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1. Quick Questions In few words and few formula :

1.1 Order of magnitude of drag on a cylinder of radius L at large Re in turbulent flow.

1.2 Order of magnitude of drag on a cylinder of radius L at small Re.

1.3 Order of magnitude of drag on a flat plate of length L at large Re in laminar flow, in turbulent flow ?
1.4 Problem V?p = 0 in upper half domain (Vz and y > 0) with —0p/dy|o = f'(z) and p(co) — 0, what is
the solution on the line y =07

1.5 Write 2D Boundary Layer equations (in z,y,u,v) in the case of Blasius problem, what is the scale of y
compared to the scale of 7

1.6 In which one of the 3 decks of Triple Deck is flow separation ?

1.7 Dispersion relation w(k) for linear waves on free surface of arbitrary depth (Airy swell problem), what
is the small parameter to obtain this relation ?

1.8 What is the KdV equation ? What balance is it ?

1.9 What is the Friedrichs problem ?

1.10 Nobel prizes with references to Asymptotics?

2. Exercice
Consider the following equation (this is a model of paint brush!) :
(E.) 5‘1@(’5)—5—}&, HO)=0, c<1
we want to solve this problem with the Matched Asymptotic Expansion method.
2.1 Why is this problem singular ?
2.2 Looking at the right hand side, show that a first change of scale on H gives that H is O(e).
2.3 Say that H(t) = eh(t), do not change ¢, what is the new equation for h(t) ?
2.4 Why is this new problem on h(t) again singular ?
2.5 What is the outer problem and what is the form of the outer solution for h(t) at order O(1) for 0 <¢ <17
2.6 What is the inner problem and what is the inner solution ?
2.7 Suggest the plot of the inner and outer solution.
2.8 The matching is automatic, why ?
2.9 Composite expansion, plot of it ?

3. Exercice

d? d
Let us look at the following ordinary differential equation : (E.) EZ; + editJ +w?y =0, valid for any

t > 0 with boundary conditions y(0) = 1 and 3'(0) = 0. Of course ¢ is a given small parameter and w is a
real of order one. We want to solve this problem.

3.1 Solve with Feynman averaging method.

3.2 We want to solve this problem with Multiple Scales Analysis. Introduce two time scales, to = t and t1,
what is the relation between ¢, t; and 7

3.3 Compute 9/0t and 9%/0t?

3.4 Solve the problem.

3.5 Suggest the plot of the solution.

3.6 What is the exact solution for any e, compare.

4. Exercice
Solve with WKB approximation the problem

ey’ (z) = y(x) with y(0) = 0,y(1) = 1
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This is a part of "Mixed convection over a cooled horizontal plate : non-uniqueness and numerical insta-
bilities of the boundary-layer equations” By Herbert STEINRUCK

We consider a 2D steady boundary layer flow (uniform velocity Uy, along ?x) over a flat plate (y = 0,
x > 0) which is at a temperature Ty, (maybe function of x) different of the uniform constant temperature
Two far away in the flow. Due to this temperature of the plate, the temperature of the flow is modified by
convection and diffusion. Furthermore, there is a retroaction of the temperature of the flow on the dynamics
of the flow thanks to variations of the density according to Boussinesq approximation p = po(1—8(1T—Tw)).
This expression is in the weight (gravity is perpendicular to the plate 7 = —?y).
Note that in this configuration, the pressure P in Navier Stokes Equation is such that

P =Py — pogy + p,

where P is indeed the pressure in the —?P of right hand side, where P, is a reference pressure constant,
where —pggy is the hydrostatic variation, and where p is the so called "dynamic pressure” that will be
present at the end in the final system.

Two classical configurations exist, first with no Boussinesq coupling and a given velocity at infinity,
this is ”forced convection”, second with Boussinesq coupling and no given velocity at infinity, this is ”free
convection”. Here we will look at "mixed convection” : with Boussinesq coupling and a given velocity at
infinity. This configuration is not in the textbooks of thermal flow...

As all the results are more or less in the paper, be careful and rigorous to prove the results. Numbers refer
to equations in the papers (Eq. X.) or questions (Q. X.).

First we suppose no Boussinesq effect, there is no temperature effect on the momentum equation. This is
”forced convection”. There is gravity, but density is constant. We use a length L for space, in question 1.X,
this length is given. The scaling L = Uy /(gSAT)v (first line of page 252) will be a result of questions Q2.2.
or Q3.2 so do not use it now. The Reynolds number Re = Uy L/v is large.

1.1 Write incompressible full NS equations and boundary conditions.

1.2 Check that the gravity is nor more present as P = Py — pogy + p. Write momentum equations in z and
y with this p.

1.3 Write heat equation and boundary conditions, remember that pcp%T = k?zT +2uD;; D;j where strain
rate tensor is Dj;; = (1/2)(0u;/0z; + Ouj/0x;), it creates a source of temperature. Thermal diffusivity is
a = k/(pcy).

1.4 Write equations and boundary conditions of (Q1.1) without dimension, use L a given length so that
(z,y) = L(%,7)), and Uy so that (u,v) = Us(u, v).

1.5 Write equation and boundary conditions of (Q1.2) without dimension, use ¥ as suggested by first para-
graph of page 252. Use Prandtl Pr number, Eckert number E = U2 /(c,AT) and Reynolds number in the
heat equation without dimension.

1.6 For a given length L, write the boundary layer scaling for u, v and y with dominant balance for incom-
pressibility and momentum. Find indeed the scalings (except the one on the first line of page 252 as L is
given) of first paragraph of page 252.

1.7 Check that we obtain (Eq (1.1)) with 0,p =0, (Eq(1.3)) and that (Eq(1.2)) reduces indeed to dyp = 0.
Note that (Eq (1.1)) to (Eq(1.3)) are without dimension (maybe you have tildes or bars in your expressions).



1.8 Without demonstration, remind the Blasius self similar solution. Check that equation (Eq(2.4)) is part
of it, boundary conditions for f? Link between f and stream function and longitudinal and transverse ve-
locity ?

1.9 Write heat equation and boundary conditions without dimension.

1.10 Write heat flux at the wall without dimension.

1.11 As the Reynolds number is large, as Pr = O(1) (example : air Pr = .7, water Pr = 7) and as E is
small (why ?) check that we obtain (Eq (1.4)).

1.12 Using the Blasius self similar variable n check that we can find a self similar solution of the heat equation
which reduces to 20" /Pr + f =0 (Eq (2.5)).

Second We suppose now that there is a Boussinesq effect. The heat equation will retroact on the momen-
tum equation through the coupling of a source term in the transverse momentum equation. We suppose as
well a velocity at infinity. This is mixed convection. This corresponds to the second paragraph of page 252
(sentence ”In the classical ... in the problem”). The transverse momentum equation will change, we focus
on it.

2.1 Write incompressible Navier Stokes dimensionless equation along y with temperature using the scaling
peoUZ for dynamic pressure (why ?), the scaling LRe™'/2 (why ?) and the scale 7.

2.2 Looking at this Navier Stokes dimensionless equation along y, show by dominant balance that L is as
proposed on the first line of page 252. Obtain equation (Eq(1.2)). Verify that the other terms are indeed
smaller.

2.3 We have now a full coupling, this is mixed convection. Write all the scaling and write the final system
with all boundary condition to sum up.

Free convection Of course if there is no imposed velocity at infinity (Us = 0 or Uy < Uy see Q.3.1) , the
problem is a problem of free convection (or natural convection : the flow is generated by changes of density
due to the heating of the wall).

3.1 Starting from scratch show with crude balances that for free convection, the velocity is created by the
heating and then that the scale of velocity is U; = (¢LBATv)/>.

3.2 Check that in the free convection problem all the scalings obtained in Q1.X (in first paragraphe of page
252) are the same, but Uy, is replaced by Uy.

3.3 In this case of free convection, show that the problem is self similar and that, for an imposed tempera-
ture, (without dimension) u = /% f'(y /x2/%)

3.4 Explain why when the imposed velocity Uy is of order Uy = (gLBATV)Y/?

we have "mixed convection”.

Non self similarity in mixed convection We know that often the selfsimilar solution is a ”steady”
solution with respect to another variable. We saw that for heat equation. Here we do the same for mixed
convection equations.

4.1 In Blasius flow ¥ = /x f(y//y) (see Q.1.8), then discuss equations Eq (2.1) and Eq (2.2).

4.2 Check every equation Eq.(2.4), Eq.(2.5), and Eq. (2.6)

4.3 What do you think of (Eq.(2.8))7

The paper continues the expansion and shows that there are positives exponents n (figure 3), then in
this case there is no relaxation to a self similar solution when integrating in marching Eq.(2.5), and Eq.
(2.6) with ¢ increasing. As visible on figure 1; if one solves the equations with £ increasing, any small per-
turbation is increased given the exponential branches (1,2...13). In fact, it has been shown latter that this
configuration has no self similar solution but creates a kind of hydrolic jump. The exponents can be found
with Triple Deck theory. But that is another story....
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The boundary-layer flow over a cooled horizontal plate is considered. It is shown that
the real part of the spectrum of the evolution operator of the linearized equations is
not bounded uniformly from above which explains the difficulties encounterd by a
numerical solution. Furthermore it is shown that near the leading edge an asymptotic
expansion of the solution is not unique. A one-parametric family of asymptotic
expansions of solutions can be constructed.

1. Introduction

Though there are several papers presenting numerical solutions to the mixed-
convection boundary-layer flow above a cooled horizontal plate none of these results
is really satisfactory (Schneider, Steinriick & Andre 1994). All solutions agree near the
edge of the plate but they differ significantly on where and how a singularity occurs.
Schneider & Wasel (1985) were the first to find an unusual behaviour. They found
a singularity with a finite wall shear stress. Later Wickern (1991a, b) claimed that
the boundary-layer flow terminates in a Goldstein-type singularity. Daniels (1992)
proved analytically the possibility of a singularity with an infinite wall shear stress.
Considering that the numerical solution for the case of the boundary-layer flow
above a heated horizontal or an inclined heated or cooled plate is straightforward
the difficulties in the case of a cooled horizontal plate are surprising. In this paper
we investigate the mathematical reason for this controversy.

The modified boundary-layer equations for the mixed-convection flow above a
horizontal plate in dimensionless form are

du  Ou dp o

:% +cm|w =~ %. (1.1)
0= IM[“ +39, (1.2)

2+ WIH o0, (13)
:m +ewlw = WWW, (1.4)

where the dimensionless coordinate x parallel to the plate is made dimensionless
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with the reference length L = US /(gBAT)*v which depends on the velocity U, of
the free stream, the gravity acceleration g, the thermal expansivity 8, the kinematic
viscosity v and the difference AT between a reference value of the plate temperature
T, and the temperature T, of the undisturbed fluid, The dimensionless coordinate
y perpendicular to the plate is scaled with LRe™'/%, where Re = U,L/v is the
Reynolds number. The velocity components u, v parallel and perpendicular to the
plate are scaled with U,, and U,Re™ "2, The difference 9 between the temperature
of the disturbed and undisturbed fluid is scaled with AT. Reference values for the
dimensionless skin friction t and the dimensionless heat flux density g are p,U%/Re
and kATRe '/?/L, where p., is the density of the undisturbed fluid and k is the
thermal conductivity of the fluid. Note that according to this scaling we have
©=(9/0y)u(x,y =0) and q = (3/dy)(x,y = 0).

In the classical boundary-layer equations the pressure p (which is scaled with
poUZ) is determined by the outer flow and does not depend on the perpendicular
coordinate y. Here, using Boussinesq’s approximation, the boundary-layer equations
are modified so that the hydrostatic pressure depends on buoyancy effects induced
by the temperature difference 9 with the unperturbed fluid. The Prandtl number
Pr = v/a, with a the thermal diffusivity, is the only non-dimensional parameter in the
problem.

The boundary conditions at the plate are given by the no-slip conditions and a
prescribed temperature difference with the unperturbed fluid:

u(x,0) =0, v(x,0)=0, 3I(x,0)=3,(x), x>0. (1.5)
Since the solution of the boundary-layer equation has to match with the outer flow
the asymptotic boundary conditions for y — co must hold:

u(x,00) =1, §(x,00)=0, p(x,00)=0. (1.6)
At the leading edge the flow is unperturbed, thus the initial conditions

u0,y)=1, %0,y)=0, y>0, L7
hold. It is easy to verify that the modified boundary-layer equations (1.1)—(1.4) are
of parabolic type in the sense defined by Courant & Hilbert (1968). Thus one might
assume that (1.1)-(1.4) together with the boundary and initial conditions (1.5)+(1.7)
is a well-posed problem. Indeed it is observed that (1.1)~(1.4) is well posed in case of
a heated plate (9, > 0). But this is not the case for a cooled plate.

A similarity solution exists for a plate temperature distribution of the form 8,,(x) =
kx=12 for k = ko < O (Schneider 1979). In particular for k > O (heated plate) a unique
similarity solution exists, while for kg < k < 0 (cooled plate) two similarity solutions
exist. For k < ko no similarity solution exits at all. It turns out that the plate is
adiabatic and that the heat transfer is concentrated at the leading edge of the plate.
In this paper we will consider the case of a constant wall temperature 9, = —1 and
point out the mathematical difficulties.

A necessary condition for the well posedness of a linear evolution problem

u = A(t)u, u(0) = uo, (18)

is that the real part of the spectrum of the evolution operator 4 is bounded uniformly
from above (Pazy 1983). This is the case for the heat equation or the wave equation
on a bounded interval with Dirichlet boundary conditions and appropriate initial
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conditions. But it is not the case for the Laplace equation u,, = —uy,, with u(—1,¢) =
u(1,t) = 0, and the initial conditions u(x,0) = f(x), u,(x,0) = g(x).

Since the boundary-layer equations are solved like an evolution system starting
from the leading edge of the plate, we try to verify the above condition. Since (1.1}~
(1.4) form a nonlinear system and the x-derivatives are not given explicitly we have
to linearize (1.1)<(1.4) at a given solution and study locally the linearization which
yields a generalized eigenvalue problem which will be analysed and the consequences
of the results will be discussed.

2. Eigenvalues near the leading edge

To analyse the boundary-layer equations near the leading edge it is convenient to
introduce the coordinate transform

E=0/P'2 m=y/x"2 @1

Let (x, y) be a streamfunction; then we indroduce a transformed stream function f
by

w(x,y) = x'2f(x'/Pri, y /x'/2). 22

The dependence of the coordinate transform (2.1) on the Prandtl number turns out

to be useful when considering the limiting case of a small Prandtl number. From

now on we will denote derivatives with respect to # with a prime and with respect to

¢ with a subscript. The dimensionless skin friction z and the dimensonless heat flux
density g are given by

t= %.We = 3_H|:m "og= %.@ = m*__\lﬁ.q. (23)
Thus (1.1)1.4) are equivalent to
2" +f 1" =E(f'fe —f'fe + 2) (24)
29419 =e0'% 95 (25)
Prilg 9 = &8, (2.6)

with the boundary conditions
F(&,0) = f'(£,0)= 3,00 + 1 = f'(§,00) — 1 = §(¢, 00) = g(¢,00) = 0. 27

Note that the function g is the transformed pressure gradient parallel to the plate.
Assuming a regular behaviour of f, 3 and g near the leading edge we obtain ordinary
differential equations for the initial values of f, 3 and g where f(0,n) satisfies the
Blasius equation. We can construct formally a regular expansion of a solution of
(2.4)(2.7) by a power series expansion with respect to ¢ (Afzal & Hussain 1984):

N

N N
fOEn =S ¢"fum), &M =D %), gMEn) = Egln). (29)
n=0 n=0

n=0

We denote by f,, 9,, g, a solution of (2.4)2.7) with a regular expansion (2.8).

Let us assume we perturb a given solution at & and let AF, A3, AG denote the
perturbation of f, 3, g. We are interested in whether the perturbation grows or
decays locally. Thus we linearize (2.4)2.7), freeze the £-dependence of the coefficient
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functions and insert

AF(&,n) = F(n)e¥, AS(E,m) = Dine, AG(,n) = Gn)e¥, 2.9)
into the linearized equations. This yields a generalized eigenvalue problem:

2F" — Ao(f'F' — f"F) — &G = —fF" — f'F + {o{fF' — feF"), (2.10)

20" J(f'D ~¥F) = —fD — IF + &(%F — D), (A1)
Pr\2G' — J&.D = —yD', (2.12)
F(0) = F'(0) = D(0) = F'(00) = D(o0) = G(o0) = 0. (2.13)

Let us first consider the linearization near the leading edge of the plate. We solve
the eigenvalue problem by an asymptotic expansion with respect to small values of
&o. We introduce the expansion

\,uw+<_+59+..., (2.18)
0

104

|

0.07 0.08 0.09 0.10
£

FIGURE 3. Positive eigenvalues 1, - -+ A5 of (2.10)«2.13) along the solution of the initial value
problem with inital data &, = 0.05, ¢ = —0.001438 as functions of £.
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FIGURE 1. Wall shear stress f”(£,0) = 1/Pr'/?¢ for Pr = 0.72. Regular expansion with 8
terms: dashed line. Numbered curves show solution of inital value problem with initial data
S(&o,n) = 12(%0,n) + oF.(n), 9(o,n) = 3Zo,n) + aD..(n) for various values of ¢ and o (see
table 1). O, 8% = § —g/> = 0; A — A, Schneider & Wasel (1985); O — O, Wickern (1991a, b).



Kapitza
Landau 1962 Feynman 1965 HAroche 2012 Wilson De Gennes
singular as we are loosing the derivative
H{(t)
0=¢— H({0)=0 1
CTHO+1-t (0)=0, e
I confess that singularity is not so clear, ¢ = 0 gives H = 0 which is OK
seems that H is small, we test H = d(¢)h
by dominant balance the right hand side gives § = ¢ and the RHS is £(1 — %)
The equation is now
h(t)

W=(1-——r
e = eh(t) +1—t

)

again singular
Change of scale t = §(¢)t, by dominant balance § = ¢, ad has the denominator is 1+ O(e)

@ _a
dt

solution h =1 — et

automatic as only first order derivative and the BC is OK
H=c¢(1—t—ete)

e = .01;
sol = NDSolve[{e H’[t] == e - H[t] /H[t] + 1 - t), H[0] == 0},
H[t], {t, 0, 1}][[]]

Plot[{0, (H[t] /. soll[[111), e (1 - ©)}, {t, 0, 1}]

correction Ex 3
y = Acos(wt) and y ~ wA sin(wt)
mean value, T' = w/(2m)

1 [T 1 1
T/o sin? widi — %{w/(zw) + 5 sin2wtlf = o

.42 ) 2
<y’ >is %, < (y)?>is w2—(‘? ,

d d
< %(gj'2/2 + w?y?/2) >= —e < y? > s0 %(wQAQ/Zl + w?A?/4) >= —ew?A%)/2.

d 2y _ 2
@<A)7 A"

correction Ex 4

e with § = /g, the eikonal (S§)? =1 then Sp = +x
and S7 = c¢st hence the solution is the sum of e/ VE |

ex/\@ —_ e_x/\/g

vw) = G v
c’est exactement la solution exacte!
sinh(z/+/¢)
y(@) = —— =
sinh(1/1/€)



