
M2, Fluid mechanics, MU5MEF15 2024/2025
Friday November 30th 2024, 8 :30am - 12 :30pm, Salle : 56.66.103 Part I. : 75 minutes, NO documents

Multiscale Hydrodynamic Phenomena

1. Quick Questions In few words and few formula :
1.1 Order of magnitude of drag on a cylinder of radius L at large Re in turbulent flow.
1.2 Order of magnitude of drag on a cylinder of radius L at small Re.
1.3 Order of magnitude of drag on a flat plate of length L at large Re in laminar flow, in turbulent flow ?
1.4 Problem ∇2p = 0 in upper half domain (∀x and y ≥ 0) with −∂p/∂y|0 = f ′(x) and p(∞)→ 0, what is
the solution on the line y = 0 ?
1.5 Write 2D Boundary Layer equations (in x, y, u, v) in the case of Blasius problem, what is the scale of y
compared to the scale of x ?
1.6 In which one of the 3 decks of Triple Deck is flow separation ?
1.7 Dispersion relation ω(k) for linear waves on free surface of arbitrary depth (Airy swell problem), what
is the small parameter to obtain this relation ?
1.8 What is the KdV equation ? What balance is it ?
1.9 What is the Friedrichs problem ?
1.10 Nobel prizes with references to Asymptotics ?

2. Exercice
Consider the following equation (this is a model of paint brush !) :

(Eε) ε
dH(t)

dt
= ε− H(t)

H(t) + 1− t
, H(0) = 0, ε� 1

we want to solve this problem with the Matched Asymptotic Expansion method.
2.1 Why is this problem singular ?
2.2 Looking at the right hand side, show that a first change of scale on H gives that H is O(ε).
2.3 Say that H(t) = εh(t), do not change t, what is the new equation for h(t) ?
2.4 Why is this new problem on h(t) again singular ?
2.5 What is the outer problem and what is the form of the outer solution for h(t) at order O(1) for 0 ≤ t ≤ 1 ?
2.6 What is the inner problem and what is the inner solution ?
2.7 Suggest the plot of the inner and outer solution.
2.8 The matching is automatic, why ?
2.9 Composite expansion, plot of it ?

3. Exercice

Let us look at the following ordinary differential equation : (Eε)
d2y

dt2
+ ε

dy

dt
+ ω2y = 0, valid for any

t > 0 with boundary conditions y(0) = 1 and y′(0) = 0. Of course ε is a given small parameter and ω is a
real of order one. We want to solve this problem.
3.1 Solve with Feynman averaging method.
3.2 We want to solve this problem with Multiple Scales Analysis. Introduce two time scales, t0 = t and t1,
what is the relation between t, t1 and ε ?
3.3 Compute ∂/∂t and ∂2/∂t2

3.4 Solve the problem.
3.5 Suggest the plot of the solution.
3.6 What is the exact solution for any ε, compare.

4. Exercice
Solve with WKB approximation the problem

εy′′(x) = y(x) with y(0) = 0, y(1) = 1

1



empty page

2
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Friday November 30th 2024, 8 :30am - 12 :30pm,

Multiscale Hydrodynamic Phenomena

Part II. : 1h 15 min all documents. No Wifi Mixed convection

This is a part of ”Mixed convection over a cooled horizontal plate : non-uniqueness and numerical insta-
bilities of the boundary-layer equations” By Herbert STEINRÜCK

We consider a 2D steady boundary layer flow (uniform velocity U∞ along −→e x) over a flat plate (y = 0,
x > 0) which is at a temperature Tw (maybe function of x) different of the uniform constant temperature
T∞ far away in the flow. Due to this temperature of the plate, the temperature of the flow is modified by
convection and diffusion. Furthermore, there is a retroaction of the temperature of the flow on the dynamics
of the flow thanks to variations of the density according to Boussinesq approximation ρ = ρ0(1−β(T−T∞)).
This expression is in the weight (gravity is perpendicular to the plate −→g = −−→e y).
Note that in this configuration, the pressure P in Navier Stokes Equation is such that

P = P0 − ρ0gy + p,

where P is indeed the pressure in the −
−→
∇P of right hand side, where P0 is a reference pressure constant,

where −ρ0gy is the hydrostatic variation, and where p is the so called ”dynamic pressure” that will be
present at the end in the final system.

Two classical configurations exist, first with no Boussinesq coupling and a given velocity at infinity,
this is ”forced convection”, second with Boussinesq coupling and no given velocity at infinity, this is ”free
convection”. Here we will look at ”mixed convection” : with Boussinesq coupling and a given velocity at
infinity. This configuration is not in the textbooks of thermal flow...

As all the results are more or less in the paper, be careful and rigorous to prove the results. Numbers refer
to equations in the papers (Eq. X.) or questions (Q. X.).

First we suppose no Boussinesq effect, there is no temperature effect on the momentum equation. This is
”forced convection”. There is gravity, but density is constant. We use a length L for space, in question 1.X,
this length is given. The scaling L = U∞/(gβ∆T )ν (first line of page 252) will be a result of questions Q2.2.
or Q3.2 so do not use it now. The Reynolds number Re = U∞L/ν is large.

1.1 Write incompressible full NS equations and boundary conditions.
1.2 Check that the gravity is nor more present as P = P0 − ρ0gy + p. Write momentum equations in x and
y with this p.

1.3 Write heat equation and boundary conditions, remember that ρcp
d
dtT = k

−→
∇2T + 2µDijDij where strain

rate tensor is Dij = (1/2)(∂ui/∂xj + ∂uj/∂xi), it creates a source of temperature. Thermal diffusivity is
a = k/(ρcp).
1.4 Write equations and boundary conditions of (Q1.1) without dimension, use L a given length so that
(x, y) = L(x̄, ȳ)), and U∞ so that (u, v) = U∞(ū, v̄).
1.5 Write equation and boundary conditions of (Q1.2) without dimension, use ϑ as suggested by first para-
graph of page 252. Use Prandtl Pr number, Eckert number E = U2

∞/(cp∆T ) and Reynolds number in the
heat equation without dimension.
1.6 For a given length L, write the boundary layer scaling for u, v and y with dominant balance for incom-
pressibility and momentum. Find indeed the scalings (except the one on the first line of page 252 as L is
given) of first paragraph of page 252.
1.7 Check that we obtain (Eq (1.1)) with ∂xp = 0, (Eq(1.3)) and that (Eq(1.2)) reduces indeed to ∂yp = 0.
Note that (Eq (1.1)) to (Eq(1.3)) are without dimension (maybe you have tildes or bars in your expressions).

3



1.8 Without demonstration, remind the Blasius self similar solution. Check that equation (Eq(2.4)) is part
of it, boundary conditions for f ? Link between f and stream function and longitudinal and transverse ve-
locity ?
1.9 Write heat equation and boundary conditions without dimension.
1.10 Write heat flux at the wall without dimension.
1.11 As the Reynolds number is large, as Pr = O(1) (example : air Pr = .7, water Pr = 7) and as E is
small (why ?) check that we obtain (Eq (1.4)).
1.12 Using the Blasius self similar variable η check that we can find a self similar solution of the heat equation
which reduces to 2ϑ′′/Pr + fϑ′ = 0 (Eq (2.5)).

Second We suppose now that there is a Boussinesq effect. The heat equation will retroact on the momen-
tum equation through the coupling of a source term in the transverse momentum equation. We suppose as
well a velocity at infinity. This is mixed convection. This corresponds to the second paragraph of page 252
(sentence ”In the classical ... in the problem”). The transverse momentum equation will change, we focus
on it.
2.1 Write incompressible Navier Stokes dimensionless equation along y with temperature using the scaling
ρ∞U

2
∞ for dynamic pressure (why ?), the scaling LRe−1/2 (why ?) and the scale δT .

2.2 Looking at this Navier Stokes dimensionless equation along y, show by dominant balance that L is as
proposed on the first line of page 252. Obtain equation (Eq(1.2)). Verify that the other terms are indeed
smaller.
2.3 We have now a full coupling, this is mixed convection. Write all the scaling and write the final system
with all boundary condition to sum up.

Free convection Of course if there is no imposed velocity at infinity (U∞ = 0 or U∞ � Uf see Q.3.1) , the
problem is a problem of free convection (or natural convection : the flow is generated by changes of density
due to the heating of the wall).
3.1 Starting from scratch show with crude balances that for free convection, the velocity is created by the
heating and then that the scale of velocity is Uf = (gLβ∆Tν)1/5.
3.2 Check that in the free convection problem all the scalings obtained in Q1.X (in first paragraphe of page
252) are the same, but U∞ is replaced by Uf .
3.3 In this case of free convection, show that the problem is self similar and that, for an imposed tempera-
ture, (without dimension) u = x1/5f ′(y/x2/5)
3.4 Explain why when the imposed velocity U∞ is of order Uf = (gLβ∆Tν)1/5 we have ”mixed convection”.

Non self similarity in mixed convection We know that often the selfsimilar solution is a ”steady”
solution with respect to another variable. We saw that for heat equation. Here we do the same for mixed
convection equations.
4.1 In Blasius flow ψ =

√
xf(y/

√
y) (see Q.1.8), then discuss equations Eq (2.1) and Eq (2.2).

4.2 Check every equation Eq.(2.4), Eq.(2.5), and Eq. (2.6)
4.3 What do you think of (Eq.(2.8)) ?

The paper continues the expansion and shows that there are positives exponents n (figure 3), then in
this case there is no relaxation to a self similar solution when integrating in marching Eq.(2.5), and Eq.
(2.6) with ξ increasing. As visible on figure 1 ; if one solves the equations with ξ increasing, any small per-
turbation is increased given the exponential branches (1,2...13). In fact, it has been shown latter that this
configuration has no self similar solution but creates a kind of hydrolic jump. The exponents can be found
with Triple Deck theory. But that is another story....

Biblio
H. Steinrück Mixed convection over a cooled horizontal plate : non-uniqueness and numerical instabilities
of the boundary-layer equations J. Fluid Mech. (1994),vol. 278, pp. 251-265
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T
he boundary-layer flow

 over a cooled horizontal plate is considered. It is show
n that 

the real part of the spectrum
 of the evolution operator of the linearized equations is 

not bounded uniform
ly from

 above w
hich explains the difficulties encounterd by a 

num
erical solution. Furtherm

ore it is show
n that near the leading edge an asym

ptotic 
expansion of the solution is not unique. 

A
 one-param

etric fam
ily of asym

ptotic 
expansions of solutions can be constructed. 

1. Introduction 
T

hough there are several papers presenting num
erical solutions to the m

ixed- 
convection boundary-layer flow

 above a cooled horizontal plate none of these results 
is really satisfactory (Schneider, Steinriick &

 A
ndre 1994). A

ll solutions agree near the 
edge of the plate but they differ significantly on w

here and how
 a singularity occurs. 

Schneider &
 W

asel (1985) w
ere the first to find an unusual behaviour. T

hey found 
a singularity w

ith a finite w
all shear stress. L

ater W
ickern (1991a, b) claim

ed that 
the boundary-layer flow

 term
inates in a G

oldstein-type singularity. D
aniels (1992) 

proved analytically the possibility of a singularity w
ith an infinite w

all shear stress. 
C

onsidering that the num
erical solution for the case of the boundary-layer flow

 
above a heated horizontal or an inclined heated or cooled plate is straightforw

ard 
the difficulties in the case of a cooled horizontal plate are surprising. In this paper 
w

e investigate the m
athem

atical reason for this controversy. 
T

he m
odified boundary-layer equations for the m

ixed-convection flow
 above a 

horizontal plate in dim
ensionless form

 are 

au 
au 

ap 
a*u 

ax 
ay 

ax 
ay2’ 

u- 
+v- 

=
 -- +- 

aP 
0 =

 -
-
 + 9, 

aY 
aU 

av 
-+-=o, 
ax 

ay 
as 

as 
1 a

2
s
 

ax 
ay 

P
ray2’ 

u-++v- 
=

 -
-
 

w
here the dim

ensionless coordinate x parallel to 

(1.3) 

(1.4) 

the plate is m
ade dim

ensionless 
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w
ith the reference length L =

 U
:/(gjA

T
)*v w

hich depends on the velocity U
, of 

the free stream
, the gravity acceleration g, the therm

al expansivity j?, the kinem
atic 

viscosity v and the difference A
T

 betw
een a reference value of the plate tem

perature 
T

, and the tem
perature T

, of the undisturbed fluid. T
he dim

ensionless coordinate 
y 

perpendicular to the plate is scaled w
ith LR

e-'12, w
here R

e 
=

 U
,L

/v 
is the 

R
eynolds num

ber. T
he velocity com

ponents u, u parallel and perpendicular to the 
plate are scaled w

ith U
, and U

,R
e-'I2. 

T
he difference 9 betw

een the tem
perature 

of the disturbed and undisturbed fluid is scaled w
ith A

T
. R

eference values for the 
dim

ensionless skin friction o and the dim
ensionless heat flux density q are p,U

i/R
e 

and kA
T

R
e-'12/L

, w
here p, 

is the density of the undisturbed fluid and k is the 
therm

al conductivity of the fluid. 
N

ote that according to this scaling w
e 

have 
z =

 (d/dy)u(x,y =
 0

) and q =
 (d/dy)9(x,y =

 0). 
In the classical boundary-layer equations the pressure p 

(w
hich is scaled w

ith 
p,U

i) is determ
ined by the outer flow

 and does not depend on the perpendicular 
coordinate y. H

ere, using B
oussinesq's approxim

ation, the boundary-layer equations 
are m

odified so that the hydrostatic pressure depends on buoyancy effects induced 
by the tem

perature difference 9 w
ith the unperturbed fluid. 

T
he Prandtl num

ber 
P

r =
 v/a, w

ith a the therm
al diffusivity, is the only non-dim

ensional param
eter in the 

problem
. 

T
he boundary conditions at the plate are given by the no-slip conditions and a 

prescribed tem
perature difference w

ith the unperturbed fluid: 

u(x, 0) =
 0, 

v(x,O
) =

 0, 
q

x
, 0) =

 $,(x), 
x >

 0. 
(1.5) 

Since the solution of the boundary-layer equation has to m
atch w

ith the outer flow
 

the asym
ptotic boundary conditions for y +

 co m
ust hold: 

u(x, 00
) =

 1, 
$(x, 0

0
) =

 0, 
p(x, 00

) =
 0. 

( 1-61 
A

t the leading edge the flow
 is unperturbed, thus the initial conditions 

U
(0,Y) =

 1, 
S(0,Y) =

 0, 
Y >

 0, 
(1.7) 

hold. It is easy to verify that the m
odified boundary-layer equations (1.1)-(1.4) are 

of parabolic type in the sense defined by C
ourant &

 H
ilbert (1968). T

hus one m
ight 

assum
e that (l.lt( 1.4) together w

ith the boundary and initial conditions (1.5H
1.7) 

is a w
ell-posed problem

. Indeed it is observed that (l.lb(1.4) is w
ell posed in case of 

a heated plate (SW
 >
 0). B

ut this is not the case for a cooled plate. 
A

 sim
ilarity solution exists for a plate tem

perature distribution of the form
 9,(x) 

=
 

kx-'12 for k 2 ko <
 0 (Schneider 1979). In particular for k 2 0 (heated plate) a unique 

sim
ilarity solution exists, w

hile for ko <
 k <

 0 (cooled plate) tw
o sim

ilarity solutions 
exist. 

For k <
 k~ no sim

ilarity solution exits at all. 
It turns out that the plate is 

adiabatic and that the heat transfer is concentrated at the leading edge of the plate. 
In this paper w

e w
ill consider the case of a constant w

all tem
perature 9, 

=
 -1 

and 
point out the m

athem
atical difficulties. 

A
 necessary condition for the w

ell posedness of a linear evolution problem
 

ut =
 A

(t)u, 
u(0) =

 UO, 
(1.8) 

is that the real part of the spectrum
 of the evolution operator A

 is bounded uniform
ly 

from
 above (Pazy 1983). T

his is the case for the heat equation or the w
ave equation 

on a bounded interval w
ith D

irichlet boundary conditions and appropriate initial 
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functions and insert 

W
T,vt) =

 F(vt)eA
t, W

ry
 vt) =

 D
(vtkA

t, W
ry vt) =

 G
(vt)e“, 

into the linearized equations. T
his yields a generalized eigenvalue problem

: 

2F’” -
 ATo(f’F’ -

 f”F
) -
 50G =

 -f F” -
 f”F

 + ro(f;F
’ -
 ftF

”), 
2 

-D
” 

-
 A

&
(f‘D

 -
 9‘F

) =
 -fD

‘ - 9’F + To(9tF‘ -ftD
’), 

P
r 

Pr-’12G
’ - AroD

 =
 -qD

IY
 

F
(0) =

 F
’(0) =

 D
(0) =

 F’(co) =
 D

(oo) =
 G

(co) =
 0. 

(2.9) 

(2.10) 
(2.1 1) 
(2.12) 
(2.13) 

Let us first consider the linearization near the leading edge of the plate. W
e solve 

the eigenvalue problem
 by an asym

ptotic expansion w
ith respect to sm

all values of 
to. W

e introduce the expansion 
VO 

3, =
 -
 + v1 + v250 + . . . , 

TO 
(2.14) 

(Fy D, G
) =

 (Fay D
o, G

o) + (Fly Diy G
i)to + (F

2,D
zY

 G2)ToZ + . . . , 
(2.15) 

w
hich yields the tw

o decoupled eigenvalue problem
s for the leading term

s of the 
asym

ptotic expansion: 

(2.16) 

(2.17) 
B

oth eigenvalue problem
s (2.16), (2.17) can be w

ritten in self-adjoint form
 and 

therefore have only real eigenvalues. 
It w

as show
n that (2.16) has only negative 

eigenvalues (L
ibby &

 Fox 1964). M
ultiplying (2.17) by D

 and integration by parts 
yields 2Fr + f F{ + f”Fo =

 vo(f‘F; - f”F
o), 

Fo(0) =
 FA(0) =

 F;(co) =
 Oy 

2 
-DO” + fD

h + 9’Fo =
 vo(f’D

0 -
 ~

’F
o

), 
P

r 
D

(0) =
 D

(co) =
 0. 

(2.18) 
T

hus all eigenvalues w
hich have an expansion of the form

 (2.14) are negative for To 
sufficiently sm

all. T
he sam

e asym
ptotic expansion of the eigenvalues holds in the case 

of forced convection over a plate. 
Since all eigenvalues are negative this indicates 

that the evolution problem
 is w

ell posed. H
ow

ever in the case of m
ixed convection a 

second type of asym
ptotic expansion of eigenvalues exists : 

1 
“ 

flD
2dq =

 -
 1 (2D

r2 + 
flD

2)dq <
 0. 

vO I“ 
0 

(2.19) 

Since it turns out that this eigenvalue is positive w
e denote it and its corresponding 

eigenfunction w
ith a superscript +. 

Inserting (2.19) into the eigenvalue problem
 

yields a singularly perturbed eigenvalue problem
 and w

e have to expect a m
atched 

asym
ptotic expansion for the eigenfunction. For the outer expansion w

e use 

G
; 

G 
F

+ =F‘” 
+{O

PT +... 
D

+ =
D
;
 +

rob: +... 
G

+ =
 -
 +... 

. 
(2.20) 

T
he leading-order term

s of the asym
ptotic expansion satisfy 

(2.21) 
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conditions. B
ut it is not the case for the L

aplace equation utt =
 -un, w

ith u
(-1,t) 

=
 

u(1, t) =
 0, and the initial conditions u(x,O

) =
 f(x), u,(x,O

) =
 g(x). 

Since the boundary-layer equations are solved like an evolution system
 starting 

from
 the leading edge of the plate, w

e try to verify the above condition. Since (1.1)- 
(1.4) form

 a nonlinear system
 and the x-derivatives are not given explicitly w

e have 
to linearize (1.1)-(1.4) at a given solution and study locally the linearization w

hich 
yields a generalized eigenvalue problem

 w
hich w

ill be analysed and the consequences 
of the results w

ill be discussed. 

2. E
igenvalues near the leading edge 

introduce the coordinate transform
 

T
o analyse the boundary-layer equations near the leading edge it is convenient to 

5 =
 (x/pr)’/2, 

9 =
 Y

/x’/~. 
(2- 1) 

Let v(x,y) be a stream
function; then we indroduce a transform

ed stream
 function f 

by 
y(x, y) =

 x1/2f(x1/2/Pr1/2, 
y

/~
’/~

). 
(2.2) 

T
he dependence of the coordinate transform

 (2.1) on the Prandtl num
ber turns out 

to be useful w
hen considering the lim

iting case of a sm
all Prandtl num

ber. 
From

 
now

 on w
e w

ill denote derivatives w
ith respect to q w

ith a prim
e and w

ith respect to 
5 w

ith a subscript. T
he dim

ensionless skin friction z and the dim
ensonless heat flux 

density q are given by 

9’. 
(2-3) 

1 
It 

a 
f

,
 q

=
-$

=
- 

a
2

 

ay2 
pr’/25 

ay 
W

2
5

 

2f” + f f” =
 W

f; -
 f”fc + g), 

-$I’ 
+ f9’ =

 C
(f‘9c -

 S’fc), 

z=
--v=

- 

T
hus (l.lH

1.4) are equivalent to 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

N
ote that the function g is the transform

ed pressure gradient parallel to the plate. 
A

ssum
ing a regular behaviour o

ff, 9 and g near the leading edge w
e obtain ordinary 

differential equations for the initial values of f, 9 and g w
here f(0,q) satisfies the 

B
lasius equation. W

e can construct form
ally a regular expansion of a solution of 

(2.4H
2.7) by a pow

er series expansion w
ith respect to ( (A

fzal 8z H
ussain 1984): 

2 
P

r 
Pr-ll’g‘ + 19’ =

 (a,, 
w

ith the boundary conditions 

f(t,O) 
=

 f’(t,O) 
=

 $(LO) + 1 =
 f’(t,w

) -
 1 =

 W
5,w

) =
 g(t,w

) =
 0. 

N
 

N
 

N
 

n=O
 

n=O 
n=O 

W
e denote by f,, a,, 

g, a solution of (2.4H
2.7) w

ith a regular expansion (2.8). 
Let us assum

e w
e perturb a given solution at 50 and let A

F, A
S, A

G
 denote the 

perturbation o
ff, 9, g. 

W
e are interested in w

hether the perturbation grow
s or 

decays locally. T
hus w

e linearize (2.4)-(2.7), freeze the 5-dependence of the coefficient 
9 

F
L

M
 278 
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Landau 1962 Feynman 1965 HAroche 2012 Wilson De Gennes
singular as we are loosing the derivative

0 = ε− H(t)

H(t) + 1− t
, H(0) = 0, ε� 1

I confess that singularity is not so clear, ε = 0 gives H = 0 which is OK
seems that H is small, we test H = δ(ε)h

by dominant balance the right hand side gives δ = ε and the RHS is ε(1− h(t)
εh(t)+1−t)

The equation is now

εh′ = (1− h(t)

εh(t) + 1− t
)

again singular
Change of scale t = δ(ε)t̃, by dominant balance δ = ε, ad has the denominator is 1 +O(ε)

dh̃

dt̃
= (1− h̃(t̃)

1
)

solution h̃ = 1− e−t̃
automatic as only first order derivative and the BC is OK
H = ε(1− t− e−t/ε)

e = .01;

sol = NDSolve[{e H’[t] == e - H[t] /(H[t] + 1 - t), H[0] == 0},

H[t], {t, 0, 1}][[]]

Plot[{0, (H[t] /. sol[[1]]), e (1 - t)}, {t, 0, 1}]

correction Ex 3
y = A cos(ωt) and y ' ωA sin(ωt)
mean value, T = ω/(2π)

1

T

∫ T

0
sin2 ωtdt =

ω

2π
[ω/(2π) +

1

2
sin 2ωt]T0 =

1

2

< y2 > is A2

2 , < (y′)2 > is ω2 (A)2

2 ,

<
d

dt
(ȳ′2/2 + ω2y2/2) >= −ε < y′2 > so

d

dt
(ω2A2/4 + ω2A2/4) >= −εω2A2/2.

d

dt
(A2) = −εA2.

correction Ex 4

• with δ =
√
ε, the eikonal (S′0)

2 = 1 then S0 = ±x
and S1 = cst hence the solution is the sum of e±x/

√
ε :

y(x) =
ex/
√
ε − e−x/

√
ε

e1/
√
ε − e−1/

√
ε

c’est exactement la solution exacte !

y(x) =
sinh(x/

√
ε)

sinh(1/
√
ε)
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