
Boundary Layer

1 Unsteady boundary layer

1.1 Unsteady boundary layer flow over a semi infinite flat plate impulsively started

Reintroducing the time in the boundary layer equation seems a simple task, the convective time scale
reintroduces ∂/∂t. We show a first example which is simple (Stewartson 51 et 73, Smith 70 & 72 et Hall
69). At time t = 0 a semi infinite flat plate is impulsively put in motion. We are in the framework of the
plate, so that the Ideal Fluid response is instantaneously ue = 1 (the plate slips in the ideal fluid). One has
only to introduce the time derivative in the boundary layer equations :

∂u

∂x
+
∂v

∂y
= 0,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=
∂2u

∂y2
,

u(x, 0, t) = v(x, 0, t) = 0,

u(x, y > 0, t = 0) = 1

v(x, y > 0, t = 0) = 0

and u(x,∞, t > 0) = 1.

(1)

At a fixed position x we observe for short times the Rayleigh flow (or Stokes first problem):

∂tu = ∂2yu; u(y > 0, t = 0) = 1, u(0, t) = 0, u(y →∞, t) = 1

And we guess that for a long time, at a given x, the flow will finally be steady, ∂u/∂t = 0, we will recover
the Blasius flow. The good variable is τ = t/x. Depending if it is small or large, we go from Rayleigh to
Blasius. Transition occurs for τ = 1, this time correspond to the time necessary so that information which
travels at velocity 1 arrives at the considered point.

The solution is numerically computed on figure 1, we use simple finite difference technique.
For 1.5 < τ < 4, the difference between the two régimes is noticeable. We see it on the figure 1 (first

obtained by Hall 69 with a specific method using similarity variables and valid for τ ≥ 1), we plot on this

figure ∂u(x,y=0,t)
∂y

√
x so that

τ >> 1 τw = .332/
√
x, δ1 = 1.732

√
x; and for τ ≤ 1 τw = 1/

√
πt, δ1 = 2

√
1

πt
.

On the next figure we plot 2
√

1
π − δ1

√
1
t , which is 0 for Rayleigh solution (τ ≤ 1 ) and which is function of

τ in the Blasius case (2
√

1
π − 1.732

√
1
τ , expression valid for τ >> 1.

The analytic study of the problem of the transition between the two régimes is difficult. Stewartson had
to do two papers (51 & 73) to solve it. The difficulty comes because there is an ”essential singularity” in
the developments around τ = 1, it means that all the terms of the Taylor expansion are zero (just like e−x

2
,

this function has no Taylor expansion in x = 0).

1.2 Unsteady boundary layer flow over a semi infinite flat plate impulsively started,
integral point of view

The unsteady system may be written in integral form (∂xu = −∂yv),
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Figure 1: Unsteady numerical solution in finite differences of the unsteady boundary layer equation. We observe

the transition from Rayleigh infinite flat plate impulsive solution to the Blasius steady solution. Left, shear times
√
x

at the wall, from Rayleigh, at small τ , to the constant Blasius value. Right, plot of 2
√

1
π − δ1

√
1
t , (points) compared

to the Balsius value 2
√

1
π − 1.732

√
1
τ , line, as a function of τ

were we have defined the displacement thickness, the momentum thickness and the shape factor

δ1 =

∫ ∞
0

(1− u)dy, δ2 =

∫ ∞
0

u(1− u)dy and H =
δ1
δ2
,

and defining a function f2 linked to the skin friction as: ∂u
∂y = f2

H
δ1

. Then by integration, and by boundary
condition in 0 and ∞

∂

∂t
δ1 +

∂

∂x

δ1
H

=
f2H

δ1

We see a convection equation ∂tδ1 +H−1∂xδ1, of velocity 1/H. This velocity is the velocity of propagation
of the information of the existence of the leading edge of the semi infinite flat plate.

For small time, at a given position x from the nose, we are in the Rayleigh-Stokes problem: there is up
to now no information that the plate is not infinite ∂x is zero, we have only

∂

∂t
δ1 =

f2H

δ1

which gives the square root behavior of δ1 in time

δ1 =
√

2f2H
√
t

using the closure, this gives f2 = 0.22, H = 2.59 andδ1 = 1.06
√
t (Stokes value 1.12)

For long time, at a given position x from the nose, we are in the Blasius problem: there is no more the
unsteady ∂t term, we have only

∂

∂x

δ1
H

=
f2H

δ1

which gives the square root behavior of δ1 in space

δ1 =
√

2f2H
√
x

using the closure, this gives f2 = 0.22, H = 2.59 and δ1 = 1.7
√
x (Blasius value 1.732)

Of course, we see that if τ = t/x, then we go for small τ from δ1 =
√

2f2H
√
t to δ1 =

√
2f2H

√
x at large

τ . The propagation of the information of the existence of the leading edge of the plate is at velocity 1/H.
As H ' 2.6, we obtain the same estimate than previously on τ when solving the full problem.
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Figure (moovie): Boundary layer formation on an impulsively started semi infinite flat plate, the given
external velocity is 1, solution obtained from equation ∂

∂tδ1 + ∂
∂x

δ1
H = f2H

δ1
at small times the displacement

thickness increases with
√
t at large time it increases in

√
x t from 0.1 to 2.5. [click to launch the movie,

QuickTime Adobe/ Reader required].

Figure 2: (moovie): Boundary layer formation on an impulsively started semi infinite flat plate, the given external

velocity is 1, solution obtained from Gerris [click to launch the movie, QuickTime Adobe/ Reader required]..

X
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velocity at infinity

y/sqrt x
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velocity at infinity

Erf exact

X

Figure 3: Navier Stokes computation by Gerris at Re = 1000, left we have the selfsimilar Blasius profile (superposition

of several profiles plotted with ȳ(Re/x̄)1/2). Right the erf solution.
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2 Annex 3: Navier Stokes

Navier Stokes computation with Gerris

#####################################################################

# Blasius par PYL, sauver dans "blasius.gfs"

# lancer avec

# gerris2D -DRe=1000. blasius.gfs | gfsview2D v.gfv

# 29/09/10

# valeur du Reynolds

#Define Re 100000.

# definition de 3 boites avec 2 connections

3 2 GfsSimulation GfsBox GfsGEdge{

# met le coin gauche decalle - > paque 2 est en 0,0

x = -0.5 y = 0.5 } {

SourceViscosity {} 1./Re

PhysicalParams { L = 2 }

# Time { end = 1000 dtmax = 0.001}

# precision 2**(-4.) = 1/16=0.06 5-> 32 0.03 6 -> 0.015625 2**(-8.) = 0.00390625 pr 2**(-8.) *sqrt(1000) = 0.12

Refine 6

# temps initial 0

Init {} { U = 1

V = 0 }

Init {istep = 1}{

dyU = dy("U"); }

# AdaptGradient { istep = 1 } { cmax = .1 maxlevel = 6 } U

AdaptVorticity { istep = 1 } { maxlevel = 8 minlevel = 4 cmax = 1e-2 }

# sortie tous les 20 pas de calculs du temps en cours

OutputTime { istep = 20 } stderr

# valeurs qui vont sortir pour entrer dans gfsview

# tous les 30 pas de calcul

OutputSimulation { istep = 30 } stdout

OutputLocation { step = 0.1 } vals.data cut.dat

OutputSimulation { step = 0.25 } SIM/sim-%g.txt { format = text }

EventScript { step = 0.25 } { cp SIM/sim-$GfsTime.txt sim.data}

OutputPPM { step= 0.05 } { ppm2mpeg > blastok.mpg } { min = 0 max = 1 v = Velocity }

# p[0:10][0:1.5]"< awk ’{if($1>.7){print $0}}’ sim.data" u ($2/sqrt($1/1000)):6,sin(pi*x/2/4.79)*1.05,1

# p[0:10][0:1.5]"< awk ’{if($1>.9){print $0}}’ sim.data" u ($2/sqrt($1/1000)):6,sin(pi*x/2/4.79)*1.0,1

# p[0:5][0:1.5]"< awk ’{if($1>0){print $0}}’ SIM/sim-3.txt" u ($2*sqrt(1000)):6,1,erf(x/2/sqrt(3))

#p[][:] "< awk ’{if($2<0.01){print $0}}’ sim.data" u ($1):($9),.33/sqrt(x/1000)

# arret lorsque la variation de U devient "petite"

EventStop { istep = 10 } U 1.e-4 DU}

#conditions aux limites

# first box free stream

GfsBox {

left = Boundary {

BcDirichlet U 1

BcDirichlet V 0 }

bottom = Boundary {

BcNeumann U 0

BcDirichlet V 0 }

top = Boundary {
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BcNeumann U 0

BcNeumann V 0 }

}

GfsBox {

# en bas vitesse nulle

# second box the flat plate

bottom = Boundary {

BcDirichlet U 0

BcDirichlet V 0 }

top = Boundary {

BcNeumann U 0

BcNeumann V 0}

}

GfsBox {

# thrid box

bottom = Boundary {

# BcNeumann U 0

#the trailing edge

BcDirichlet U 0

# or the plate

BcDirichlet V 0 }

top = Boundary {

BcNeumann U 0

BcNeumann V 0}

right = Boundary {

BcDirichlet P 0

BcNeumann U 0 }

}

1 2 right

2 3 right

######################################################################
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