SKY AND WATER 1, 1938
by M. C. Escher

Courtesy of Vorpal Galleries. San Francisco. Laguna Beach, New York, and

Chicago. and the Escher Foundation. Haags Gemeentemuscum, The Hague

This woodcut by the Dutch artist gives a graphic impression of the “im-
perceptibly smooth blending™ of one flow into another (p. 89) that is the heart
of the method of matched asymptotic expansions discussed in Chapter 3.
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20 II. Some Regular Perturbation Problems
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Fig. 2.5. Infinite corrugated cylinder.

2.4. Circle in parabolic shear. A circular cylinder of radius @ is symmetrically
placed in a parallel stream of incompressible inviscid fluid having the parabolic
velocity profile # = U(1 — 3ey?'@?). Find an exact implicit expression for the
vorticity w(y), and expand to give w as a series, keeping terms of order &
Carry out a perturbation solution for the flow, showing that a difficulty arises
in the term of order ¢ because no solution can be found for which the velocity
disturbances produced by the body disappear far upstream.

Chapter 111

THE TECHNIQUES
OF PERTURBATION THEORY

3.1. Introduction; Limit Processes

The examples in the preceding chapter have served to introduce
various techniques for handling perturbation problems. We now seek
to classify and generalize those that are of common utility. We begin
with some matters of notation, definitions, and relevant processes of
analysis.

We are concerned with finding approximate solutions of the equations
of fluid motion that are close to the exact solutions in some useful sense.
This involves various kinds of equality, which in decreasing degree of
identification will be expressed by the following symbols:

identical with

= equal to

asymptotically equal to (in some given limit) (3.1)
approximately equal to (in any useful sense)

proportional to

A

As discussed in Chapter I, we consider approximations that depend
upon a limit process, the result becoming exact as a perturbation quantity
approaches zero or some other critical value. One often cncounters a
double or multiple limit process, in which two or more perturbation
quantities approach their limits simultaneously. Because the order of
carrying out several limits cannot in general be interchanged, one must
frequently specify the relative rates of approach. This specification
provides a similarity parameter for the problem. The following are some
familiar examples :

(a) Plane transonic small-disturbance theory for a wing of thickness
ratio ¢ (von Kdrmdn, 1947):
e — 0y M—1
M1y e oW
21



22 1II. The Techniques of Perturbation Theory

(b) Iypersonic small-disturbance theory for a body of thickness
ratio ¢ (Hayes and Probstein, 1959, p. 36):
e ->0 1

Vo oy a0

(¢) Newton-Busemann approximation for hypersonic flow past a

blunt body (Cole, 1957):

M- = | 1

o e O

y > 1)

(d) Hypersonic small-disturbance form of Newton-Busemann approxi-
mation for a slender body of thickness ratio ¢ (Cole, 1957):

e >0 |

Vo> % =01
M [ o = aee oW
v =

I i

In the last example one might have anticipated two similarity parameters,
but only one is found to be significant.

A perturbation quantity is never uniquely defined. For example, the
thickness parameter for a slender body may be taken as its thickness
ratio, maximum slope, mean slope, etc. Of course it may also be changed
bv a constant multiplier, as in referring Reynolds number to radius rather
than diameter for a sphere. One should be alert to the possibility of
exploiting this freedom by replacing the obvious choice by an alternative
that is superior to it in some respect. 'The possibilities are too diverse
to be subject to rules. They can only be suggested here by listing a
number of cases where an ingenious choice of the perturbation quantity,
usually suggested by extraneous considerations, leads to simplification
or improvement of the results:

(a) (M2 — 1) instead of (M --1) in transonic small-disturbance
theory, so that the result is valid also in the adjacent regimes of
subsonic and supersonic flow (Spreiter, 1953),

(b) 1 VM2 — 1 instead of | M in hypersonic small-disturbance
theory, so that the result is valid also in the adjacent regime of
supersonic flow (Van Dyke, 1951),

(¢) (y — 1) (y =~ 1) instead of (y — 1) in the Newton-Busemann
approximation for hypersonic flow, because it can be identified
with the density ratio across a strong shock wave (Hayes and
Probstein, 1959, p. 7),

Bttt e e e
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(d) (log R4 4 y - }) instead of log R in viscous flow past a circle
at low Reynolds number (y being Euler’s constant), because
the first two terms of the Stokes expansion are thercby combined
into one (Kaplun, 1957; see Section 8.7),

(¢) ¢ (1 — ¢) instead of &, ¢ being the density ratio across a normal
shock, in the Newton-Busemann approximation for the standoff
distance of the detached shock wave on a blunt body in super-
sonic flow, becausc it then becomes infinite for M — I, as
it should (Serbin, 1958),

(f) (4 -~ BR'?* . -)*instead of (42 -~ 2ABR™'* - -) for the drag
of a bluff body in laminar flow at high Reynolds numbers,
which is suggested by theory and agrees better with known
results (Imai, 1957b),

(g) 2 (1 — 2.4 -~ - ) instead of 2#(1 — 2 .4 — --) for the lift-curve
slope of an elliptic wing of high aspect ratio .1, because it then
vanishes for 4 — 0, as it should (see Chapter IX),

(h) ENVI — g ¢ being a parabolic coordinate, instead of x in the
Blasius series for the boundary layer on a parabola, because the
radius of convergence is thereby extended to infinity (see
Chapter X)),

(i) ¢ (2 — ¢) instead of ¢ in free-streamline theory (Garabedian,
1956), where 2 - ¢ is the number of space dimensions, because
the radius of convergence is thereby increased.

3.2. Gauge Functions and Order Symbols

The solution of a problem in fluid mechanics will depend upon
the coordinates, say v, v, 3, ¢, and also upon various parameters. One
or more of these quantities may, by appropriate redefinition, be regarded
as vanishingly small in a perturbation solution. We consider the behavior
of the solution as it depends upon one such perturbation quantity, with
the other coordinates and parameters fixed. Thus we scek to describe the
way in which a function f(¢) behaves as ¢ approaches zero. An analogous
situation has already arisen in the upstream boundary conditions (2.3b),
(2.6b), etc., where it was necessary to describe the behavior of the solution
far from the body.

There are a number of possible descriptions, of varying degrees of
precision. We discuss six of them, in increasing order of refinement.
First, one may simply state whether or not a limit exists. For example,
sin 2¢ has a limit as ¢ — 0, whereas sin 2 ¢ has not. However, we are
concerned only with problems where a limit is believed to exist.



24 III. The Techniques of Perturbation Theory

Second, one may describe the limiting value qualitatively. There arc
three possibilities: the function may be

(a) vanishing: fle)-—>0
(b) bounded: fle) -7 = (
(c

as e-»0
c) infinite: fle) = = \

It is a peculiarity of this mode of description that the first casc is included
in the sccond; a function that vanishes is also bounded. However, one
would naturally use the first description when possible, because 1t 1s
more precise.

Third, one may describe the limiting value quantitatively. There are
again threc possibilitics, only the second having been refined:

() Tim f(e) = 0 ,
(b) lim f(e) == ¢, a constant as e —0
() lim f(e) == = \

Fourth, one may describe gualitativelv the rate at which the limit 1s
approached. Only cases (a) and (¢) above are thus refined. This can be
done by comparing with a set of gauge functions. T'hese are functions
that are so familiar that their limiting behavior can be regarded as known
intuitively. 'The comparison is made using the order symbols O (“big
oh”) and o (“little oh”). They provide an indispensible means for keeping
account of the degree of approximation in a perturbation solution.

The symbol O is used if comparing f(¢) with some gauge function
5(¢) shows that the ratio f(¢) (¢) remains bounded as ¢ — 0. One writes

fe) = OB(e)]  as e—0 if 1{11?]5:8 - (3.2)

The symbol o is used instead if the ratio tends to zero. One writes

) - ofs 4 : - fle) _

fle) == o[d(e)] as e—0 if  lim 50 0 (3.3)
Some examples are

sin 2 == O(e), Il —cose == O(?) = ofe)
VI — et =0(1),  sec il -be) = O(e?) = o(l) (3.4)
cote = (L), exp(—1ie) = o(e™) for all m
€
Like the perturbation quantity e itself, the gauge functions are not
unique, and a choice other than the obvious one may occasionally be
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advantageous. For example, it might under some circumstances prove
useful to replace the first case in (3.4) by the equivalents

sin 26 = O(2e),  O(tan &), o(l—f—), etc.
-+ &
One ordinarily chooses the real powers of ¢ as gauge functions, because
they have the most familiar properties. However, this set is not complete.
[t fails, for example, to describe log 1 &, which becomes infinite as e tends
to zero, but more slowly than any power of &. The powers of ¢ must
therefore be supplemented, when necessary, by its logarithm, expo-
nential, log log, etc., or their equivalents. Examples are

sech™l e = ()(log L), cosh™ Kye) = O(log log L)
& \ &
| N (3.5)
cosh .= O(el'e), exp(fcosh 2) = O(exp[— 5¢'¢])
Often, as in (1.4), one writes log ¢ where log 1 ¢ would be more appropri-
ate.
Neither order symbol necessarily describes the actual rate of approach
to the limit, but provides only an upper bound. Thus it is formally
correct to replace the first example in (3.4) by

sin 2¢ == O(1), o(l), O(?), o(e?), etc. (3.6)

However, we assume that the sharpest possible estimate is always given.
'I'his means, for example, choosing the largest possible power of ¢ as the
gauge function, and using o only when one has insufficient knowledge
to use O. Of course the result may still be only an upper bound for lack
of sufficient information.

"The mathematical order expressed by the symbols O and o is formally
distinct from physical order of magnitude, because no account is kept of
constants of proportionality. Therefore Ke is O(e) even if K is ten
thousand. In physical problems, however, one has at least a mystical
hope, almost invariably realized, that the two concepts are related. Thus
if the error in a physical theory is O(¢) and ¢ has been sensibly chosen,
one can expect that the numerical error will not exceed some moderate
multiple of ¢: possibly 2¢ or even 2m¢, but almost certainly not 10e.

The rules for simple operations with order symbols are evident from
this physical connection. IFor example, the order of a product (or ratio)
is the product (or ratio) of the orders; the order of a sum or difference
is that of the dominant term—i.e., the term of order &” having the
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smallest value of m—etc. Order symbols may be integrated with respect
to either ¢ or another variable. It is not in general permissible to differ-
entiate order relations. Nevertheless, in phvsical problems one commonly
assumes that differentiation with respect to another variable 1s legitimate,
so that the derivative has the same order as its antecedent. For other
properties of order symbols see the first chapter of Erdélyi (1956).

3.3. Asymptotic Representations; Asymptotic Series

A fifth scheme is to describe quantitatively the rate at which a function
approaches its limit. "T'his constitutes a refinement of the fourth scheme --
the use of order symbols—just as the third scheme does of the second.
Wesimply restore the constant of proportionality, and write

(&) ~ cd(e) as ¢—0 (3.7a)
if
- fle)
ltlilol 50 c (3.7b)
that is, if
f(e) = ¢d(e) — o[d(e)] (3.7¢)

This is the asymptotic form or asymptotic representation of the function,
and constitutes the leading term in the asymptotic expansion discussed
below. Some examples are

sin 2e ~ 2, sech™! e ~ log .
V1 — &~ 1, KO(—I—/) ~ \/ gsl/ze—l/e (3.8)
ax —t
cot e ~ l, ‘ e:—dt ~1
e Jo 1 + et

Sixth, the preceding description—which is the most precise one
possible using only one gauge function—can be refined by adding
further terms. Consider the difference between the function in question
and its asymptotic form as a new function, and determine its asymptotic
form. The result can be written

fle) ~ cdi(e) + cx85(e)  as e—0 (3.9a)
where the second gauge function 8,(¢) is necessarily of smaller order
than the first:

Sye) =of8y(z)]  or  lim g—j% —0 (3.9b)
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and the error 1s of still smaller order:
fe)  ~a0y(e) - exdye) - 0[du(e)] (3.9¢)

Further terms can be added by repeating this process. Thus one con-
structs the asymptotic expansion or asymptotic series to N terms, written as

fe) ~ c10,(g) — c04(e) cxOx(e)
N
- 2 ed,(e) as e-—>0 (3.10a)
and defined by
.
fe) =2, cdle) = ofdu(e)]  as e—0 (3.10b)
o=l

If the function f(¢) were known, together with the gauge functions
»,(¢), the coeflicients ¢, of the asymptotic expansion could be computed
in succession from

e) - X1 e,8 (&)

e

¢, == lim (3.11)

n T 5.()

It the gauge functions are all integral positive powers of ¢, one speaks of
an asymptotic power series. As the number N of terms increases without
Jimit, one obtains an /nfinite asvmptotic series, which may be either con-
vergent or divergent,

Some examples of asymptotic expansions are

sin 2e ~ 2g — 3 g -+ 14—585 -+
sech™ e ~ 10g§ - }1 e — 335 et —+
1\1,(%) ~ \"“'327’6' 20141 - %g - lgge’l o) (3.12)
|0 lii‘% ol e et e — e - gu(»wn!g"

logn! ~(n - Hlogn —n ~ logh/27 -

The first two of these converge if extended indefinitely; the latter three
diverge.
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It is proper to regard a distant boundary condition as an asymptotic
relation. For example, (2.6b) will henceforth be rewritten as

b~ U[;i 2 73(1 — cos 20) -+ r sin 0] as ¥ -— (2.6b")

It must be understood that this admits the possibility of an error of order
o(r). Actually, in the problem in question, the next term in this asymptotic
expansion is O(1); the stream function must be left unprescribed far
upstream to within a constant, which corresponds physically to the
displacement of the stagnation streamline.

3.4. Asymptotic Sequences

The process just described of constructing an expansion term by term
is effectively that employed in perturbation solutions, such as those of
Chapter I1. Thus in each problem a perturbation solution generates a
special sequence of gauge functions

3i(e), Bse), Ogle), (3.13)

that are arranged in decreasing order: 8, ., = 0(3,). This is the asymptotic
sequence associated with the problem. It cannot be prescribed arbitrarily,
because it must be sufficiently complete to describe logarithms, for
example, if they appear. On the other hand, there are an unlimited num-
ber of alternatives to any particular asymptotic sequence:

sin 2e ~ 2e —i53 - 1_5_85 e

3
~2tane — 2tan® e — 2 tand e 4 -

~ 2 log(l + &) - log(1 -~ &%) — 2 log(l + &) +
£ 756, e \?
~6 g~ Sl (3.14)
The last two forms illustrate the fact that alternative sequences need not
be equivalent: corresponding terms are not of the same order. Both
the asymptotic sequence and the asymptotic expansion itself are unique
if the perturbation quantity (e.g., ¢) and the gauge functions (e.g.,
e, log 1 ¢, log log 1 ¢, etc.) are specified.
We have seen that one way of attacking a perturbation problem is to
assume the form of a series solution. This requires guessing an appro-
priate asymptotic scquence. The simplest possibility is that, as in the
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examples of Chapter II, it consists of integral powecrs, &". Fractional

powers may also occur, particularly in singular perturbation problems.
Iixamples are:

I, el g, &%2 ... Unseparated laminar flow over smooth bodies at high
Reynolds number R, where ¢ — 1/R (Van kae,
1962a) ' )

I, e84, .. Separated Oseen flow at high Reynolds number R,

e = IR (Tamada and Miyagi, 1962)

Logarithms may occur at some stage, examples being

1, s}, e?log e, €2, &% log ¢, Axisymmetric flow at low Revnolds number R
: . )
... & = R (Proudman and Pearson, 1957)
2 2 o ool ; : : :
1, s1 110;: e, €%, ¢! log? ¢, supersonic axisymmetric slender-body theory
. 4 M ) .
et loge, & ... e = thickness parameter (Broderick, 1949)

e log e 21 2 e imati ¢
ge & e loge, &% ... Newton-Busemann approximation for plane

hypersonic flow past a blunt body, &=
(v — 1)j(y -~ 1) (Chester, 1956a)

(log &)1, glog &), Plane viscous flow at low Reynolds number

(log &)73, ... R, ¢ = R (Kaplun, 1957; Proudman and
o Pearson, 1957)
I, e, &% &% etloge, &) ... Subsonic  thin-airfoil theorv for round-nosed
profile, e = thickness parameter (Hantzsche,
1943)
1, a: .;-, &, &3 log ¢, Laminar flow over flat plate at high Reynolds
¥, number R, ¢ = I/R (Goldstein, 1956; Imai,
1957a)

In the last two examples, earlier investigators had obtained erroneous
solutions because they did not suspect the presence of logarithmic terms
(hh\cr examples arising in boundary-layer theory have been discusse\ci
by .bte\\'artson (1957), who shows that even log logg’s occur in the asymp-
totic solution far downstream on a circular C\,;linder.

Exponentially small terms are seldom cnc'ountered, and are difficult
to deal with. The following example shows that the estimate O(e 1)
has very little practical value:

, x> 1
I, X == 1 (3.15)
X

w?

~
=3
[}
|
—
o
—

—
.

The question naturally arises how one can be sure of guessing the
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proper asymptotic sequence. Apparently there are no general rules, but
the following principles are of some help:

(a) When in doubt, overguess. A superfluous term will drop out by
producing for its coefhicient a homogeneous problem, whose
solution (if unique!) is zero.

(b) Be ready to suspect the presence of logarithmic terms at the first
hint of difhculty.

(¢) Iteration will sometimes (but not always!) produce the proper
sequence automatically.

One usually has a feeling when the solution is progressing properly; all
terms match, and complicated expressions  often simplifv.  With
experience, one learns when the absence of such reassurance suggests a
re-examination of the assumed form of the series. However, the only
fool-proof procedure is to leave the asymptotic sequence unspecified,
and to determine it term by term in the course of the solution. This
technique will be illustrated in Chapters VII and VIIL

3.5, Convergence and Accuracy of Asymptotic Series

We have seen that an infinite asymptotic series may either converge
for some range of ¢, or diverge for all ¢. In perturbation problems one
often neither knows nor cares whether the series converges. This point
of view has been persuasively set forth by Jeffrevs (1926). It is a fallacy
to think that convergence is necessarily of practical value. Mathematical
convergence depends upon the behavior of terms of indefinitely high
order, whercas in physical problems one can calculate only the first few
terms and hope that they rapidly approach the true solution. This
requirement may sometimes be better met with a divergent than a con-
vergent series. Thus the expansion

Jole) == 1 - —}iej — 6148l —- 53}()—46‘3 ERE (3.16)
for the Bessel function has an infinite radius of convergence, but many
terms are needed for accurate results unless ¢ 1s small. With ¢ == 4, for
example, the first three terms actually increase in magnitude—so that
the series appears to be diverging—and at least cight terms are required
for three-figure accuracy. On the other hand, the asymptotic expansion

1} 2e 9 . L.
]0(\?) N\.’f[(l R ) cos (E — 74—)

75

1 . 1
S AT Al i

)| e e—0 (A7)
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is divergent for all & no matter how small, but a few terms give good
accuracy for moderately small e. "T'he first term alone is correct to three
significant figures for (I &) = 4.

T'he utility of an asymptotic expansion lies in the fact that the error
is, by definition, of the order of the first neglected term,and therefore tends
rapidly to zero as ¢ is reduced. For a fixed value of ¢, the error can also be
decrcased at first by adding terms; but if the series is divergent, a point
is eventually reached beyond which additional terms increase the error.
T'his behavior is indicated in Fig. 3.1. These properties are often ideal

E Must go to Must stop
2 here here i
=
<
°
3
2
=
o
g H
ﬂ 0en Dannnfl ﬂ
2 4 6 8 10 12 2 6 8 10 12
Number of term, 7 n
{a) {(b)

Fig. 3.1. Behavior of terms in scrics. (a) Slowly convergent series. (b) Divergent
asymptotic series.

for practical purposes, particularly in parameter perturbations of the sort
c,\cmpliﬁcd by thin-airfoil theory. Then only small values of ¢ are of
px.'z%ctlczll interest; and only a few terms arc calculated, so that the point
of Increasing error is not reached.

There are other problems, however, in which one attempts to make ¢
as large as possible. This is true of such parameter perturbations as
expansions for large or small Reynolds numbers. It is almost always
truc ()f‘ coordinate perturbations, because onc intends to apply the results
as far from the origin as possible. Under such circumstances, éon\'crgcncc
may be of considerable practical interest. As discussed in Chapter X
one can sometimes improve the rate and radius of convergence, or cvcr;
I'Cll‘dcr a divergent series convergent. ’

From a physical point of view, the perturbation quantity ¢ assumes
only positive real values. However, mathematical insight is often gained
b\ envisioning its analytic continuation into the compléx plane (Fig. 3.2).
I'his is p:artlcularly useful when the solution is a power series in the
perturbation quantity. Thus one considers the complex M2-plane in the
Janzen-Rayleigh method, the complex thickness-ratio-plane in thin-
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Imaginary

< .
Circle of

l / convergence
Possible !
s/ngu.’ar/fy,l I

—_— - =" Real &

Fig. 3.2. Complex plane of perturbation quantity e.

airfoil theory, and so on. Then one can take advantage of the powerful
unifving viewpoint ot complex-variable theory.

Some knowledge of—and feeling for—the principle of analytic con-
tinuation is essential. An analvtic function has a power series develop-
ment at every regular point. This converges within a circle that extends
to the nearest singularitv. A function defined in any region, or even on
just a line segment, 1s ordinarilv defined uniquely in a much larger region
of the complex plane (possibly on several Riemann sheets), and can be
completed by the process of analvtic continuation.

Sometimes the first few terms of a perturbation solution suggest that
the series converges, but has its radius of convergence limited for no
apparent phvsical reason. According to the principles just outlined, this
must result from a singularity in the complex plane of ¢ elsewhere than
on the positive real axis. Several examples to be discussed in Chapter X
suggest that in these circumstances the singularity ordinarily lies on the
negative real axis, and in fact at ¢ — [, if the most natural choice of
variables has been made (Fig. 3.2). This artificial limitation can be
eliminated by shifting the singularity to infinity using a simple conformal
mapping, the Euler transformation:

= (3.18)
1l —e
The radius of convergence is thereby extended to the nearest singularity
in the complex plane of ¢ and the utility of the scries often greatly
improved.

3.6. Properties of Asymptotic Expansions

In substituting an assumed series solution into a perturbation problem
one must carry out such operations as addition, multiplication, and
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differentiation.  Addition and subtraction are justified in general.
Multiplication is valid if the result is an asymptotic expansion. It is
not in general permissible to differentiate an asymptotic expansion with
respect to either the perturbation quantity or another variable. These
and other properties of asymptotic expansions are discussed by Erdélyi
(1956). However, it appears that results are not available in sufficient
generality to cover such commonly occuring series as those involving
logarithmic terms. In practice, thercfore, one ordinarily carries out
tormally such operations as differentiation with respect to another variable
without attempting to justify them. When they are not justified, non-
uniformities will arise in the solution. )

In a physical problem, the coefficients in an asymptotic expansion will
depend upon space or time variables other than e. The series is said to
be uniformly walid (in space or time) if the error is small uniformly in
those variables. Examples of nonuniformity in a are )

&€
Vx
e log v = Ofe),

= O(e), but not uniformly near x = 0

(3.19)

but not uniformly near + = 0, o

A singular perturbation problem is best defined as one in which no single

~ asymptotic expansion is uniformly valid throughout the field of interest.

The nonuniformities illustrated in (3.19) arise in practical singular
perturbation problems. For example, the first will be encountered at a
round leading edge in subsonic thin-airfoil theory, and the second at a
sharp leading edge or in plane viscous flow at low Reynolds numbers.

We have observed that each function has a un'ique asymptotic
expansion if the gauge functions or asymptotic sequence is préscribcd.
On the other hand, the statement is often made that different functions
may have the same asymptotic expansion. The extent of this non-
uniqueness may be understood by considering the following example:

b

1 +e
Lpeve(” I —e gt e nzzo(—l)”a” (3.20a)

1 +e

With respect to the gauge functions &, these two functions have identical
asymptotic expansions to any number of terms. Their difference is so
small that it would become evident only if the infinite sequence of powers
of. ¢ were cxhausted, for example by summing them. It happens that
this is easily accomplished in this example by making the Euler trans-
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formation (3.18). With respect to powers of the new pcrturbajuor‘f
quantity & the two functions have different asymptotic cxpansions

(which happen to terminate):

DL
I e (3.200)
————1 T e: ~1--¢-+-e¢e- e-1e — egeliE
1 -¢

One speaks of e ¢ as being transcendentally small compared with the
sequence of powers of ¢, because it 13 o(z:t’”) for any m no matter how
large. Similarly, on a different level of magnitude, & itself 1S't1‘21nsc.endc11tf
ally small compared with the sequence (log &) ™, \\'h}c‘h arises, .f(,)r
exémple, in plane viscous flow at low Re.\'nolds numb'ers. I'he Ipos‘sm]hty
of dealing with transcendentally small terms will be discussed in Chapter
VIII in connection with that problem.

3.7. Successive Approximations

The perturbation problems encountered in ﬂx}id mech?nics usually
involve a svstem of ordinary or partial ditferential equations together
with approbriate initial and boundary copditior?s. Integro—dxﬁmjegtml
equations may also arise, as in problems 1Q\'01\'111g thermal radlatl(.)r_L
There are two systematic procedures for finding a solution b\ successive
approximations, both of which were illustrated in the previous chapter:

(i) substitution of an assumed series,
(ii) iteration upon a basic approximate solution.

In the first method-—which is somewhat more comm(.m—the guiding
principle is that since the expansion must hf)ld, at lea§t in an asymptotic
sense, for arbitrary values of the perturbation quantity &, terms of like
order in e must separately satisfy cach equality. That is, one can equate
like powers of ¢, terms in &” log” & having the same values of both and
n, etc. 4

Each method has its advantages and disadvantages, which can
sometimes be exploited by working with a combinati(.)n of the two.
The most important of these differences can be summarized as follows:

(a) Tteration can be started only if an appropriate init.ial approxin.latlon
is known. Series expansion is more automatic, becaus§ it can
generate the basic approximation if one substitutes a series \_\'1th
the asymptotic sequence left unspecified. An example is given
in Chapter VII.
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(b) Iteration eliminates the need to guess the asymptotic sequence.
It 1s therefore safer than assuming an expansion, unless one
leaves the asvmptotic scquence unspecified. For example, it
will often - though not alwavs, in singular perturbation
problems --produce logarithms in higher-order terms that arc
missed if a power series 18 assumed.

(¢) Bevond the second term the series expansion is more systematic
because 1t produces only significant results, whereas iteration
will, in nonlinear problems, generate some higher-order terms,
to which no significance can be attached because others of equal
order are missing. IFor example, in the Janzen-Rayleigh solution
tor a circle (Scction 2.4), the next iteration step would clearly
produce not only terms in 34, which are correct and identical
with those given by series expansion, but also some terms in 1%
and 3/® that should be disregarded because they are incomplete.

(d) Iteration will vield in a single step groups of terms of nearly the
same order that require several steps in a series expansion. For
example, in axisymmetric slender-body theory, each iteration
adds one more of the following groups of terms:

[1], [e*loge, €%, [etlog?e, etloge, &', ...

Whichever method is used, there are certain features common to all
perturbation solutions. 'T'he basic solution may be linear or nonlinear,
but all higher approximations are governed by linear equations with
linear boundary conditions. An exception arises in the case of transonic
and hypersonic small-disturbance theory, where the double limit process
is specifically designed to retain in the perturbation the essential non-
linearity of the problem. In those special cases only the third and sub-
scquent terms in the series satisfy linear problems. Otherwise, because
first-order perturbations are linearly independent, they may be super-
imposed. For example, the three perturbations studied separately in
Sections 2.2, 2.3, and 2.4 may be added to give the first-order solution
for slightly compressible flow past a slightly distorted circle in a slight
shear flow. Higher approximations, however, will be coupled through
cross products of the various &’s.

Although the equations governing higher approximations are linear,
they ordinarily contain nonconstant coefficients that depend upon the
previous approximations. It is often possible to simplify the computation
dramatically by taking advantage of known relations for those earlier
results. A simple example will appear in Chapter IV in thin-airfoil
theory, where both the differential equations and the boundary conditions
are used to simplify their counterparts in subsequent approximations.
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As in the Janzen-Rayleigh solution of Section 2.4, higher-order
problems typically differ from one another only in the appearance of
successively more complicated nonhomogeneous terms (depending upon
previous approximations) in the differential equations. These are
accounted for by finding a particular integral. Usually the best way of
seeking a particular integral is to guess it. Only after that attempt has
failed should one apply more sophisticated processes of analysis.

One should also be on the alert for the occasional problem in which
a general particular integral can be found in terms of previous approxi-
mations. We illustrate this possibility by two examples from the small-
disturbance theory of axisymmetric compressible flow. First, in an
approximate linearized theory of supersonic propellers the second—order
velocity potential is found to satisfy the nonhomogeneous wave equation

. b
Sy (1 My o T

= 2Mdéy,0 (3.21a)
where the first approximation is a solution of the homogeneous equation

~2¢, — 0. Burns (1951) has noticed that a particular integral is always
given in terms of the first-order solution by
M
oty 3.21b
(b‘lu - 1 — KE '\9/)16 ( )

Second, if one seeks to improve the linearized theory of subsonic or
supersonic flow past a body of revolution by considering nonlinear terms,
the second-order potential satisfies

z,‘zd’z = 11—);[2 -+ (7 - 1)342]¢1f‘i’1a'x -+ 2¢1r‘¢1xr -+ d’%r'qslrr} (322‘1)

where again ~ ¢, = 0. Van Dyke (1952) has found that to within
third-order terms a particular integral is given by
T ;"[2
boy = MWbulds — T prtn) — b (3.220)

Particular integrals of this sort are also ordinarily found by trial rather
than by systematic analysis. Analogous solutions of some homogeneous
equations were discovered by Lin and Schaaf (1951) for viscous flow.

3.8. Transfer of Boundary Conditions

Often a boundary condition is imposed at a surface whose position
varies slightly with the perturbation quantity . The surface may be that
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of a solid body (as for the slightly distorted circle of Section 2.3), a free
streamline, a shock wave, etc. (I'ig. 3.3). In order to carry out a systematic
expansion scheme, the boundary condition must in each case be expres-
sed in terms of quantitites evaluated at the basic position of the surface,
corresponding to ¢ = 0. Otherwise ¢ will appear implicitly as well as

Fig. 3.3. Examples of transfer of boundary conditions.

explicitly in the perturbation expansion, so that the result is unneces-
sarilly complicated, the series 1s not an asymptotic expansion, and it is
not possible to equate like functions of ¢.

The transfer of a boundary condition 1s etfected by using a knowledge
of the way in which the solution varies in the vicinity of the basic surface.
Often the solution 1s known to be analytic in the coordinates, in which
case the transfer 1s accomplished by expanding in Tavlor series about
the values at the basic surface. In the first approximation this usually
means that the condition is simply shifted from the disturbed to the
basic surface. In axisymmetric slender-body theory, on the other hand,
the solution is singular on the axis, but the transfer can be carried out
using the fact that the velocity potential varies near the axis like log 7
or the radial velocity like | r.

After the solution is calculated, values of flow quantities are often
required at the body or other surface. These can be found in simplest
form by repeating the transfer process, expressing them in terms of
values at the basic surface. Both of these transfer processes are
illustrated in Chapter 1V; see also Exercises 2.1, 2.3, and 3.2.

3.9. Direct Coordinate Expansions

Perturbation problems in which the small quantity is a dimensionless
combination involving the coordinates (space or time) rather than the
parameters alone have certain special features. A useful discussion of
the distinction between parameter and coordinate expansions is given
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by Chang (1961). The essential point is that no derivatives with respect
to a parameter occur, and it is therefore possible to calculate the solupon
for one valuc of the parameter without considering other values. Ordina-
rily one secks an approximation for either small or large values of one of
the coordinates. Tt is useful to designate these respectively as direct and
inverse coordinate expansions.

A direct coordinate expansion is natural to a problem governed by
parabolic or hyperbolic differential equations. One expands the solution
for small values of a time-like variable, which can of course be a space
coordinate rather than actual time. The perturbation quantity must
increase in the positive sense of that variable, following time’s AITOW.
Then there is no backward influence, so that each term in the perturbation
series is independent of later ones, and can be calculated in its turn.
The result is a perturbation expansion that describes the carly stages of
the evolution of the solution from a known basic initial state.

The following are tvpical examples of direct coordinate expansions.
Goldstein and Rosenhead (1936) have calculated the growth of the
boundary laver on a cylinder set impulsively into motion by expanding
in pO\\‘@I:S of the time, the governing equations being parabqlic. Se.ar the
stagnation point of a circle, for example, they find the skin friction to
be given by

(1 1.42442(U8) — 0.21987(Lyt)2 — -] (3.23)

1/2778/24
T ~ pv Ll Ay '\/7{,;}‘
4 1

where U, is the gradient of inviscid surface speed at the nose and x the
distance along the surface. As shown in Fig. 3.4, this series obviously
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Fig. 3.4. Growth of skin friction near a stagnation point.
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diverges for large time, where it should approach Hiemenz’ result for
steady flow. Such nonuniformity usually arises in direct coordinate
expansions (but see Sections 10.6 to 10.8).

A case where a space coordinate assumes the time-like role is Blasius’
expansion of the steady boundary laver on a cylinder in powers of the
distance x from the stagnation point, the boundary-layer equation
(2.25a) being parabolic for steady as well as unsteady motion. The result
(1.5) for the parabola is believed to converge only for x ¢ <= 7 4 (Van
Dyke, 1964a). Another such case, involving hyperbolic equations, 1s the
axisvmmetric Crocco problem: a perturbation of the self-similar solution
for supersonic flow past a circular cone yields the initial flow gradients
at the tip of an ogive of revolution (Cabannes, 1951).

FFor elliptic equations, coordinate expansions usually provide only
qualitative results. One ordinarily encounters a boundary-value rather
than an initial-value problem. Then because of backward influence
anv local solution depends on remote boundary conditions, and 1t 1s
not possible to calculate successive terms of an expansion for small
values of a coordinate. All that can be achieved is to find the form of the
expansion, each term being indeterminate by one or more constants.
For example, Carrier and Lin (1948) have examined the nature of viscous
flow near the leading edge of a flat plate by expanding for small radius.
T'helr series for the stream function is, after correction

o=z 2,432 (cos v cosE

: 29’) B2 lcos% — cos —;9)

2

T 42 sin® Blog r sin 6 ~- (8 — 7) cos 0]
v

+ % (sin 26 — 2 sin §) - g(" sin® f} 4- -+ (3.24)

where 6 = 0 on the plate. The constants 4, B, C, ... depend upon
boundary conditions far outside the range of validity of the expansion,
and are therefore undeterminable within the framework of the
analysis.

An exception is the unconventional case of an initial-value problem
for an elliptic equation. In the inverse problem of supersonic flow past
a blunt body (Fig. 3.5), the detached shock wave 1s prescribed, and one
seeks the body that produces it. Although the flow is subsonic near the
axis, the stream function can be expanded in powers of the distance
downstream of the shock wave, and the coefficients found in succession.
Cabannes (1956) has calculated seven terms of the series when M = 2.

See
Note
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Fig. 3.5. Supersonic flow past a blunt body.

For a paraboloidal shock wave, the stream function is described near the

axis by

b1 Sx Sy 250 11945 )
73 3a 18l 27la T
7051,x7 1,817,909 x 6 (325)
T 243 2) - 2916‘*(a) :

Aside from such rare exceptions, direct coordinate expansions can be
effectively applied to elliptic equations only by treating them as if they
were parabolic and truncating the series at a finite number' of terms.

The blunt-body problem is so intractable that séveral investigators
have been willing to introduce another independent variable in order to
render the equations parabolic or hyperbolic. Thus Cabannes (1953)
considers an impulsive start, and expands the unstcad_\"ﬂow ﬁeld‘m
powers of the time. He suggests that the accuracy will increase with
VMach number; at M = oc and for y = 7 5 he finds as the ratio of shock-
wave standoff distance 4 to nose radius a for any smooth body:

Y| 1
a 5(,

. o
—Lai) — - 1)77—5(. Lt ) (3.26)
Here 7 is the number of space dimensions: # = 2 for plane flow and
n = 3 for axisymmetric flow. We can expect the result to be the more
accurate for plane motion, because it is exact for the one—dim.ensional
piston problem n = 1. The serics evidently diverges for large time, but
Cabannes attempts to estimate its limit as the maximum given by the
two known terms. This yields 4 @ = 0.107 for plane flow, compared
with accurate numerical calculations of 0.377 for the circular cylinder.
We reconsider this discrepancy in Section 10.7.
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3.10. Inverse Coordinate Expansions

In contrast to direct expansions, which usually possess a finite radius
of convergence, inverse expansions for large values of a coordinate
ordinarily appear to be divergent asymptotic series. They also suffer
from indeterminacy irrespective of the type of the governing equations.
For elliptic equations the situation is the same as that discussed above
for a direct expansion. However, the undetermined constants can some-
times be related to simple integral properties of the solution. Thus the
first few constants in the expansion for subsonic flow far from a finite
body can be identified with its lift, drag, moment, etc. (Imai, 1953;
Chang, 1961). For parabolic and hyperbolic equations, indeterminacy
arises because the expansion runs contrary to the direction of the time-
like variable. Eigensolutions therefore appear at an early stage, whose
constant multipliers depend upon certain details of the previous history.
Occasionally a few of these can be supplied without detailed knowledge
of past events by invoking some global conservation principle (cf. Section
4.5). More often a sequence of constants remains undetermined.

The form of an inverse coordinate expansion varies widely with the
tvpe of the equations, the number of space dimensions, and the extent
of the body. In some problems the leading term of the expansion is
obvious; for example, it is evidently the undisturbed stream for the steady
flow far from a finite body, the conical motion for flow far downstream
on a blunted cone, and the corresponding steady motion for the flow
long after an impulsive start. Then one perturbs that basic solution to
find how it is approached. The approach is sometimes algebraic, in inverse
powers of the large coordinate, as for noncirculatory potential flow
far from a finite body (Imai, 1953). It very often involves logarithmic as
well as algebraic terms, as for circulatory potential motion or viscous
flow far from a body (Chang, 1961). In time-dependent problems it is
often exponential, as for unsteady viscous or free-streamline flows
(Kelly, 1962; Curle, 1956).

We quote one example. The Blasius series for the boundary layer
(Section 2.6) is a direct coordinate expansion for small distances from
the stagnation point. On a parabolic cylinder we can supplement that
approximation by an inverse expansion for large distances. It is evident
that the leading term is the solution for the flat plate, because far down-
stream the nose radius is negligible compared with the dimensions of
interest. Perturbing that basic solution yields as the complement to (1.5)
tor the coefficient of skin friction

14
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Here v is the abscissa, and (7 is an undetermined constant multiplying
the first of an infinite scquence of cigensolutions for the flat-plate solution
(Section 7.6).

Sometimes the leading term is by no means obvious. Free-streamline
motion provides an example of the complications that may appear. In
plane flow the width of the deadwater region increascs far downstream
like a2, but in axisymmetric flow it has the unlikely growth of
&1 2(log x)~'/* (Levinson, 1946).

3.11. Change of Type and of Characteristics

A curious feature of perturbation methods is that they may spuriously
change the type of the governing partial differential equations. A striking
example is Prandtl’s boundary-layer approximation. Although the
Navier-Stokes equations are clliptic, they are replaced by parabolic
equations inside the boundary laver, and by elliptic or hyperbolic ones
outside, according as the flow is subsonic or supersonic. Again, in the
theorv of surface waves the elliptic Laplace equation is replaced by a
nonlinear hvperbolic equation in the shallow-water approximation
(Stoker, 1957). Conversely, the hyperbolic equations of inviscid super-
sonic motion become elliptic in the slender-body approximation (Ward,
1955).

These changes of type imply significant changes in the regions of
influence and dependence, and in the boundary conditions required.
Thus Prandtl’s boundary-laver equations, because they are parabolic,
can be integrated step-by-step downstream. The backward influence of
their elliptic antecedents has been suppressed, but will reassert itself
in higher approximations (cf. Chapter VII). Similarly, the Kutta-
Joukowski condition must be abandoned at a subsonic trailing edge in
thin-wing theory, because its upstream influence has been lost.

Some assumption of smoothness underlies any such change of type.
The true type of the equations must be recognized wherever that
assumption is violated. Otherwise the perturbation solution will break
down at least locally. Thus boundary-layer theory is invalid near a corner,
as are the shallow-water and slender-body approximations. These thus
become singular perturbation problems as the result of discontinuities
in the boundary conditions.

Often the tendency toward change of type is incomplete; the pertur-
bation equations merely become “less hyperbolic” or “more elliptic.”
For hyperbolic equations this means that the characteristic surfaces are
changed. An example is supersonic small-disturbance theory, where at
each stage the true characteristics are approximated in the perturbation
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equations by the free-stream Mach cones. Again this defect is inconse-
qu'cntlal if the body is sufficiently smooth, but otherwise leads to non-
uniformities (cf. Chapter VI and Exercise 3.4).

EXERCISES

3.1. Modified hypersonic similarity rule. According to hypersonic small-
disturbance theory the pressure coefficient on a slender wedge or cone of semi-
vertex angle ¢ has the form

C, ~ e%f(Me)

Devise an alternative form that can be expected to be superior for thick bodies
in view of Newtonian impact theory, according to which the pressure coefhicient
at any point on a body in hypersonic flight is twice the square of the sine of
the angle of the surface with the stream. Exhibit the degree of improvement
realized by making numerical comparison with the full solutions at .W = .
Investigate whether the result can be extended further to thick bodies at lower
speeds if one is guided by the supersonic similarity rule

G, = ﬂz—l__—i F(VM? — Te)
3.2. Transfer of tangency condition. A small sphere pulsates in still air, its
radius varying with time as ¢f(7), and thereby produces weak outgoing waves
whose velocity potential satisfies the acoustic equation ¢, = ¢? V2. Show
that if the function f is sufficiently smooth the tangency condition can 'approxi-
mately be transferred to the origin as

o, 1 d ,
lim r, = 3 f(OF

Calculate ¢ using this condition. How smooth must f be ? What happens to the
solution if that restriction is violated ?

?.3. Estimate of ultimate value from coordinate expansion. 'Test Cabannes’
idea for estimating the value of (3.26) at infinite time by applying it to (3.23)
and (1.5), where the answers are known. Should one choose E}le value at the
inflection point when no extremum exists? Try to devise a better or more
rational scheme of this sort.

3‘4.‘ Effect of change of characteristics. 'The following problem is a mathe-
matical model of steady supersonic flow over the upper surface of a thin airfoil:
by — brr = &b, $0,y) =¢.(0,) =0 for y >0
é,(x,0) = &f (x), where f(x) =0 for x <0
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Then the matching principle (4.36) is to be applied with m = n = 2,
for which we find

2-term outer expan-

AT D \ S

sion: g~ U+ 7—78[2 (1 — ) log ﬁ?]s (4.51a)
rewritten in \ ) / e s 7,

inner variables: = U(l . ;3[2 + (1 —e1=S) logm] \ (4.51b)
expanded for v 5 ) |

small e: = U[(l —Z) =262 + log S — log2) ] (4.51c)
2-term ir?ner iy 2 2 , - st

expansion: =U [(1 — ;T) - 7;5(2 —log S — log )] .
rewritten in ,

. 2 s
outer variables: = U [1 - 1—78(_2 — log —2-)] (4.51e)
2-term inner

expansion: q ~ U,Suant2eriz—tan-l 2¢) (4.52a)
rewritten in

outer variables: = Uj(el/es) 1an71t 26/t~ tan~1 2¢) (4.52b)
expanded for 5 ) ‘

small e: — ¢ 'ﬂu[l ~ Zeflogs — =) = ] (4.52¢)
2-term outer 5 )

expansion: = ¢ "L',[l - ;Ta(log 5 - 7—7)] (4.52d)
rewritten in ‘

. 2 2 L2
inner variables: = 7L ,[( 1 — 7—7) + ;s(log S - 7—7)] (4.52¢)

The rule (4.50) has been used in obtaining (4.52¢). The. additional last
step (4.51¢) or (4.52e) is required because the comparison of the two
results must be made in terms of either outer or inner variables alone.
Then equating (4.51e) and (4.52d) yields (but see exercise 4.5)

Uy = e¥muft = 262 —10g2 — 3} 4 -] (4.53)

This completes the inner expansion (4.49) to second order. Tl}e rea§er
can, using (4.24), find the next term in (4.53) by matching with
m=n = 3.
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4.12. A Shifting Correction for Round Edges

We return to the singularity at a round edge, and describe an alter-
native way of correcting it. This serves to introduce a second general
method of handling singular perturbation problems, which is discussed
in detail in Chapter VI.

Consider the simplest round-nosed shape, the parabola. We must
examine the complete velocity field, because the surface speed suffers
distortion through transfer of the boundary conditions. For the parabola
¥ = Z- &4/2x of nose radius &2 the first-order complex velocity can be
extracted from that (4.12) for the ellipse as

ie

N Ve

b, —id, == | O(&?), T =N 41y (4.549)
We compare with the corresponding exact result which, by conformal
mapping or separation of variables in parabolic coordinates, is found to be

ie
V2(z — Le?)

b —id, =1 - (4.55)

We see that the first approximation (4.54) becomes exact if the origin of
coordinates is simply shifted by $¢%. This removes the square-root
singularity from the vertex and places it inside the parabola at the focus,
which is the singular point of the conformal mapping. T'hus thin-airfoil
theory is seen to give the exact source distribution for a parabola, but
displaced by half its nose radius.

This remarkable propertv must hold approximately for any round-
nosed airfoil. For that reason Munk (1922) advocated modifying the
abscissae to shift the leading edge of any profile by half its radius. It is
clear that a simple translation is not correct for a finite airfoil, because
that would leave the trailing edge misplaced. For the ellipse of Fig. 4.2,
a uniform contraction of the x-coordinate evidently provides the required
shift at both ends, as do an unlimited number of more complicated
strainings. T'o retain the benefits of complex-variable theory, we strain
instead the single variable ¢ — x - Iy,

Lighthill (1949a) has proposed the following principle for finding
strained coordinates that restore uniform validity in a wide class of
singular perturbation problems:

Higher approximations shall be
no more singular than the first, (4.56)

We illustrate this principle by application to the thin-airfoil expansion
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and check that it satisfies the second-order similarity rule for airfoils (Hayes,

1955):
If at

M=0 C,= e Cpp(x) + e2Cpox) + == Chapter 1V

hen for

t o a THE METHOD

M0, €, =——Cpuly) — ¢ (D Lo M) Chalx) =

S RV A Al - ey OF MATCHED ASYMPTOTIC

EXPANSIONS

5.1. Historical Introduction

We introduced in the preceding chapter a method for treating singular
perturbation problems that is a generalization of the boundary-layer
theory of Prandtl (1905). "T'his has in the past been called the method of
“inner and outer expansions” or of “double asymptotic expansions.”

We prefer to follow Bretherton (1962) in speaking of the method of
matched asymptotic expansions.

The ideas underlying the method have grown through the vears. It
was being used in the 1950’s by Friedrichs (1953, p. 126; 1954, p. B-184)
and his students. It was systematically developed and applied to viscous
flows at the California Institute of Technology. Kaplun (1954) introduced
the formal inner and outer limit processes for boundary-layer theory,
and the corresponding inner and outer expansions. Later, in studying
flows at low Reynolds number, Kaplun and Lagerstrom (1957) made a
penetrating anal_\sm of the matching process (see also Lagerstrom,
1957). Kaplun (1957) used those ideas to gain deeper insight into the
resolution of the Stokes paradox for plane flow at low Reynolds number.
Lagerstrom and Cole (1955) evaluated the method in comparison with
new exact solutions of the Navier-Stokes equations for a sliding and
expanding circular cylinder. Coles (1957) applied it to some special
solutions for the compressible boundary layer.

Proudman and Pearson (1957) applied this expansion method to
treat flow past a sphere and circular cylinder at low Reynolds number.
Goldstein (1956, 1960) and Imai (1957a) gave the first correct extension
of Blasius’ boundary-layer solution for the semi-infinite flat plate.  See
Ting (1959) solved the riddle of the course of the viscous shear layer Note
between two streams of different speeds. 16

Following this developmental period, the method of matched
asymptotic expansions was applied to a variety of problems in fluid

77
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mechanics. Most of the earlier applications were to viscous flows. For
example, Germain and Guiraud (1960, 1962) and Chow and Ting (1961)
calculated the effect of curvature upon the structure of a shock wave.
Murray (1961) and Ting (1960) found the effect of external vorticity
upon the boundary layer near and far from the leading edge of a flat
plate. Chang (1961) clarified the behavior of viscous flow far from a
finite body. Flows at low Reynolds numbers have been analyzed for
cllipsoids by Breach (1961), for a spinning sphere by Rubinow and
Keller (1961), for a circle in shear flow by Bretherton (1962), and so on.

The method is equally successful for inviscid flows. The preceding
chapter gives examples in incompressible flow. Cole and Messiter (1957)
have studied transonic flow past slender bodies. Although the method
appears to be less popular in the Soviet Union, Bulakh (1961) has used
it to correct linearized supersonic conical flow and its higher approxima-
tions in the vicinity of the bow shock wave. Similarly, Fraenkel and
Watson (1964) have attacked the “pseudotransonic’” flow past a triangular
wing that occurs when the bow wave lies close to the leading edge. Yakura
(1962) has analyzed the entropy layer produced by slightly blunting the
tip of a body in hyvpersonic flow.

Since 1960, applications of the method have proliferated in many
fields of fluid mechanics, as well as in other branches of applied mathe-
matics. Some recent examples are discussed in later chapters of this
book.

5.2. Nonuniformity of Straightforward Expansion

Before we discuss the details of the method of matched asymptotic
expansions, it 1s useful to inquire how singular perturbation problems
arise. What is the source of the nonuniformity > Can we predict whether
a given physical problem will lead to regular or singular perturbations?

The classical warning of singular behavior is familiar from Prandtl’s
boundary-layer theory. A small parameter multiplies one of the highest
derivatives in the differential equations. Then in a straightforward
perturbation scheme that derivative is lost in the first approximation so
that the order of the equations is reduced. One or more boundary
conditions must be abandoned, and the approximation breaks down near
where they were to be imposed. This happens except in the unlikely
circumstance that the original boundary conditions are consistent with
the reduced cquations.

It is often helpful to examine linear ordinary differential equations as
mathematical models that illustrate the essential features of more
complicated problems. A simple model that illustrates loss of the highest
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derivative in boundary-layer theory is given by Friedrichs (1942) as

&f - df
e Gk = fO) =0, f1)- | (5.1
T'he exact solution is
1 o SIE
fvie) =(1 — a) t;—l — av (5.2)

However, setting « — 0 reduces the differential equation to first order, so
that both boundary conditions cannot be satistied unless it happens that
a — 1. The exact solution shows that the condition at v+ — 0 must be
dropped. Then the approximate solution for small ¢ is

ey ~1 -a) - ax (5.3)

As indicated in Fig. 5.1, this is a good approximation except within
the “boundary layer” where v = O(¢). Introduction of a magnified
inner coordinate .\ appropriate to that region by setting

fvie) = F(Xie), X = >-4)
&€
transforms the original problem (5.1) to
d*F dF 1
W - I\—, = ae, F(O) = 0, }'(—g- =1 (5-5)
I
Outer
flxE) // Exact
e
A Inner
O 1
0 0.5 I

X

Fig. 5.1. Solution of model problem.
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If we now set ¢ = 0, the solution of the differential equation that
satisfies the inner boundary condition is any multiple of (I — e™%).
Imposing the outer boundary condition would give the multiplicative
factor as unity, but the exact solution shows that this is incorrect. The
outer boundary condition must be abandoned for the inner solution
just as the inner condition was dropped from the outer solution. Instead,
the inner solution must be matched to the outer solution using the
matching principle (4.36). Thus one finds the uniform first approximation
for small e:

g(l - a) - ax as £—>0 with x>0 fixed (5.6a)
s €) ~ '((1 Ca)(l —eX)  as e—>0 with X :% fixed (5.6b)

The warning provided by loss of a highest derivative is more often
than not absent from a singular perturbation problem. In the thin-airfoil
theory of Chapter IV, the nonuniformity arises not from the differential
equation but from the boundary conditions. Likewise, for viscous flow
at low Reynolds numbers the highest derivatives are all preserved in the
approximate equations of Stokes; the nonuniformity is associated rather
with the infinite extent of the fluid. Evidently it would be useful to have
a more reliable indication of nonuniformity.

5.3. A Physical Criterion for Uniformity

In physical problems a more general warning of singular behavior
can be based upon dimensional reasoning. We have seen that inherent
nonuniformity will be suppressed by exceptional boundary conditions,
so that one can give only necessary and not sufficient conditions for
nonuniformity. We therefore state the following rule instead as a positive
test for uniformity:

A perturbation solution is uniformly valid in the space and
time coordinates unless the perturbation quantity e is the (5.7)
ratio of two lengths or two times.

This criterion may be understood by considering first a parameter
perturbation. The geometry of the problem will be characterized by a
typical major dimension that we may call the primary reference length.
Examples are the radius of the circular cylinder in Chapter 11, and the
chord length of the thin airfoil in Chapter IV. This length is the natural
basis for forming dimensionless coordinates-—a characteristic speed also
being required in unsteady flows—and these constitute the straightfc:-
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ward outer variables. Nonuniform behavior is possible only if the para-
meters in the problem provide another secondary reference length whose
ratio to the first tends to zero or infinity as ¢ vanishes. This second length,
if properly chosen, is the basis for the inner variables.

A familiar problem involving two disparate lengths is potential flow
past a thin round-nosed airfoil. The geometry is characterized by the
chord length except close to the leading edge, where it is dominated by
the nose radius. Since the ratio of these two lengths vanishes with the
square of the thickness ratio, our criterion (5.7) suggests that the thin-
airfoil solution could be singular. In Chapter IV this possibility was
seen to be realized, outer variables being based on the chord and inner
variables on the nose radius.

Our criterion shows that a coordinate perturbation is never safe from
nonuniformity in the remaining coordinates. The latter may be made
dimensionless using either the primary reference length or the pertur-
bation coordinate; and because the ratio of these two lengths tends to zero
or infinity, they provide the scales for an inner and an outer expansion.

The following are examples of parameter perturbations that involve
only one characteristic length scale, and are therefore necessarily regular
according to our criterion. Slightly compressible flow past a circle
(Section 2.4) contains the radius as the only characteristic length, the
perturbation parameter being formed from a ratio of speeds or energies
rather than lengths. The slightly distorted circle in potential flow
(Section 2.3) involves two lengths, but thev are of the same order of
magnitude, their ratio approaching unity rather than zero or infinity
in the hmit ¢ — 0.

The following parameter perturbations involve two disparate lengths,
and do as a consequence exhibit singular behavior (Fig. 5.2). A lifting
wing is characterized by its chord and its span, and their ratio vanishes
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Fig. 5.2. Singuiar perturbation problems involving two disparate lengths.
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in Prandtl’s lifting-line theory (cf. Section 9.2) and becomes infinite in
the slender-wing approximation. A body in viscous flow is characterized
by not only a geometric dimension, but also the viscous length v ]
and their ratio 1s the Revnolds number, which vanishes in Stokes flow
(Chapter VIII) and becomes infinite in boundary-layer theory (Chapter
VII). This example illustrates that the secondary reference length is not
always a geometric dimension.

The following arc some coordinate perturbations that are singular
(Fig. 5.2). Viscous supersonic flow over a cone or a wedge (including the
flat plate) can be solved approximately for distances from the vertex
large compared with the viscous length v U Flow of a gas undergoing
vibrational or chemical reactions can be treated similarly using a charac-
teristic relaxation length, as can the etfect of slight blunting. T'he impulsive
start of a body through viscous fluid can be expanded in powers of time,
referred to a characteristic length and speed. Viscous flow far from a
body can be expanded in inverse powers of the radius, referred to a
typical dimension.

Although the following examples involve two disparate lengths, they
are nevertheless regular perturbation problems. Potential flow past a
wavy wall, a cusp-nosed airfoil, or any thin shape free of stagnation points
1s a regular perturbation in the thickness parameter. Uniform shear
flow past a circle (Section 2.2) shows the superficial symptoms of non-
uniformity at infinity, in that the ratio of the perturbation to the basic
solution in (2.11) grows like er; but the result is exact and therefore
uniformly valid. However, any other shear distribution would lead to a
singular perturbation problem (Exercises 2.4 and 5.7). In an inviscid
fluid the expansion for flow far from a bodyv is regular, as is that for an
impulsive start. Even the archetypical nonuniformity of Prandtl’s bound-
ary-layer theory disappears if in place of a fixed solid surface one
prescribes a distensible skin moving at just the speed of the potential
flow.

A problem may involve more than two disparate lengths, associated
with a multiple limit process; then multiple nonuniformities are possible.
In the case of three layers one may speak of the outer, middle, and inner
expansions. An example is viscous flow at high Reynolds number and
high or low Prandtl number, where the thermal boundary layer is much
thicker or thinner than the viscous layer. An inviscid example is analyzed
in Section 9.9.

A coordinate perturbation may sometimes be replaced by a parameter
perturbation. For example, the expansion for distances far from the tip
of a blunted wedge (I'ig. 5.2) may be regarded instead as the solution
for a wedge of finite length whose nose thickness tends to zero (Section
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9.9). Thus in conical geometry an angle plays the role of a length.
Consequently, nonuniformity is possible in conical flows if the pertur-
bation parameter is the ratio of two angles. Examples are a flat elliptic
cone, where the straightforward perturbation solution evidently fails at
the leading edges just as in thin-airfoil theory, and a circular cone at
infinitesimal angle of attack, which exhibits near its surface the vortical
layer of Ferri (1950).

5.4. The Role of Composite and Inner Expansions

We have seen that a singular perturbation flow problem typically
involves two disparate lengths. s a result, the straightforward perturba-
tion solution with coordinates referred to the primary reference length
fails in regions where the secondary reference length is the relevant
dimension. The secondary reference length is not always the obvious
one. It is clearly the chord for a wing of high aspect ratio, the thickness
for a flat-nosed airfoil, and the viscous length v { for flow at low Reynolds
number. However, at high Revnolds number it is the square root
of the product of the viscous and geometric lengths. For a round-nosed
airfoil it is not the thickness but the nose radius, which is propor-
tional to the square of the thickness divided by the chord. For a thin
airfoil in supersonic flow (Section 6.4) it is the mean radius of curvature
of the profile, which is proportional to the square of the chord divided by
the thickness. The sharp-nosed airfoil in subsonic flow is a delicate
borderline case between uniformity and nonuniformity in which the
region of non-uniformity, being exponentially small, is not directly
related to any physical dimension. A similar observation applies to the
vortical laver on an inclined cone in supersonic flow.

The straightforward perturbation solution yields an asymptotic
expansion of the form

fle, v, 55 6) ~ z d,(e)f . (x, v, ®) as e—0 with v, = fixed (5.8)

Here the §,(¢) are an appropriate asymptotic sequence, and v, y, & are
the coordinates made dimensionless using the primary reference length.
'T'his expansion is valid wherever the functions f, are regular. They will
become singular at any point within the flow field where phenomena
arec dominated by the secondary rather than the primary reference
length. This point lics at infinity if the secondary length is the larger.
A modified expansion, in order to be uniformly valid, must depend also
upon the coordinates made dimensionless by the secondary reference
length. Because the ratio of primary and secondary lengths is a function
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of &, this amounts to depending also upon ¢. Thus a uniformly valid
expansion must have the more complicated form

flx, v, z5e) = z o.(e)g. (v, v, 55 e) uniformly as ¢ -»0 (5.9)
Because the perturbation parameter ¢ now appears implicitly in the
function g, as well as explicitly in the asymptotic sequence §,, this is
not an asymptotic expansion in the usual sense. We call it a composite
expansion. Such expansions have been discussed in connection with
singular perturbation problems by Erdélvi (1961), who calls them
“generalized asymptotic expansions.” ‘There are two objections to
working with composite expansions. First, theyv are difficult to manip-
ulate; evidently such familiar operations as cquating like powers of &
must be reconsidered and, as will be seen later, a composite series is not
uniquely determined. Second, they unnecessarily combine the compli-
cations of both the straightforward expansion and the region of non-
uniformity (sce, however, Sections 10.3 and 10.4).

Itis simpler to isolate the difficulties associated with the nonuniformity
by constructing a supplementary inner expansion valid in its vicinity,
This is accomplished by introducing new inner coordinates that are of
order unity in the region of nonuniformity. Then the inner expansion
has the form

fx v 58) ~ D, A F (N, 2) as 60 with N, ¥, Zfixed (5.10)

We always denote inner variables by capital letters. Here the asymptotic
sequence 4, (¢) must be allowed to differ from the asvmptotic sequence
0,(¢) for the outer expansion; often thev are identical, but Section 6.3
gives an example in which they are different. If the region of non-
uniformity is the neighborhood of a point in the finite plane, the inner
coordinates .\, Y, Z are ordinarily the coordinates made dimensionless
using the secondary reference length. If the nonuniformity occurs
along a line, as in boundarv-laver theory, only the normal coordinate is
changed. If it occurs at infinity, the coordinates must sometimes be
stretched by ditferent functions of ¢ in different directions. Like the
outer expansion, the inner expansion is a conventional asymptotic series,
so that the usual operations are valid.

It 1s often a useful preliminary to introducc dependent as well as
independent variables that are of order unity in the inner and outer
regions, so that the leading terms in the asvmptotic sequences §, and
4, are unity. The degree of stretching is in general ditferent for the
independent and dependent variables. Following Kaplun (1954) and
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Lagerstrom and Cole (1955), we may formalize the procedure by
defining:

Outer variables: Dimensionless independent and dependent variables
based upon the primary reference quantities in the problem.

Outer limit: The limit as the perturbation parameter ¢ tends to zero
with the outer variables fixed.

Outer expansion: The asymptotic expansion for ¢ — 0 with outer
variables fixed. Obtained in principle from the exact result by
successive application of the outer limit process in conjunction with
an appropriate outer asymptotic sequence.

Inner wvariables: Dimensionless independent and dependent variables
stretched by appropriate functions of ¢ so as to be of order unity
in the region of nonuniformity of the outer expansion.

Inner limit: The limit as ¢ — 0 with inner variables fixed.

Inner expansion: The asymptotic expansion for ¢ — 0 with inner
variables fixed. Obtained in principle from the exact result by
successive application of the inner limit process in conjunction
with an appropriate inner asymptotic sequence.

Composite expansion: Any scries that reduces to the outer expansion
when expanded asvmptotically for ¢ — 0 in outer variables, and to
the inner expansion in inner variables.

The technique of matching two complementary asymptotic expansions
reduces a singular perturbation problem to its simplest possible elements.
If the first inner problem is nevertheless found to be “impossible,” then
one may suppose that the problem itself is intractable. For example,
it is clear that extending the thin-airfoil theory of Chapter IV to subsonic
compressible flow leads, in the casc of a round-nosed airfoil, to the inner
problem of subsonic flow past a parabolic cylinder, for which no complete
solution is known. Again, viscous flow past a cusp-nosed airfoil at high
Revnolds number leads to the inner problem of viscous flow past a
semi-infinite flat plate, for which only partial solutions exist. An ad-
vantage of the technique is that even in these “impossible” situations
one can make use of numerical solutions or even of experimental
measurements for the inner solution. Thus in his lifting-line theory
Prandt]l advocates the use of experimental airfoil-section data for what
will be seen in Section 9.2 to be the inner solution.

5.5. Choice of Inner Variables

A crucial step in the method of matched asymptotic expansions is the
choice of inner variables. One faces the questions:
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(a) Which independent variables should be stretched ?
(b) How should they be stretched ?
(c) How should the dependent variables be stretched ?

Answering the first question depends upon recognizing the singular
nature of the problem, including the location of the nonuniformity and
its “‘shape”—that is, whether it is the neighborhood of a point, line, or
surface.

The degree of stretching required is usually evident when it is possible
to calculate several terms of the outer expansion. For example, the
formal thin-airfoil solution for an ellipse was seen in Section 4.4 to be
invalid within a distance of order ¢* from the leading edge, and the
inner coordinates were magnified accordingly. Physical insight may
suggest or confirm the proper stretching as the scale of the secondary
reference length in the problem.

Otherwise, the stretching can be sought by trial. 'The guiding principles
are that the inner problem shall have the least possible degeneracy, that
it must include in the first approximation any essential elements omitted
in the first outer solution, and that the inner and outer solutions shall
match. As an example, consider the model problem (5.1). Trving an
arbitrary stretching of the independent variable only, we set

flxye) = F(Xje), X — ) (5.11)

The problem becomes
a*F a(e) dFF a¥(e) Vo gy 5
FA Rl Sl F(O) -0, f’(;) =1 (5.12)

Because the highest derivative was lost in the outer limit, d2F d X must
now be preserved in the inner limit. This means that the factor o(e) ¢
multiplying dF d.\" must not become infinite as ¢ -— 0. If it vanishes, the
solution satisfying the inner boundary condition (which must also be
preserved) is simply a multiple of .X'; but this cannot be matched with
the outer solution (5.3). The remaining possibility is that o(e) e
approaches a constant; this also yields the least degenerate differential
equation. Taking the constant as unity without loss of generality gives
the previous results (5.4) and (5.5). It was unnecessary to stretch the
dependent variable in this example because the first inner problem is
homogeneous; but in general one must admit separate stretching of
each dependent as well as each independent variable.

The inner variables are almost always, as in the preceding examples,
formed by lincar stretching. An exception arises in the problem of the
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vortical layer on an inclined cone (Munson, 1964). This is illustrated by
the following model problem:

4

T =0, f(1)=1 (5.13)

S
X

ITterating or substituting a series in powers of ¢ yields the straightforward
(outer) perturbation solution:

&

f(V, 8) ~1 o Ti; (»\'17'“ = l) =+ 0(8)2, m = 1 (51421)
~ 1 - elogx -- O(?), m =1 (5.14b)
This is singular at &+ — 0 for m = | and at x — ¢ for m <C 1. It seems

likely that for m = | an appropriate inner coordinate is
N = ppmtn=D) (5.15)

and this i1s confirmed by examining either the resulting inner equation

A ;{Y —f=0 (5.16)
or the exact solution
£ B &‘Xl_m \ ‘
f(x; e) = exp(— = m) exp| p—— ), m 1 (5.17a)
= X m =1 (5.17b)

In the special case m — 1, (5.14b) indicates that the region of non-
uniformity near the origin is exponentially small: x == O(e1/*). One
might suppose that, just as for the sharp-nosed airfoil of Section 4.7,
an appropriate inner variable would therefore be given by the correspond-
ing linear stretching:

X = xel's (5.18)

However, this leaves the transformed differential equation

df
X ef =0 5.19
X of (5.19)
unchanged, so that simple stretching is ineffective. Instead, the exact
solution (5.17b) shows that the proper inner coordinate is given by the
nonlinear distortion

X o= (5.20)
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which transforms the differential equation to

x4

v /=0 (5.21)

'Thus it appears that a fractional-power transformation is required when
nonuniformity in an exponentially small region arises not from the
boundary conditions but from a homogeneous operator of the form
x ¢/¢x in the differential equation.

5.6. The Role of Matching

The method of matched asymptotic expansions involves loss of
boundary conditions. An outer expansion cannot be expected to satisfy
conditions that are imposed in the inner region; converscly, the inner
expansion will not in general satisfy distant conditions. Thus it is an
exceptional circumstance that the inner solution for the elliptic airfoil
(Section 4.10) happens to satisfy the upstream boundary condition;
the inner solution for a sharp edge does not (Section 4.11). Hence
insufficient boundary conditions are generally available for either the
outer or inner expansion. 'T'he missing conditions are supplied by
matching the two expansions.

For partial differential equations a useful preliminary to matching is
application of the principle of minimum singularity (Section 4.5).
Experience has shown that of the admissible solutions only the one that
is least singular in its region of nonuniformity can be matched to the
complementary expansion. For example, the inner solution for a round-
nosed thin airfoil was seen in Section 4.9 to be a symmetric flow past the
osculating parabola. Figure 5.3 shows the first two of an unlimited
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Fig. 5.3. Alternative symmetric flows past parabola.

number of possibilities. All but the first give unbounded speeds at
infinity, and conscquently cannot be matched with the thin-airfoil
expansion (Exercise 4.2).
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Although the principle of minimum singularity often reduces the
number of possibilities, it cannot always single out a unique flow pattern.
For example, it rules out source eigensolutions in the linearized solution
for a round-nosed airfoil, but not in the second approximation. This is as
it should be, because a source eigensolution must actually occur in the
second-order outer solution for a smooth profile that differs from an
ellipse only in the vicinity of the leading and trailing edges (IFig. 5.4).

Matching is the crucial feature of the
method. The possibility of matching rests
on the existence of an overlap domain
where both the inner and outer expansions
are valid. By virtue of the overlap, one
can obtain exact relations between finite Fig. 5.4. Airfoil having samc
partial sums. This remarkable achieve- linearized solution as cllipse.
ment is possible only for a parameter
perturbation that is nonuniform in the coordinates, or for a coordinate
perturbation that is nonuniform in the other coordinates. One cannot
match two different parameter perturbations, such as expansions for
large and small values of Reynolds number or of Mach number.
Neither can one match two different coordinate expansions, such as
for small and large time or distance. Such series may overlap in the
sense that they have a common region of convergence, but the process
of analytical continuation vields only approximate relations from any
finite number of terms (cf. Section 10.9).

Matching may also be contrasted with what we shall call numerical
patching. This consists in joining two series by forcing their values and
perhaps several derivatives to agree at an arbitrary intermediate boundary.
Although the result mayv be of practical utility-—or even numerically
indistinguishable from that of matching—patching is esthetically
displeasing, and ordinarily no simpler. Also, matching is more systematic
than patching in higher approximations. Our view is that patching should
be avoided whenever it can be replaced by matching, which provides
an imperceptibly smooth blending of the two solutions.

5.7. Matching Principles

The existence of an overlap domain implies that the inner expansion
of the outer expansion should, to appropriate orders, agree with the
outer expansion of the inner expansion (Lagerstrom, 1957). This
general matching principle can be given various specific formulations.
The literature shows that the choice of matching principle is somewhat
a matter of the investigator’s taste.

See
Note
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In matching his boundary-layer approximation to the outer inviscid
flow, Prandtl tacitly applied what we may call the limit matching principle:

The inner limit of (the outer limit) (5.22)

= the outer limit of (the inner limit).

Whether this primitive rule is correct, or adequate, depends not only
on the problem, but also on the choice of independent variables being
matched. It is evidently valid for the tangential velocity in the boundary
layer, which must for large values of its argument approach the inviscid
surface speed. However, it is invalid for the normal velocity or stream
function, where the first repeated limit in (5.22) is zero but the second
is infinite. The same difficulty arises in plane flow at low Revnolds
number (Chapter VIII).

We can improve this simple rule by describing more precisely the
limiting behavior of the quantity being matched (cf. Sections 3.2 and
3.3). Instead of mere limits we use asymptotic representations. This
gives the matching principle

Inner representation of (outer representation)

(5.23)

= outer representation of (inner representation).

Here the outer (or inner) representation means the first nongero term in
the asymptotic expansion in outer (or inner) variables. This rule provides
matching in cases where the limit principle (5.22) gives only a trivial
result. For example, we shall see in Section 8.7 that it suffices for plane
flow at low Reynolds number.

The principle is extended to higher approximations by retaining
further terms in the asymptotic expansions. We must permit the number
of terms to be different in the inner and outer expansions, because the
normal matching order (Section 5.9) requires a difference of one in the
even-numbered steps. Thus we obtain the asymptotic matching principle
introduced in Chapter IV:

The m-term inner expansion of (the n-term outer expansion)

(5.24)

= the n-term outer expansion of (the m-term inner expansion).
Here m and 7 are any two integers; in practice m is usually chosen as
either n or m — 1.

This matching principle appears to suffice for any problem to which
the method of matched asymptotic expansions can successfully be
applied. It will be used throughout this book. In the following section,
however, we describe an alternative principle that provides deeper
insight into the nature of the overlap domain.
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5.8. Intermediate Matching

In the outer limit process of thin-airfoil theory (Chapter I'V) a point
remains a fixed distance from the leading edge as the thickness ratio
tends to zero, whereas in the inner limit process for the elliptic airfoil
the distance decreases like ¢2 It 1s by
no means obvious that the two limit
processes can  be interchanged,
because there is a gap between the
inner and outer regions. That a gap
exists 1s clarified by considering a
point whose distance from the nose
decreases only like ¢ (Fig. 5.5). This
point ultimately emerges from any
vicinity of the leading edge, and is at
the same time excluded from the
region of validity of the outer solution. Q

To bridge this gap, Kaplun (1957)
has introduced the concept of a Fig. 5.5. Intermediate limit process
continuum of ntermediate [limits, for elliptic airfoil.
lying between the inner and outer
limits. Although he considers a very general class of limits, it will suffice
for purposes of illustration to consider only those associated with powers
of the small parameter. If s is the outer variable associated with a non-
uniformity at s == 0, we introduce an intermediate variable

§ :— ;0 < a<a (5.25)
Here x = 0 gives the outer and x = x; the inner limit; for example,
a; == 2 for the elliptic airfoil. The limit as ¢ — 0 with 3 fixed is called the
intermediate limit; and its repeated application in conjunction with an
appropriate asymptotic sequence yields the intermediate expansion.
Carrying out the intermediate limit in the differential equations and
boundary conditions yiclds the intermediate problem. Although we have
introduced very many limit processes, they lead to only a few different
problems. All intermediate limits yield essentially a single intermediate
problem, which is often the same as the inner problem. For example,
setting § = s ¢* and 7 = v ¢ in Eq. (4.33a) for the elliptic airfoil and
letting ¢ — 0 gives
J~ e r2g (5.26)

"I'hus the intermediate problem is that of symmetric flow past a parabola
of nose radius ¢27%

See
Note
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The intermediate solution is the solution of the intermediate problem.
Its difference from the full solution must vanish uniformly in the
intermediate limit. "Thus for the elliptic airfoil the intermediate solution
for surface speed is, from (4.28),

g~ AT e (5.27)

The denominator cannot be expanded, because the result would not be
uniform near the stagnation point. This example illustrates that the
intermediate solution 1s not necessarily the intermediate limit of the
full solution—which is here simply {;-—but may have a more complex
structure.

Although the gap between inner and outer limits has been bridged
by the intermediate solution, it is not vet apparent that there exists an
overlap domain. This 1s assured by Kaplun’s extension theorem, which
asserts that the range of validity of the inner or outer limit extends at
least slightly into the intermediate range. We forego the proof of this
theorem, whose truth will be evident in specific examples. Thus we can
match the intermediate expansion with the outer expansion at one end
of the range and with the inner expansion at the other end. Often the
intermediate expansion is identical with the inner expansion—as in our
example of the elliptic airfoil - or is contained in it as a special case.
Then we can simply match the inner and outer expansions in the outer
overlap domain.

Matching requires that in the overlap domain the difference between
the outer (or inner) and intermediate solutions vanish in the intermediate
limit. Thus for the elliptic airfoil we match the intermediate solution
(5.27) to the outer uniform stream by considering

, . . S . . . by
M)l‘l}q;wd[L Uiy E‘i‘“.g_ei—_l} = lim [~ U, — O] (5.28)
This vanishes if {; —= U, and x <= 2. Hence the outer overlap domain

180 << x <2,
We may call the extension of this rule to higher approximations the
intermediate matching principle:

In some overlap domain the intermediate expansion of the
difference between the outer (or inner) expansion and the  (5.29)
intermediate expansion must vanish to the appropriate order.

For example, consider two terms cach of the intermediate and outer
expansions for the speed on an elliptic airfoil, where in the latter we

5.9. Matching Order 93

admit the source eigensolution of (4.32a). The difference between the
two expansions 1s, in intermediate variables

o~
eCy

1) ~= L’,:l - & " 261\5: j?@] — LZ/\/ 7X—"—— (5-30)

and expanding gives

-2
D~Ul —¢) - U, — clc(izjf %

) - Ot &2 (5.31)
This vanishes to order e—that is, to second order in powers of e -if
U, —= U1 +-¢), C; =0, and 0 -~ « -~ . The first two of these
results were found by asymptotic matching in Chapter IV. The third
means that the outer overlap domain has shrunk to half its previous
width.

5.9. Matching Order

All our previous discussion suggests complete symmetry between the
inner and outer limits, so that the two terms could be interchanged
throughout. However, we have heretofore used “outer” always to denote
the straightforward or basic approxi-
mation, and we insist on adhering to
this convention. More precisely, we
assign the terms so that the outer
solution is, to first order, independent
of the inner. The test is to consider
a first-order change in each, and sce
whether the other is affected. For
example, in thin-airfoil theory the Nur;\fber
free stream is disturbed only slightly term
by doubling the nose radius, whereas
the flow near the nose is drastically
altered by doubling the free-stream

Outer inner
expansion expansion

°‘__°‘__’

speed.
In general, matching must proceed
step b} step as indicated b.V the Fig. 5.6. Matching order for inner

solid arrows in Fig. 5.6. The basic  and outer expansions.

solution dominates the inner solution,

which in turn exerts a secondary influence on the outer expansion, and
so on. This order is inviolable in the direct problem of boundary-layer
theory, for example.
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One can sometimes short-circuit the standard matching order. An
obvious case is an initial-value problem, where all the boundary
conditions are imposed in the outer region. Then one can calculate an
unlimited number of terms of the outer expansion, as indicated by
dotted arrows in Iig. 5.6, and subsequently match with the inner
expansion to complete the solution. This situation can arise in fluid
mechanics from inverse formulation of a problem, an example being
given 1n Section 9.9.

The same bypassing of the inner expansion occurs in a more subtle
case, when the nonuniformity is so weak that it does not affect the outer
flow. An example is the biconvex airfoil of Sections 4.7 and 4.11. For a
round-nosed airfoil, on the other hand, the example of Fig. 5.4 shows
that only two terms can be calculated before one must resort to matching
with the inner expansion.

When the standard order is followed, matching will indicate each
new term in the asymptotic sequence, which therefore need not be
guessed in advance. For example, rewriting any number of terms of the
thin-airfoil expansion (4.14b) for the ellipse in inner variables and
expanding for small ¢ shows at each stage that the next term in the inner
expansion is of the order of the next higher power of e. An example
where the asymptotic sequences are different for the inner and outer
expansions is discussed in Section 6.3.

5.10. Construction of Composite Expansions

Representing the solution of a singular perturbation problem by an
inner and an outer expansion may raise awkward practical questions of
where to shift from one to the other. A crude device would be to change
where the two curves cross, but the result would have spurious corners.
Moreover, for the elliptic airfoil, for example, the first-order inner and
outer solutions for surface speed do not meet (Fig. 5.7).

Fortunately, since the two expansions have a common region of
validity, it is casy to construct from them a single uniformly valid
expansion. The result is necessarily more complex than either of its
constituents, and is in fact a composite expansion in the sense of Section
5.4. The construction can in principle be carried out in a variety of ways.
The results may be different, because a composite expansion is not
unique; but they will all be equivalent to the order of accuracy retained.

Two essentially different methods have been used in practice. The
first may be called additive composition. The sum of the inner and outer
expansions is corrected by subtracting the part they have in common,
so that it is not counted twice. The common part can sometimes be
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found by inspection. Otherwise, it may be calculated as the inner ex-
pansion of the outer expansion, or vice versa. Thus, in an obvious

Inner

NS

Fig. 5.7. First-order inner and outer solutions for speed on thin cllipse.

notation, where f{"” means the m-term inner expansion, and so on, the
rule for additive composition is

f;m) :*fén) ,[fa(n)]f(m)
f(m.n) — (5.32)
¢ /f;’” +fi(m) _ [fl_(m]ém

One can verify this rule by taking the m-term inner and n-term outer
expansions of both sides. Using the asymptotic matching principle
(5.24) shows that the inner and outer expansions are reproduced in their
respective regions.

Working with differences, though conceptually somewhat different,
yields the same rule. The outer expansion is made uniformly valid by
adding to it the solution of the inner problem for the difference between
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the exact solution and its outer expansion, or the inner expansion is
corrected analogously. This may be written symbolically

sf(on) ,:F [f *f((/n)]ll.m)
tmyny - (5.33)
f” ’ foo — [f — fum)im

The asymptotic matching principle shows that these are equivalent to
the additive rule (5.32).

The second method may be called multiplicative composition. The
outer expansion is multiplied by a correction factor consisting of the
ratio of the inner expansion to its outer expansion, or the inner expansion
1s treated similarly. This gives

(§23] f(n)
i 0
ftcm.n) :fo(n) _J? ):f(im) e

[f_(m)](n [f(n)]('m)
f(in) ;m)
- [flm]om = [fom]m (5.34)

The first form is recognized as providing the multiplicative correction
factor that was applied to round-nosed airfoils in Section 4.8. The last
form exhibits the inherent symmetry between the inner and outer limit
processes.

The additive and multiplicative rules of composition are related by
the fact that the ratio of two quantities near unitv can be expanded into
a sum using the binomial theorem. The additive rule is usually simpler
to apply; the multiplicative one sometimes gives simpler results. Either
can be used even when the inner problem cannot be solved analytically,
the solution being known only from numerical computation or experi-
ment.

We 1illustrate these two methods for the surface speed on a thin elliptic
airfoil. From two terms of the outer expansion (4.13) and one term of
the inner expansion (4.46) we obtain as the uniform first-order perturba-
tion solution, by additive composition (5.32)

[¢ i 2s
e mrae (5.35)

and by multiplicative composition (5.34)

[
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Here s == 1 + & or 1 — & according as we correct the nonuniformity
at the leading or trailing edge; a truly uniform solution is obtained by
treating each edge in turn (Exercise 5.3). Other kinds of multiple
nonuniformity (cf. Section 9.13) can likewise be handled by repeated
application of the rules for composition.

A composite expansion has at least the accuracy of each of its constit-
uents. Thus (5.35) and (5.36) are in error by no more than O(e?) away
from the edge and O(¢) near the edge. In fact the additive result (5.35) is
evidently in error by precisely ¢ at the stagnation point. The multipli-
cative result (5.36) has the advantage of being exact there. Extending the
composite result by using two terms of the inner as well as the outer
expansion leads again to (5.36) for either addition or multiplication.
This means that by coincidence the error in (5.36) is actually no greater
than O(e*) everywhere. Iligure 5.7 shows the improvement resulting
from use of the composite expansion.

EXERCISES

5.1. Uniform approximation for Friedrichs’ model. TForm in two different ways
a composite expansion from the solution (5.6). Discuss the difference, and
compare with the exact solution. Consider higher approximations.

5.2. Uniform approximation for biconvex airfoil. Construct an approximation
for the surface speed on a thin biconvex airfoil in incompressible flow that is
uniformly valid to order ¢ except at the trailing edge.

5.3. Composite rules for tewo nonuniformities. Devise rules, analogous to (5.32)
and (5.34), for constructing composite expansions in the case of two separated
nonuniformities—as for a thin airfoil with stagnation leading and trailing edges.
Apply your results to the surface speed on an clliptic airfoil, and compare with
the exact solution.

5.4. Outer, middle, and inner expansions. Show that a perturbation solution of
the problem

d
X3 —d“‘:— = ¢[(1 + &)x —+ 22]y?, y)y=1—¢

for 0 << & < 1 requires three matched expansions. Calculate in succession two
terms of the straightforward (outer) expansion, two terms of the middle
expansion, and one term of the inner expansion. Choose new magnified variables
as suggested by the preceding expansion, and match at each step.



