main interest

of this approach lies in the better control of the experimental conditions compared

to in-vivo measurements [21]. While most in-vitro experiments in the literature

deal with steady replicas of vocal-folds (e.g. [22], [23], [2], [24], [?]), or with

numerical simulations on steady replicas (e.g. [25], [26]) very few attempts have

been made using moving vocal folds. Much more realistic flow conditions were

obtained recently using set-ups including moving replicas of vocal-folds. These

experiments were intended either to focus on the onset of phonation ([27]) or to

mimic self-sustained oscillations using forced motion of the vocal folds replica



Deverge et al., JASA 19

([28], [29], [?]). The experimental set-up used in this study is in the tradition of

these latter studies.

4.1 Vocal fold replicas and sensors

Figure 1 shows the three different vocal folds mechanical models (or replicas)

used. All these mechanical models have an overall length of
�

cm in the flow

direction and a width �x� a cm.

Compared with human size, the mechanical model appears thus up-scaled by a

factor 3. To keep the Reynolds number constant, this implies that the velocities in

the mechanical model are a factor 3 times smaller than those expected for humans.

At constant Strouhal and Reynolds numbers, the frequency of oscillation of the

mechanical replica must be smaller than the one expected for human phonation

by a factor 9.

A pressure tap with a radius of
� 9 X mm and

�
mm length is placed

�
cm up-

stream from the downstream end. This allows measurements of the wall glottal

pressure ��	 − ��� by means of a Kulite pressure transducer (type XCS-093, di-

ameter
� 9 ^ mm) placed in a cavity below the pressure tap. The pressure gauge

was calibrated by using a Betz water micromanometer with a precision of
�

Pa.

The response of the gauge was found to be linear within the accuracy of the mea-
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surement. The calibration was repeated after each series of measurements and

appeared to be stable.

Insert Fig. 1 about here

The first replica is the straight uniform channel. On the upstream side, the

edges have been rounded with a radius of curvature of
�

mm. On the opposite, the

downstream edges are made sharp. The transducer position is located at 
 	 = 1 cm.

The second replica, denoted as the rounded vocal folds mechanical model has

a length of �f� � cm. The walls are half cylinders with a radius of 4@� � cm.

The pressure tap is placed at the throat of the replica : 
J	o� � cm.

The third replica, the gaussian vocal folds, has a more complex shape. In the

region
�

mm H?
RH � y mm the vocal folds have a gaussian shape described by the

equation ,g�8zR{ |�} N− ~ � − � n � n� n P with z8� � mm and ���8Y mm. The edges of both

the inlet and outlet are rounded with a radius of curvature of
�

mm. The pressure
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tap is located at 
�	o� � cm.

In the case of unsteady flow measurements, the lower fold with the pressure

tap is maintained fixed while the upper fold is driven by a piston using an electrical

motor and an eccentric wheel. This allowed to simulate self-sustained oscillations

with a fundamental frequency of oscillation ranging from 5 Hz up to 35 Hz. Only

results concerning the highest frequency are presented here as they correspond to

the highest Strouhal numbers achievable using this set-up. During the collision

the mechanical folds were prevented from bouncing thanks to both to the back-

lash of the driving mechanism and the strong damping of the piston. The channel

height ��	 at 
�	 is measured by means of an optical sensor (type OPB700). The

sensor was calibrated by placing gauges of known thickness at the throat of the

glottis. The calibration was performed before and after each measurement. The

estimated uncertainty in the measurement of the channel height ��	 is
� � − � mm.

The range of variation for � 	 was chosen to keep a fairly linear behaviour of the

sensor.

The presence of an asymmetrical flow (Coanda effect) through rigid non mov-

ing mechanical replicas of the glottis has been observed in past experiments. Al-
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though the most direct way to observe such an asymmetry was to use pressure

measurement at both sides of the replica, this phenomenon could be observed in

dynamic experiments even using measurements of a single side of the replica due

to the presence of an abrupt transition in the pressure signal [30]. This transition

corresponds to the time needed by the flow to establish an asymmetrical behaviour.

As such behaviour was never observed here, there is no evidence for the presence

of any asymmetry in the flow.

4.2 Global description of the set-up

A global view of the set-up is shown in figure 2. The vocal folds are mounted

at the end of a pipe of
a&�

cm length and
a

cm diameter connected to a pressure

reservoir with a volume of
� 9 ^ y m

�
filled with acoustical foam in order to prevent

acoustical resonances. The pressure � � − � � is measured
�

cm upstream from

the inlet of the replica by means of a Kulite pressure transducer (type XCS-093)

mounted flush with the pipe wall. The pressure reservoir is filled with acoustical

foam to avoid acoustical resonances. The air flows from a
y

bar pressure supply

trough a choked valve into the reservoir. Downstream of the replica the flow exits

into a large room. The pressure � � in this room is used as a reference by the

pressure gauges. The signals are recorded with a sample frequency of
�

kHz by
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means of a data acquisition card (NI PCI-MIO 16XE10) in a PC.

Insert Fig. 2 about here.

5 Results

5.1 Steady flow measurements

In figure 3 the measured dimensionless pressure
� ��	 − ��� � ! � ��� − ��� � inside the

straight uniform replica is plotted as a function of 4;5 7 � ��! �3� . The measured data

are compared with the predictions from the lubrification theory of Reynolds (sec-

tion 3.3), the Boundary Layer theory (section 3.2) and the Bernoulli theory cor-

rected for friction (section 3.4). These measurements have been carried out at a

fixed pressure of ��� − ���=� � kPa. It can be observed that the Boundary Layer

approximation provides quite reasonable agreement while the theory of Reynolds

overestimates
� � 	 − � � � ! � � � − � � � for 4;5 7 � ��! �3�od � � . The inviscid approxima-

tion based on Bernoulli (section 3.2) would just predict
� ��	 − ��� � ! � ��� − ��� �>� � .
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However, the addition of a correction based on a Poiseuille flow profile allows for

a reasonable agreement although the predictions are systematically higher than

the measured data.

Insert Fig.3 about here.

In figure 4 are presented the measured
� � 	 − � � � ! � � � − � � � for a steady flow

within the rounded replica. These data are compared with the predictions ob-

tained by the Boundary Layer approximation of Thwaites [8], the approximation

of Reynolds and the Bernoulli theory corrected for friction. It can be observed

that theory of Reynolds (section 3.4) always predicts
� ��	 − ��� � ! � ��� − ��� �c� � ! �

due to the symmetry of the replica. This theory cannot predict the negative val-

ues of ��	 − ��� which are essentially due to inertial effects. The Thwaites theory

does predict the order of magnitude of those negative values for 4;5&7 � ��!&�3�od � �
mm. When the glottis is more and more closed � 	 → �

one measures a pressure

which is approaching the value predicted by the theory of Reynolds. The use of
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the Bernoulli theory corrected for friction (section 3.5) explains the measured data

quite well. The separation criterion chosen in equation 26 thus seems relevant for

this geometry.

Insert Fig.4 about here.

The corresponding results for the gaussian replica are shown in figure 5. The

conclusion that can be drawn are similar to those expressed for the rounded ge-

ometry.

Insert Fig.5 about here.
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We conclude from those data that for 465 7 � ��! �3��d � � the boundary layer

theory seems reasonable while the data approach the prediction of the lubrification

theory of Reynolds for smaller values.

5.2 Unsteady flow measurements

In figure 6.a). are presented the measurements of the glottal pressure ��	 − ��� ,
the upstream pressure � � − � � and the channel height � . In this experiment, the

vocal folds were not allowed to collide, the minimum channel throat was fixed as

� ��� � � � 9 � � mm. The measured glottal pressure is compared with the prediction

obtained by means of the Boundary Layer theory (section 3.3), the lubrification

theory of Reynolds (section 3.4) and the inviscid unsteady solution (section 3.2).

The good agreement between the Boundary layer prediction and the measured

data tends to show that unsteady flow effects are not very important. The com-

parison with the lubrification theory of Reynolds (section 3.5) shows that inertial

effects at the channel inlet are important except for � 	 ' ����� � . For a short time

interval (when ��	 ' � ��� � ) the theory of Reynolds predicts the experimental data.

We further observe that the inviscid unsteady approximation (section 3.2) pro-

vides quite poor results.
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Insert Fig.6 about here.

In the case where a collision is allowed (figure 6.b), it can be observed that a

finite glottal pressure could be measured even when the glottis is closed. This sur-

prising result is due to the fact that due to the surface roughness of the mechanical

folds (of order of 10-6 m) a complete closure cannot be achieved.

It can also be observed that the glottal pressure ��	 − ��� can become larger

than the transglottal pressure � � − � � which can only be explained by the flow

unsteadiness due to the movement of the walls. This effect is indeed predicted by

the lubrification theory of Reynolds. Deviation between theory and experiments

could be partially due to the effect of errors in the measurement of the channel

height ��	 when ��	 → �
. The results of the lubrification theory are indeed very

sensitive to such errors, because the viscous losses are proportional to � − � . Lastly,

the inviscid unsteady approximation, which is not shown here, fails to explain the

measured data.
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Insert Fig.7 about here.

In figures 7.a and 7.b are presented results for the rounded replica for ����� �=�� 9 �&y mm and � ��� � � � mm, respectively. It can be observed that as � approaches

����� � the glottal pressure changes from a negative pressure predicted by the theory

of Thwaites towards a positive pressure which approaches
� � 	 − � � � ! � � � − � � �>�� 9 \ as predicted by the steady lubrification theory of Reynolds. When there is a

collision, as shown in figure 7.b this value is indeed reached. The fact that we do

not find glottal pressures significantly higher than this limit tends to indicate that,

for the rounded replica, even in the case of a collision the unsteady flow induced

by the wall movement remains negligible compared to the viscous effects.

Insert Fig.8 about here.
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In figure 8 it can be seen that the results obtained using a gaussian replica

are very similar to those obtained with the rounded one. The main difference is

that the prediction of the steady Boundary Layer theory of Thwaites as well as

the Bernoulli theory modified for friction appear less accurate than for rounded

replica experiments.

6 conclusion

From this study it was observed that upon collision the flow unsteadiness due

to the wall movement appears to be only significant in the case of the straight

uniform replica. In such a case the unsteady theory of Reynolds (section 3.5)

predicts qualitatively the measurements. In the case of more physiological vocal

folds shapes, a transition between a boundary-layer behaviour towards a friction

dominated behaviour was clearly observed without significant effect of the flow

unsteadiness.

It was shown that the Boundary Layer solution is quite reasonable for 465 7 � ��! �3�
> 10. In practice such a theory is still quite complex and one may prefer a more

simple model to predict flow separation. The models of Liljencrants ([13]) or the

model of Pelorson ([2]) are easy to implement. When such a simple model is used,
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the Bernoulli equation corrected for a pressure loss term calculated on the basis of

the theory of Reynolds provides a surprisingly accurate approximation. Addition

of unsteady terms in the equation of Bernoulli will not improve the model. Such

an unsteady term should certainly not be used if the mass conservation law does

account for wall movement.

It must be noted that in our experiments a complete closure of the glottis could

not be simulated due to the surface roughness of the replicas. In the case of human

phonation one could expect a complete closure due to both the elastic deformation

of the tissues and the presence of moisture or of mucus on the folds. While the

dynamics of the tissues during collision can be studied by means of Finite Element

Method as shown recently by Gunter ([31]), the possible presence of moisture

seems another potentially important aspect. The movement of water driven by the

colliding folds is expected to involve strong inertial effects due to the relatively

large density of water. Therefore a complete and accurate physical model for

the closure of the vocal folds might involve more than an interaction beween an

airflow and dry elastic tissues.
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Figure 1: Mechanical models of the vocal folds: a) straight uniform channel, b)

rounded vocal folds and c) gaussian vocal folds
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Figure 2: Global sketch of the set-up.
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Figure 3: Steady flow measurements for a straight channel (� � − � � � � kPa).
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Figure 4: Steady flow measurements for the rounded replica (��� − ���o� � kPa).
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Figure 5: Steady flow measurements for the gaussian replica (��� − ���c� � kPa).
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Figure 6: Experimental and theoretical results for the straight uniform replica: a)

����� �M� � 9 � � mm and b) ����� �g� � .
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Figure 7: Experimental and theoretical results for the rounded replica: a) ����� �=�� 9 �&y mm and b) ����� �g� � .
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Figure 8: Experimental and theoretical results for the gaussian replica: a) ����� �g�� 9 � \ mm and b) ����� �g� � .


