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Abstract

We aim to introduce on simple examples the Method of Matched Asymp-
totic Expansions (”Méthode des Développements Asymptotiques Rac-
cordés”). We first introduce the concept of ”singular problem” on a problem
depending on a small parameter (the famous ”ε”). We will define ”singular
problems” to be not ”regular problems”. Problems depending on a small
parameter are said regular problems if the solution of the problem does
not change so much if the small parameter ε is changed a little bit. We
will see that at first on a simple second order equation. Then we will show
that in singular problems we have to ”change the scale” of the variables to
focus on the local solution. The apparition of multiple scale is then natu-
ral. We show on examples that we have to rescale the equations in order
to obtain the relevant solution of the problem. Hence we will present the
”Dominant Balance” (or ”distinguished limit”) principle which is a prin-
ciple to avoid over- simplification of a problem. The ”matching principle”
allows to re connect the simplified problem at the new scale to the previ-

ous at normal scale. The Friedrichs problem (an über classical toy model
for Navier Stokes) will be discussed, it contains all the principles of the
method: rescaling, dominant balance and matching. As the examples are
rather simple, they have a simple analytic solution, so that we can check
the approximations.

1 Introduction

The game consists to find an approximate solution of a physical prob-
lem depending on a small parameter say ”epsilon” (the ε, with LATEX
code $\varepsilon$, not ε $\epsilon$). This solution is obtained as an
”asymptotic development” in powers (often) of ε.

Often, in fact, the problem comes from a physical problem. In practice
we will see in the next chapters the boundary layer problem (Matched
Asymptotic Expansion is a technique, first introduced by Prandtl 1904
it allowed decisive progress in aerodynamics during the WWII for the
Germans, it was expanded latter on, in the 50’ 70’ during the cold war).
First, one has to make this problem non dimensional in using adequate
scales. Using the Π theorem (or Vaschy-Buckingham) may be a good
guide to find relevant non dimensional numbers (we will see this in a
next chapter). Then, due to small aspect ratios, or small values of the
parameters, one obtains a problem with small numbers.

Then, one has to solve the problem with this small parameter, it
is not always simple. Sometimes, from the Physics of the phenomena
(experiments or computations), one is guided to find where the problem
arises. We will see that the small parameter is sometimes a ”hidden” small
scale.

The methods that we will present are found in several books that the
reader should read (Hinch [12] and others, see the bibliography at the end).
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Matched Asymptotic Expansions

2 Definitions

2.1 Notation o and O

We start by some standard definitions and notations, that everybody
knows. Let us introduce the O notation (”big oh” or ”large oh” ). This
is called Landau notation, but Edmund, not Lev). Then, by definition,
f = 0(g) for ε tending to 0 means that there exists a neighbourhood of
the origin and a constant A so that for any ε in the neighbourhood of the
origin: |f | < A|g| or (f/g)

ε→0
is a constant.

f = o(g), for ε tending to 0

means : (f/g)
ε→0

approaches 0.

One also writes f � g, which read f is ‘much less than’ g, if f = o(g),

We introduce the ”order”, Ord: f = Ord(g), it reads f is of order g,
means f = O(g) and g = O(f) or:

f ∼ g (1)

which reads: f is asymptotic to g.

2.2 Series

Let us take any (ordered) sequence f0, f1, f2, f3, ...fn of terms (that is, num-
bers, functions, vectors, tensors...). A series is represented (or denoted) by
an expression like (a sum of terms):

N
Σ
n=0

fn.

If the number of terms is infinite, a series may be called an infinite series.

2.3 Convergence

When an expansion is convergent, it means that there is a number L, such
by definition:

∀ε, ∃N0, such that ∀N > N0, |
N
Σ
n=0

fn − L| < ε.

L is the sum of the series.

2.4 Asymptotic expansion

Having a function of a variable x and of a small parameter ε say f(x, ε).
We have the sum for a given integer N :

FN (x, ε) = ν0(ε)a0(x) + ν1(ε)a1(x) + ν2(ε)a2(x) + ...+ νN (ε)aN (x)

so that this sum is said to to be an ”asymptotic approximation” (or
”Poincaré Asymptotic Approximation”):

f(x, ε)− FN (x, ε)

aN
→ 0 as ε→ 0

the remainder is smaller than the last term included once ε is enough small.
And we have:

f(x, ε) ∼
N
Σ
n=0

an(x)νn(ε)

We call ”asymptotic sequence” (”séquence asymptotique” or ”suite
asymptotique”) the series of:

ν0(ε), ν1(ε), ν2(ε), ...νi(ε), ...

with ν0(ε) >> ν1(ε) >> ν2(ε) >> ... satisfying the order relation:

νi(ε) >> νi+1(ε), νi+1(ε) = o(νi(ε)).

with the an(x) sequence of continuous functions.

In the asymptotic approximation

FN (x, ε) =
N
Σ
n=0

anνn(ε)

the coefficients can be evaluated inductively from:

a0(x) =lim
ε→0

f(x, ε)

ν0(ε)
then ak(x) =lim

ε→0

f(x, ε)−
k−1
Σ
n=0

anνn(ε)

νk(ε)
.

Remarks and properties
• The general problem deals with f(x, ε), in the series we have then the

- MHP MAE PYL 1.2-



Matched Asymptotic Expansions

ai(x) functions of x. The ai(x) functions are of order one. In the first
examples that we will present, we will consider f(ε) (with no x), so at first
we consider the ai as constants. This will be the case up to the section
devoted to Matched Asymptotic Expansion §4.
• The approximation is unique for the given sequence.
• A given function may have many asymptotic approximations.
• Many different functions can share the same asymptotic approximation.
• When νi(ε) = εi this is an asymptotic power series.
• We can call gauge function (fonction de Jauge in French) the νi.
• When we construct to N =∞, we call it an ”asymptotic expansion”.

F (ε) =
∞
Σ
n=0

anνn(ε)

Do not confuse a convergent series which is:

lim
εfixed,N→∞

FN (x, ε)

and an asymptotic approximation, or a Poincaré approximation:

lim
Nfixed,ε→0

FN (x, ε)

See Hinch [12] page 20, Kevorkian & Cole page 1...

• A change of scale x = ν(ε)x̄ is a special case. This is the rational way
to say that x is small, the smallness is reported in the gauge ν(ε) and the
variable x̄ is of order one.

• The development is not unique:

cos(ε) = 1− ε2/2 + ε4/24 +O(ε6)

cos(ε) =

√
1− sin2(ε) = 1− sin2(ε)/2− sin4(ε)/8 +O(sin6(ε))

• Do not confuse convergent series:

J0(ε) = 1− ε2

4
+
ε4

64
− ε6

2304
+ ...

Figure 1: Behavior of terms in series. Left slowly convergent series, Right,
divergent asymptotic series (from Van Dyke [21]).

of infinite radius of convergence but with slow convergence, and the asymp-
totic approximation:

J0(1/ε) =
√

2ε/π[(1− 9ε2

128
+ ...) cos(

1

ε
− π

4
) + (

ε

8
− 75ε2

1024
+ ...) sin(

1

ε
− π

4
)]

which is divergent for all ε no matter how small. Nevertheless a few terms
give good accuracy for moderately small ε. This behavior is on the next
figure extracted from Van Dyke [21]. In practice, only few terms are cal-
culated (as it is difficult to go from order to order), so that the point of
increasing error is never reached....
• Recently, Mauss introduced ”the generalised asymptotic expansion” in
which, contrary to what he calls the ”regular asymptotic expansion”, the
an depend on ε as well:

F (x, ε) =
∞
Σ
n=0

an(x, ε)νn(ε)

- MHP MAE PYL 1.3-



Matched Asymptotic Expansions

2.5 Regular perturbations, singular perturbations

In practice, we will have a problem, say:

Eε = 0

to solve, which depends on a small parameter ε and we look at an asymp-
totic approximation of this problem FN (x, ε).
• The perturbation induced by the parameter ε is regular:

FN (x, ε) =
N
Σ
n=0

an(x)νn(ε)

when it is uniformly valid in the domain of definition.

•When the solution can be obtained by simply setting the small parameter
to zero:

Solution
[
Eε
ε→0

]
=Solution[Eε]

ε→0
(2)

We say that the problem is regular. In other words, the perturbed
problem for small values of ε is not very different from the unperturbed
problem for ε = 0.

• We will say that if

Solution
[
Eε
ε→0

]
6=Solution[Eε]

ε→0
(3)

the problem is singular. Or this is a ”singular perturbation problem” in
which the limit point ε = 0 differs in an important way from the approach
to the limit ε→ 0.

2.5.1 About the examples

As says Hinch [12]: ”interesting problems are often singular.”

To solve this kind of problem we will have to change the scales.

First, we will look at some simple regular problem and singular ones,
in mechanics, on a polynomia, on an ordinary differential equation and on

a Navier Stokes case. In fact all the examples are nearly the same one
presented with various point of view. We will adopt a heuristical point of
view, with few maths, or low level maths.

- MHP MAE PYL 1.4-



Matched Asymptotic Expansions

3 A first Example

3.1 Mechanical Model

Here we look at what happens to simple second order equations when a
small parameter is present. One may imagine that it is a pure abstract
problem, but here to visualise, we may imagine that we solve the shooting
problem. It means, that for a given velocity v0, one shoots at angle α a
bullet in a gravity field g. We want to hit some target at altitude h.

So first we play with a pen and its spring [you have to be present in the
class room to understand].

One wants to know the relation between the longitudinal position of the
target for a given h, and all the parameters. Then using this length of scale
h, the trajectory is:

y/h = tan(α)x/h− (x/h)2

2(v2
0/(gh)) cos2(α)

, or ȳ = tan(α)x̄− x̄2

2a cos2(α)
,

with a = v2
0/(gh) a parameter without dimension, and we want to shoot

ȳ = 1 and find the possible position x̄ (maybe two positions, we guess, x̄1

and x̄2).
The first problem that we will see corresponds to what happens if we

change a little bit α to α+ ε. For example is

1 = (− 1

2a cos2(α)
− ε tan(α)

a cos2(α)
)x̄2 + (tan(α) + ε(tan2(α) + 1)x̄

Changing a bit ε does not change very much the two roots x̄1 and x̄2. Next
the second problem corresponds to what happens if we increase a and say
that ε = 1/a:

1 = tan(α)x̄− ε x̄2

2 cos2(α)
,

changing a bit ε does not change very much the first root x̄1 (we are
near the canon) but changes a lot x̄2. The second root is rejected far away....

As playing with coefficients like tan(α) and 1/ cos2(α) is not fun, we use
specific numerical values in the sequel.
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Figure 2: Trajectory (x(t), y(t)) of a bullet and level y = 1. The bullet
starts in x = 0, y = 0 with an angle α at velocity v0 with the horizontal, it
crosses the ordinate y = 1 in two points. Left, changing slightly the angle of
shooting α does not change a lot the abscissae of the intersections with the
level 1: the two values change slightly when α changes. Right, increasing
just a bit the shooting velocity v0 does not change so much the position of
the first point but changes dramatically the position of the second abscissa
of the level 1. So, shooting a bullet at larger and larger velocity gives a
singular problem!

3.2 Regular case

3.2.1 The problem

Let us take α = π/4, and a = 5 for the first case, the equation is

Eε = −
(

1

5
+

2

5
ε

)
x2 + (1 + 2ε)x− 1

we want to solve Eε = 0.

Unfortunately, the problem is complicated to solve as it implies
√

5...

So as we are lazy and not clever in computations, we will solve the
following equation

Eε = (1− ε)x2 + (1 + ε)x− 2,

it looks like the previous one, but is less difficult to compute.
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3.3 Regular case

3.3.1 Exact solution

We have here a problem depending on a small parameter ε. Let us suppose
that we do not know how to solve the problem for ε 6= 0, but we know how
to for ε = 0.

Let Eε = (1− ε)x2 + (1 + ε)x− 2

we want to solve Eε = 0.

OK, the solution is simple! Let us write it. Solution of the full problem
are, ∆ = 1 + ε+ ε2 + 8(1− ε) = (3− ε)2:

{1, 2

−1 + ε
}

so that after taking the Taylor series:

1 and − 2− 2ε− 2ε2 − 2ε3 +O(ε)4.

But, say that we play the game: we do not know the full solution. Let us
construct the solution of Eε = 0 starting from ε = 0 by Taylor series.

3.3.2 Asymptotic solution

Let us solve Eε = 0 by asymptotic expansion.

Eε = (1− ε)x2 + (1 + ε)x− 2

We start from E0 = 0 which comes from the problem Eε = 0 in which we
set ε = 0:

x2 + x− 2 = 0.

We know how to solve the problem (
√

∆ = 3 ) which is:

x1 = 1, and x2 = −2

Let us go further. We propose an ”asymptotic sequence”

x1 = 1 + ε x11 + ε2 x12 + ... and x2 = −2 + ε x21 + ε2 x22 + ...

We put x1 in the equation, by powers of ε we clearly have x11 = 0 and
x12 = 0

x1 = 1

we do the same with x2 that we write as:

x2 = −2 + ε x21 + ε2 x22 + ...

then by substitution in the equation and by identification of the powers of
ε: (note (a+ b+ c)2 = a2 + b2 + c2 + 2ab+ 2ac+ 2bc)

Eε = (1− ε)(4− 4ε x21 − 4ε2 x22 + 2ε3 x22x21 + ε2 x21
2 + ε4 x22

4)+

+(1 + ε)(−2 + ε x21 + ε2 x22)− 2 + ...

so rearrange it

Eε = 0 + (−6− 3x21)ε+ (5x21 + x2
21 − 3x22)ε2 +O(ε3)

so that (−6− 3x21) = 0 and (5x21 + x2
21 − 3x22) = 0 which gives x21 = −2

and x22 = −2, we then obtain the expansion of the variable

x2 = −2− 2ε− 2ε2 + 0(ε3)

We see that we obtain the same solution using the full solution or the
asymptotic expansion, of course it is not a proof, it is just an observation.

We see that: ”the solution (obtained from the exact solution) in which ε
approaches zero” is the same that ”the solution obtained from the problem
(in which ε tends to zero)”

Solution
[
Eε
ε→0

]
=Solution[Eε]

ε→0
(4)

We say that the problem is regular. In other words, the perturbed prob-
lem for small ε is not very different from the unperturbed problem for ε = 0.
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3.3.3 Exercise

Our real problem was to solve

−
(

1

5
+

2

5
ε

)
x2 + (1 + 2ε)x− 1 = 0

Solution of the full problem are, as

∆ = 1/5 + 12ε/5 + 4ε2, hence
√

∆ =
√

(1 + 12ε+ 20ε2)/5x1 =
5
(
−
√

20ε2+12ε+1√
5

+ 2ε+ 1
)

2(2ε+ 1)
, x2 =

5
(√

20ε2+12ε+1√
5

+ 2ε+ 1
)

2(2ε+ 1)


taking the Taylor series of the solution of Eε = 0, we compute

√
∆ =

1√
5

(
1 + 6ε− 8ε2 + 48ε3 − 320ε4 +O

(
ε5
))

1

1 + 2ε
= 1− 2ε+ 4ε2 − 8ε3 + 16ε4 +O

(
ε5
)

The expansion of the solutions are

x1 =

(
5

2
−
√

5

2

)
− 2
√

5ε+ 8
√

5ε2 − 40
√

5ε3 +O
(
ε4
)

and

x2 =
1

2

(
5 +
√

5
)

+ 2
√

5ε− 8
√

5ε2 + 40
√

5ε3 +O(ε)4

We see that solving (1− ε)x2 + (1 + ε)x− 2 has exactly the same structure
and same conceptual difficulties, but a little bit more simple to compute.

Those two examples are ”regular perturbation” problems.

3.4 Singular case

3.4.1 Solution

OK, everything OK, no surprise. But there exist pathological cases where
we can not swap the limits. Let us see that right now.

The equation of motion was

1 = tan(α)x̄− x̄2

2a cos2(α)
,

Let us take a = 1/ε and α = π/4, so that tanπ/4 = 1, cosπ/4 =
√

2/2, the
equation is

1 = x̄− εx̄2.

Let us loook at the problem Eε = 0 with Eε = 1− x+ εx2.

So let us do the same than previously, as it worked well. We start by
putting ε = 0. We solve 1 − x = 0. We find x = 1. We want to be more
precise, we expand x = 1 + x1ε+ x2ε

2 + ..., we put it into Eε = 0,

1− 1− x1ε− x2ε
2 + ε(1 + x2

1ε
2 + x2

2ε
4 + 2x1x2ε

3 + 2x1ε+ 2x2ε
2) + ... = 0

re writing
0 + ε(−x1 + 1) + ε2(−x2 + 2x1) + ... = 0

we identify x1 = 1 and x2 = 2, so

x = 1 + ε+ 2ε2 + ...

If we go on, we are stuck on the same solution and we do not recover the
second one. We have lost one solution of the problem. The equation was
of order 2, but E0 is of order one.

In fact, we know that the solutions of Eε = 0 are

1−
√

1− 4ε

2ε
and

1−
√

1− 4ε

2ε
,

but the Taylor series we have obtained gives x = 1 + ε+ 2ε2 + ..., we note

that it corresponds to the expansion of 1−
√

1−4ε
2ε , but the other root is lost.

Why?

Because simply, the Taylor series of the second is infinite when ε ap-
proaches zero:

1−
√

1− 4ε

2ε
=

1

ε
− 1− ε− 2ε2 + ....

We see that there is a problem of scales.
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3.4.2 Change of scales

When we have neglected the coefficient εx2 in Eε we supposed, without
saying it, that it was... negligible!. But, this is not true. The solution is so
large that this term becomes not negligible.

To solve the problem, we have to change the scale. We say that we
introduce a new ”gauge”:

x = µx̄.

This means that the order of magnitude of x is not ”1”, as µ is very large.
The idea of the method is that all the reduced variables are of order one
(x̄ is of order one), the gauge being in front of them.

Eε = 0 or εx2 − x + 1 becomes Eε = εµ2x̄2 − µx̄ + 1. As we guess that
µ is large and that x̄ is of order one, the third term ”+1” is smaller that
the second µx̄. The first term was previously lost, and we want it to come
back, so we choose µ so that:

εµ2x̄2 is of same order than µx̄

so

εµ2 = µ i.e. µ =
1

ε
.

We have introduced here the ”Least Degeneracy Principle” or ”Dominant
Balance”, Principe de Moindre dégénérescence in French: we retain
as much terms as possible in the equation.

This is called as well ”Principle of Maximal Balance” (or of ”Principle
of Maximal Complication” Kruskal in Asymptotlogy 1962).

The principle of ”least degeneracy” by Van Dyke is called ”significant
degeneracy” by Eckhaus.

Another terminology is to say that is is a ”distinguished limit”. There
are many different names for this concept...

The equation is x̄2 − x̄ + ε = 0. We next use the standard method, we
put ε = 0, the equation is then in the new variables:

x̄2 − x̄ = 0 with two solutions x̄ = 1 and x̄ = 0

the first one is x = −1/ε, that is perfect, that is the lost solution which is
large. But, the second is zero, which may be surprising. It is not, because

at the large scale 1/ε it is straightforward that a quantity of order one is
zero!

To be sure, let us look at the next order of this null solution:

x̄ = 0 + x̄2ε+ ...inserted into x̄2 − x̄+ ε = 0

gives
x̄2

2ε
2 − x̄2ε+ ε = 0 so x̄2 = 1

so that the solution in ”bar” is 0 + ε+ ... so going back to the initial scale:

x = 1 + ...

which is the solution we found at the very beginning.

We say that if

Solution
[
Eε
ε→0

]
6=Solution[Eε]

ε→0
(5)

the problem is singular.
To solve this kind of problem we have to change the scales.
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4 A simple example of M.A.E., Matched Asymp-
totic Expansion

Let us consider a model problem (c.f. Van Dyke p 79, Hinch p 52, Germain,
etc), this simple problem has been introduced by Friedrichs (1942). [Note
that Kurt Otto Friedrichs (1901 -1982) is co author with Courant (his PhD
advisor in Göttingen) and Lewy of ”one the partial difference equations
of mathematical physics 1928” which introduces CFL condition]. Let us
consider the second order linear ODE:

ε
d2f

dy2
+
df

dy
=

1

2
f(0) = 0; f(1) = 1. (6)

ε is a small parameter. We wish to obtain the behaviour of the solution f(y)
of problem (6) when the parameter ε approaches to 0. Of course, in this
simple case we have the exact solution! We compare this exact solution
to the result of the M.A.E. (théorie des développements asymptotiques
raccordés, matched asymptotic expansion).

4.1 Exact solution

The exact solution of the problem 6 is:

f(y) =
1− e−y/ε

2(1− e−1/ε)
+
y

2

The smaller ε, the closer the solution of (6) is of the line (y+1)/2. The ex-
act solution of (6) allows us to see that there exists two regions. One where

Un exemple simple de mise en oeuvre de

la technique des développements

asymptotiques raccordés.
COURS MFE12

PC de révision

Un exemple simple et instructif (c.f. Van Dyke) est celui de Friedrichs (1942),

!
d2f

dy2
 + 

df
dy

 =1/2 f(0)=0; f(1)=1 (F)

! est un petit paramètre. Il s'agit de trouver le comportement de la solution f(y) du problème (F)

lorsque le paramètre ! tend vers 0.

Dans ce cas, on a une solution exacte! On compare cette solution exacte au résultat de la théorie des

développements asymptotiques raccordés (matched asymptotic expansion).

Résolution directe

La solution est de manière évidente:

f(y) =  
1- e-y/!

2(1- e-1/!)
 + 

y
2

figure: solution de (F) pour !=1 !=0,5 !=.1 !=.05 !=.01 et !=0

 (la flèche est dans le sens des ! décroissants).

On observe que plus ! est petit, plus on déplace la courbe solution de (F) vers une droite d'équation
y+1

2
. La solution exacte de (F) nous permet de voir qu'il existe deux régions, une région pour les y

d'ordre un où la solution va varier lentement et une autre où y est petit, d'ordre !, et où la fonction

varie vite. On met maintenant la technique en oeuvre: il s'agit de simplifier les équations pour "bien"

tenir compte du fait que ! est petit...

PC révision - 1 -

Figure 3: Solution of the Friedrichs problem (6) for ε = 1, ε = 0, 5 ε=.1
ε=.05 ε=.01 et ε=0. (the arrow indicates decreasing ε).

y is of order one, where the solution varies with a order one magnitude. A
second where y is small of order ε, and where the solution changes abruptly.

In practice the exact solution is not known. We have to develop a strategy
to solve the equation. So, we will now present the technique: we have to
simplify the problem to emphasize the role of the small ε...

4.2 Matched Asymptotic Expansion

4.2.1 Guide to MAE, Van Dyke rule

Let us apply the ”Matched Asymptotic Expansion” to the Friedrichs
problem. To do that we present the principles of the method. They are
summarized in one sentence by Van Dyke [21] page 86, who says: ”The
guiding principles are that the inner problem shall have the least possible
degeneracy, that it must include in the first approximation any essential
elements omitted in the first outer solution, and that the inner and outer
solutions shall match.”

4.2.2 External problem, Outer Problem (<=> ideal fluid)

We treat the problem as regular perturbation, even though we know it is
not. To solve the problem, the most simple is a priori to put ε to 0 in
(6), it means that we treat the problem as a regular perturbation, and look
what happens:

df

dy
=

1

2
, f(0) = 0; f(1) = 1,

Both B.C. cannot be satisfied in general. If we keep f(1) = 1, then
f(y) = y+1

2 , but condition in 0 is not full fit. Nevertheless, this is a good
approximation of (6) except in a small layer near the origin, called ”bound-
ary layer”. We observe that we have lost the higher derivative term. So
that we need only one. We have computed the solution of (6) in which ε
approaches 0

Solution
[
Eε
ε→0

]
6=Solution[Eε]

ε→0
. (7)

We see that the problem is ”singular”.
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4.2.3 Inner Problem (<=> Boundary Layer)

We do a rescaling in order to see what happens in the neighborhood of the
origin y = 0. So we write y = δỹ, we call δ the ”gauge”, the new scale or
the boundary layer scale.
We substitute and try to find the gauge which allows to retain a maximal
number of terms in the equation. It seems possible to think that the poten-
tially interesting scalings are those which produce a balance between two
or more terms in the equations. They are sometimes called ”distinguished
limits”. (6) is now:

ε
d2f̃

δ2dỹ2
+

df̃

δdỹ
=

1

2
. (8)

To satisfy the least possible degeneracy or dominant balance (”Principe de
Moindre Dégénérescence”, ”Principe de Non Simplification Abusive) we
take ε = δ. The inner problem is f̃ ′′ + f̃ ′ = ε/2, so when ε approaches 0:

d2f̃

dỹ2
+
df̃

dỹ
= 0, (9)

we take again the solution in ỹ = 0 which is always ˜f(0) = 0, that is for
it that we did all this work. The solution depends now on an up to now
indeterminate constant A:

f̃ = A(1− e−ỹ).

4.2.4 Asymptotic Matching

The last ingredient is the ”Asymptotic Matching” between the develop-
ments, it states:

lim[f(y)]
y→0

=lim[f̃(ỹ)]
ỹ→∞

This is written in Van Dyke’s book p 90:

The inner limit of (the outer limit)

= the outer limit of (the inner limit).

The first is A the second is 1/2. The internal solution is:

f̃ =
1

2
(1− e−ỹ).

So that the problem is now solved in the two layers, the external and the
internal at a different scale.

Remarque

Sur cet exemple on constate que f(y)= 
1- e-y/!

2(1- e-1/!)
 + 

y
2

 se développe bien en  
1- e-y/!

2(1-0)
 + 

y
2

  pour !

tendant vers 0. Si on fixe y, y/! tend vers l'infini, et f(y) devient (
y+1

2
). On a bien retrouvé la

solution extérieure.

Si maintenant on considère que y tend vers 0 en même temps que ! tend vers 0, alors y/! est d'ordre

un et f(y) devient  
1- e-y/!

2(1-0)
 +0, on a bien retrouvé la solution intérieure.

figure: tracé de la solution exacte (ex.), de la solution composite (comp.) de la solution extérieure

(ext.) fonctions de y, on a superposé la solution intérieure (int.) qui évoule à l'échelle agrandie y~.
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PC révision - 3 -

Figure 4: Solution of (6): plot of the exact solution (ex.), composite solution

(comp.) outer solution (ext.) as function of y. We superposed the inner solution

(int.) which evolves with the streched variable ỹ

4.2.5 ”Composite expansion” or ”uniform approximation”

One problem of the previous solution is that it has two representations in
two regions. The ε is supposed vanishingly small. To obtain a practical
solution usable in the whole domain and with a given enough small ε,
one creates the ”composite expansion” or ”uniform approximation”. The
composite solution is written as the sum of the solution in the external layer
plus the solution in the internal layer (written with the external variable)
minus the common limit:

fcomp(y) =
y + 1

2
+

1− e−y/ε
2

− 1

2
,

This approximation is uniformly valid in the whole domain. For any given
enough small ε one has then the solution of the problem.

Fundamental remark:
On this example we see that the full solution:

f(y) =
1− e−y/ε

2(1− e−1/ε)
+
y

2
, develops for small ε in f(y) =

1− e−y/ε
2(1− 0)

+
y

2

But we have not finished to deal with small ε. It is a first stage. At this
fist stage, we see that we have the expression

1− e−y/ε
2

+
y

2
=

1− e−y/ε
2

− 1

2
+
y

2
+

1

2
,

which is no more that the composite expansion.
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We go further in the development: if y is fixed to a peculiar value, then
y/ε approaches infinity and f(y) becomes (y + 1)/2. We have found the
external solution. If now we consider that y approaches 0 as well as ε
approaches 0, then y/ε may be fixed and is of order one, so that the full
solution f(y) becomes

f(y) =
1− e−y/ε
2(1− 0)

+ 0.

We have found again the internal solution.

So, an a simple example, we have seen that the method is consistent.
The exact full solution contains the composite expansion. And of course
the composite expansion contains the two asymptotic expansions. So the
method works well.

4.2.6 Boundary condition: where is the Boundary Layer?

We have just seen that the method works well. But we can have some ques-
tions about the position of the singularity. The position of the boundary
condition must be discussed. Instead of looking at what happens in y = 0
and instead of putting f(1) = 1, let us say f(0) = 0. What happens next,
is the technique still working? Then for the outer problem, we find f = y/2
we can not satisfy f(1) = 1. So we introduce in 1 a boundary layer where
we write

y = 1 + εỹ

so that we have always f̃ ′′ + f̃ ′ = 0 to solve (but at another place). We
have always a solution involving exponentials: f̃ = Ae−ỹ −A+ 1. But the
matching is ỹ → −∞ to be matched with y → 1−. It is impossible as the
exponential is not bounded. The boundary layer was in 0, not in 1. So the
method works well, it does not introduce spurious boundary layers.

Finding the exact position of the singularity of the equation is difficult
for a given abstract Eε problem. in practice, we have some clues coming
from the physical problem which has been modeled by the Eε problem.

4.2.7 Other scale: what happens if we take a larger/ smaller
scale?

We can have some questions about the scales. If we take another scale
εα, with α 6= 1, what happens? Simply we have less terms and we obtain
linear solutions that we can not match. Either we recover alway f ′ = 1/2
for α < 1 (we are always too far from the origin). Or we recover f ′′ = 0 for
α > 1, which is not enough to solve the problem, we are always too close
of the origin, and any linear solution is solution. So the method with the
”Dominant Balance” works well.

4.3 Back to the Matching and other orders

4.3.1 Other orders

Up to now we implicitly were looking at the first order solution f0 of the
problem. We introduced the matching, and solved the problem. But a
better approximation will imply the other terms f1, f2 .... and when there
are more than one term the asymptotic matching we defined is not enough.
Let us do the computations from scratch

• Looking for an expansion as:

f = f0 + ν1f1 + ν2f2 + ...

by substitution in the εf ′′ + f ′ = 1/2 problem:

ε(f ′′0 + ν1f
′′
1 + ν2f

′′
2 + ...) + (f ′0 + ν1f

′
1 + ν2f

′
2 + ...) = 1/2

we identify ν1 = ε, and it is clear that the good choice is νk = εk, so that
we order:

(f ′0 − 1/2)ε0 + (f ′′0 + f ′1)ε1 + (f ′′1 + f ′2)ε2 +O(ε3) = 0

we have f0 = (y + 1)/2 (as f0(1) = 1) and for the next order the equation
is f ′′0 + f ′1 = 0 , as f ′′0 = 0 then we have f ′1 = 0 so to f1 = 0 verifies the
boundary conditions.

The expansion is f = y+1
2 +O(ε2)

• Looking now at the inner problem: f̃ ′′ + f̃ ′ = ε/2 :
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f̃ = f̃0 + ν̃1f̃1 + ν̃2f̃2 + ...

by substitution, at order 0 : f̃ ′′0 + f̃ ′0 = 0, giving f̃0 = A(1− e−ỹ). Then we
have

(f̃ ′′0 + f̃ ′0) + ν̃1(f̃ ′′1 + f̃ ′1)− ε/2 + ... = 0

gives ν̃1 = ε as a good choice for the expansion and then f̃ ′′1 + f̃ ′1 = 1/2 with
f̃1(0) = 0. The solution is then: f̃1 = A1(e−ỹ−1) + ỹ/2. The new constant
must be obtained by the matching, we guess that putting ỹ to infinity is
not working here. So we come back to the ”matching”.

4.3.2 Back to the matching: intermediate layer

Let us come back to the concept of matching and present another point of
view. We forget the paragraph on matching at first order and start again
with the solutions with unknown constants.

We have two asymptotic expansions for the solution, one for fixed y and
the other for fixed ỹ. The outer solution y+1

2 +o(ε) and the inner solution is
A(1−e−ỹ)+ε(A1(e−ỹ−1)+ ỹ/2)+o(ε). We claim that the two expansions
are of similar form in an overlap region which has both ỹ large and y small.
The matching is the process which consists in forcing the two expansions
to be equal in this overlap region.

Say ŷ = y/η(ε) = ỹε/η(ε) with ε << η(ε) << 1.

f(y) = 1/2 + y/2 +O(ε2) = 1/2 + η(ε)ŷ + ...

f̃(ỹ) = A(1− e−ỹ) +O(ε) = A−Ae−ηŷ/ε + ...

comparing the two solutions we see that A = 1/2 as e−ηŷ/ε is exponentially
small (because ŷ = O(1) and η/ε >> 1.)

At next order

f(y) = 1/2 + y/2 + o(ε) = 1/2 + η(ε)ŷ/2 + ...

f̃(ỹ) = A(1− e−ỹ) + ε(A1(e−ỹ − 1) + ỹ/2) + o(ε)

= A− εA1 + ηŷ/2−Ae−ηŷ/ε + εA1e
−ηŷ/ε + ...

then again A = 1/2 and A1 = 0. the overlapping development is:

f̂ = 1/2 + η(ε)ŷ/2

The concept of overlapping layer is the more useful to construct the expan-
sion at several orders.

4.3.3 Back to the matching: Van Dyke pq-qp Rule

Matching in an intermediate layer is sometimes difficult. So that Van Dyke
has robotized the process in his pq-qp Rule (p220 Note 3, is in fact written
∆δ − δ∆). Let us introduce the outer development with p + 1 terms at y
fixed and ε→ 0

Do
pf =

p

Σ
0
εnfn

and the inner development with q + 1 terms at ỹ fixed and ε→ 0

Di
qf =

q

Σ
0
εnf̃n

The Van Dyke pq-qp Rule is then

Do
pD

i
qf = Di

qD
o
pf.

For the left hand side: one takes the inner solution to q + 1 terms and
change ỹ by y/ε. The outer limit of y fixed as ε→ 0 is then taken retaining
p+ 1 terms. A similar process is done for the right hand side.
• With p = q = 0:

Do
0D

i
0f =Do

0(A(1− e−ỹ))
=Do

0(A(1− e−y/ε))
=A

Di
0D

o
0f =Di

0(1/2 + y/2))

=Di
0(1/2 + ỹε/2))

=1/2

(10)

so that A = 1/2.
• With p = q = 1:

Do
1D

i
1f =Do

1(A(1− e−ỹ) + ε(A1(e−ỹ − 1) + ỹ/2))

=Do
1(A(1− e−y/ε) + εA1(e−y/ε − 1) + y/2))

=A+ y/2− εA1

Di
1D

o
1f =Di

1(1/2 + y/2))

=Di
1(1/2 + ỹε/2))

=1/2 + ỹε/2

(11)
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so that A = 1/2 and A1 = 0.

4.3.4 Back to the matching: in practice

In practice (and as introduced at first in this curse), often we use the
asymptotic matching in the following simple way :

lim[f̃(ỹ)]
ỹ→∞

=lim[f(y)]
y→0

which is the p = q = 0.

The overlapping region is a good approach as well.
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5 Simple mechanical examples with small mass
(ODE)

5.1 Cole oscillator example:

5.1.1 Physical problem

We come back here to simple mechanical systems. Let us consider another
famous example introduced by Cole in his courses on asymptotics see [8].
Let us take a simple oscillator with stifness k, damping β, and small mass
m. At initial time the mass is at rest, but one kicks on it so that it gains
a momentum P0. The equations are:

m
d2y

dt2
+ β

dy

dt
+ ky = 0,

with initial conditions y(0) = 0 and mdy
dt (0) = P0. This last condition

corresponds to an instantaneous release of momentum through a shock.

We look at a solution for a small mass. So first we make the problem
non dimensional to quantify the smallness of the mass.

5.1.2 non dimensional problem

Let be Y oscillation size and τ characteristic time, the non dimensional
variables are ȳ = y/Y and t̄ = t/τ . So that

mτ−2k−1d
2ȳ

dt̄2
+ βτ−1k−1dȳ

dt̄
+ ȳ = 0

ȳ(0) = 0, and mY τ−1dȳ

dt̄
(0) = P0.

initial momentum is given, so Y and τ are such that mY/τ = P0.

As we guess that the oscillator will be damped a lot, due to his small
mass, we think that the spring and dash pot terms will be important,
as the mass is small. So we take τ = β/k. With this choice, we have
mτ−2k−1 = mk/β2, so that now it is clear that a small mass problem is
a problem with m � β2/k, with the asymptotic point of view, we define
ε = mk/β2, with ε� 1.

At this point we can notice that the characteristic time of oscillation is
clearly

√
m/k, it is smaller than the relaxation time β/k, so m/k � β2/k2

or ε� 1. )
The amplitude is obtained from (mY/τ)ȳ′(0) = P0 but with ε this is

(εβ2/k)Y/(β/k)ȳ′(0) = P0. The amplitude is Y = P0/β.
When the mass is small (linked to ε) we obtain the following problem

Eε = 0 without dimension, we have removed the bars for simplicity (”Cole”
problem [13] p 40 ):

εy′′ + y′ + y = 0, y(0) = 0, εy′(0) = 1.

5.1.3 Exact solution

It has an exact solution

1√
1− 4ε

(
exp(−(1−

√
1− 4εt/(2ε)− exp(−(1 +

√
1− 4εt/(2ε)

)
,

this exact solution will be useful to compare with the approximate one that
we are now building.

5.1.4 Asymptotic solution

But, if we apply the technique, we try to solve Eε = 0 with small ε.

• the outer problem is :

y′ + y = 0.

We can verify that the outer solution is y(t) = Ae−t, but BC in 0 have
disappeared! A is undetermined.

• the inner problem. We look at what happens in 0, by dominant balance
the scale is ε. so the inner variable is defined by t = εt̃, and the inner
problem

ỹ′′ + ỹ′ = 0, ỹ(0) = 0 ỹ′(0) = 1,

the inner solution is

ỹ = 1− e−t̃.
The matching ỹ(∞) = y(0+) gives A = 1.
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• The composite expansion

ycomp(t) = e−t − e−t/ε

• The next order gives after expansion and matching in an intermediate
layer:

outer. y(t) = e−t + ε(2− t)e−t + ...

inner. ỹ(t̃) = 1− e−t̃ + ε[(2− t̃)− (2 + t̃)e−t̃] + ...

• we can expand the exact solution and verify the expansions.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

t

y�t�

ε ↓
ε ↓

Figure 5: The smaller ε (0.2 0.1 0.05 0.0125 .005) the closer the exact
solution is from e−t the outer solution (red).

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

t�

y� �t� �

ε ↓

Figure 6: The smaller ε (0.2 0.1 0.05 0.0125 .005) the closer the exact
solution is from 1− e−t̃ the inner solution (red).
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5.2 Free fall of a small bead

We look at the displacement of a small ball of very small mass in a very
viscous flow, in the gravity field. The ball is initially at rest, we look at
the position as function of time. This was an exam in 2021.

5.2.1 Questions

2.1 Show that we obtain the following equation, (of course ε is a given small
parameter that you have to define with the parameters of the problem and
you have to decide the proper orientation of motion)

(Eε) εy′′(t) = −y′(t)− 1 with y(0) = 0, y′(0) = 0.

We want to solve this unsteady problem with the Matched Asymptotic
Expansion method.
2.2 Why is (Eε) problem singular?
2.3 What is the outer problem and what is the possible general form of
the outer solution?
2.4 What is the inner problem of (Eε) and what is the inner solution?
(hint: for the inner problem time is small and displacement y is small as
well)
2.5 Suggest the plot of the inner and outer solution.
2.6 What is the exact solution of (Eε) for any ε. Check that we recover
inner and outer solution.
2.7 Comments?

5.2.2 Answers

2.1 Newton’s law for a mass falling in gravity with viscous friction is

m
d2y

dt2
= −mg − 6πµR

dy

dt
.

We have for sure a competition between free fall mg and viscous drag. A
natural velocity is the Stokes velocity Vs = mg/(6πµR), this is the terminal
chute velocity. We define the scales y = Y ȳ and t = τ t̄, we have:

Vs
g

Y

τ2

d2ȳ

dt̄2
= −Vs −

Y dȳ

τdt̄
,

hence we take Y
τ = Vs and we identify ε = Vs/(gτ), so that we obtain the

following ODE

ε
d2ȳ

dt̄2
= −1− dȳ

dt̄
.

Boundary condition are same: ȳ(0) = 0 and ȳ′(0) = 0. Indeed, the ratio
Vs
gτ is small if velocity scale gτ of free fall is large compared to the Stokes
velocity. Or when the time scale τ compared to the time scale Vs/g is
large. Or if the mass is small, or if viscosity is small.....

2.2 Problem singular for small ε, indeed, if we put ε = 0, we have 2 BC,
but only one degree of derivation , ȳout(0) = 0 and ȳ′out(0) = 0

0 = −1− dȳout
dt̄

we take ȳout(0) = 0 so that ȳout(t) = −t̄, the problem is in t̄ = 0 where
ȳ′out(0) = −1 6= 0

2.3 So, as we have identified a problem at small time scale, near the origin,
we change the scale of time t̄ = τεt̃ and space ȳ = νεỹ

ε
νεd

2ỹ

τ2
ε dt̃

2
= −1− νεdỹ

τεdt̃

A full dominant balance gives νε = τε and ε νε
τ2ε

= 1 so that νε = τε = ε.

The problem is in the new small scales :

d2ỹ

dt̃2
= −1− dỹ

dt̃
, 2 BC: ỹ(0) = 0, ỹ′(0) = 0

It is no more singular, the solution is ỹ = −t̃+A+Be−t̃ with BC in 0 gives
0 = −0 +A+B and ỹ′(0) = 0 which give 0 = −1 + 0−B hence :

ỹ = 1− t̃− e−t̃ and ỹ′ = −1 + e−t̃.

There is no need to match at this order, matching will appear at next order.
Note the matching on velocity is verified

lim
ỹ→∞

(
εdỹ

εdỹ
) = lim

t̄→0
(
dȳ

dt̄
).
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As when ỹ → ∞ then ỹ ∼ −1 + t̃ shows that the displacement induced at
small time is of order ε. This will be used at next order....

2.4 The full solution of the problem is

ȳ = ε− t̄− εe−t̄/ε

we see that indeed, for ε→ 0

ȳ = −t̄

as seen for the external solution, we see as well the ε small displacement
induced by the small time, t̄ = εt̃, corresponding to the interanl problem:

εỹ = ε− εt̃− εe−t̃

Finally, note that if we take very small time

ȳ = ε− t̄− ε(1− t̄/ε+ t̄2/ε2/2... = −t̄2/ε/2 = −εt̃2/2 + ...

this is the free fall.

DSolve[{eps y’’[t] == -y’[t] - 1, y[0] == 0, y’[0] == 0}, y[t], t]

Expand[E^(-(t/eps)) (-eps + E^(t/eps) eps - E^(t/eps) t)]

DSolve[{ y’’[t] == -y’[t] - 1, y[0] == 0, y’[0] == 0}, y[t], t]
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6 A very simple example from Fluid Mechanics

6.1 Problem: Steady Poiseuille flow with uniform blowing
at one wall and aspiration at the opposite wall.

We will look at the viscous flow of an incompressible fluide. this is an
exact solution of Navier- Stokes equations (see Paterson [19] and Kundu as
well [15]). This flow is not very realistic but allows a complete instructive
resolution. Let us look at a 2D plan flow (with no velocity along z) steady

U(y)

-v
0

y=a

y=0. -v
0

Figure 7: A 2D channel flow from left to right due to an imposed pressure
gradient with suction at the lower wall and blowing at the upper.

and incompressible of fluid of contant density ρ and constant viscositye ν.
The fluid flows between two parallel infinite flate plates. One is in y = 0,
the other in y = a. The two plates are porous so that fluid is blow at one
wall and sucked at the other. So, v is −v0 at the walls. A pressure gradient
(k) along x is imposed to drive the flow. We will see that a new scale (which
is not a the width of the channel) appears from the resolution. Of course,
the physical problem has itself another scale : the size of the small holes
in which the fluid is aspired. This would induce a local analysis out of the
scope of this chapter but in tractable with asymptotic analysis.

6.2 Direct resolution:

We look at a solution which is invariant by translation in x:

~u(x, y, z) = U(y)~ex + V (y)~ey + 0~ez.

With the boundary conditions and incompressibility we have the transverse
velocity:

V (y) = −v0.

The Navier Stokes equation then reads:

0 = −∂p
∂y

so p(x) = −kx+ P0.

Which is a simple ODE (12) for U(y):

− v0
∂U

∂y
=
k

ρ
+ ν

∂2U

∂y2
. (12)

With the no slip boundary conditions we have:

Uexact(y) =
ka

ρv0
(−y
a

+ (
1− exp(−v0y/ν)

1− exp(−v0a/ν)
)).

In fact, for this flow, there are several characteristic velocities that we can
use to make the problem non-dimensional: v0, (ka

2

ρν ). We can construct two
non dimensional numbers

6.3 Non dimensional equation

Say y = aȳ et u = U0ū, and play the game: we do not know the exact
solution. We do not know U0 up to now. The non dimensional equation is:

− (v0a/ν)
∂Ū

∂ȳ
= ka2/(ρνU0) +

∂2Ū

∂ȳ2
. (13)

If we take U0 = ka2/ρν, the driving pressure balances the viscous dissi-
pation. The parameter for aspiration is (v0a/ν) (a Reynolds). The non
dimensional equation is:

− (v0a/ν)
∂Ū

∂ȳ
= 1 +

∂2Ū

∂ȳ2
(14)

with Ū(0) = Ū(1) = 0.
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Figure 8: Basic Poiseuille profile,
[click on the Image, Acrobat Quick-
Time Required] to see the effect of
aspiration

Figure 9: The profile with strong
suction at the lower wall and blow-
ing at the upper. [click on the Im-
age, Acrobat QuickTime Required]
to see the effect of aspiration.

6.4 Light suction/blowing

We verify in this section that Solution
[
Eε
ε→0

]
=Solution[Eε]

ε→0
. The Eε

problem is:

Ū ′′ + εŪ ′ + 1 = 0, and Ū(0) = Ū(1) = 0

For the Solution
[
Eε
ε→0

]
, we easily verify that the Poiseuille with light

suction problem is regular: the solution for ε = 0 is :

ȳ

2
− ȳ2

2

the next order is defined by (cf figure 6.2): Ū = ȳ
2 −

ȳ2

2 + εū1 + ... if we put
this in the ε problem Ū ′′ + εŪ ′ + 1 = 0, the equation for ū1 is

ū′′1 + 1/2− ȳ = 0 and ū1(0) = ū1(1) = 0

so that the pertubation is:

ū1 =
ȳ3

6
− ȳ2

4
+

ȳ

12

etc at the next order.

Now we turn to Solution[Eε]
ε→0

. So solution of Eε is :

Ūexact = −−e
εȳ + ȳ + eε − eε−εȳ

ε− εeε

we verify that everything is OK:

Ūexact = −−e
εȳ + ȳ + eε − eε−εȳ

ε− εeε = (
ȳ

2
− ȳ2

2
) + (

ȳ3

6
− ȳ2

4
+

ȳ

12
)ε+ ...

So, we obtain the Poiseuille flow plus the previous small perturbation ū1.
The problem is regular.

6.5 Strong suction/blowing

Now we take U0 = ka/ρ/v0, with this choice, it correspond to a balance
between aspiration and pressure gradient. The new parameter is again the
suction Reynolds (v0a/ν),but this time ε = ν/(av0). The Eε problem is

εŪ ′′ + Ū ′ + 1 = 0; with Ū(0) = Ū(1) = 0.

6.5.1 case ε = 0

Let put ε = 0, so:

Ū = 1− ȳ.

If we take the boundary in ȳ = 1, there is a problem in ȳ = 0!!! The velocity
slips: Ū(0) = 1, it should be zero. We call this solution the ”outer solution”.
The problem is clearly singular as near the wall, there is a problem?

6.5.2 Boundary layer ”inner solution”

To full fill the boundary condition, we have to change the scale. In fact,
near the wall, the velocity changes very quickly from 1 to 0. This is so fast
that the εŪ ′′ term is no more negligible.

Let us define Ũ = Ū and ȳ = δỹ, with δ << 1. By substitution, with
these new scales:

ε
1

δ2

d2Ũ

dỹ2
+

1

δ

dŨ

dỹ
+ 1 = 0
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In this new desxcription, dŨ
dỹ is of order one, the velocity changes slowly.

But dŪ
dȳ is very large, the order of magnitude is 1

δ . Looking at the equation,
we guess that the third term (1) is smaller than the second. The first one
contains a large parameter ( 1

δ2
), but is multiplied by a very small parameter

ε.
We have here to introduce the ”Dominant Balance Principle” (Principe

de Moindre dégénérescence, in french) : we want to simplify the problem
but to retain in the problem as much term as possible. So we simplified
previously the second order derivative, this was not a good choice of sim-
plification. As we have lost a boundary condition, we keep it and we take

ε
1

δ2
=

1

δ
which is δ = ε

The equation is then
d2Ũ

dỹ2
+
dŨ

dỹ
= 0

The solution is Ũ = A(1 − eỹ) which satifies the lost Ũ(0) = 0. That is
due to this condition that we did such an hard job. But, we have now an
indeterminate constant A.

6.6 Matching

To identify this indeterminate constant, let us introduce the last ingredient,
the asymptotic matching:

lim
ȳ→0

Ū(ȳ) = lim
ỹ→∞

Ũ(ỹ)

this tells that we have now two asymptotic expansions for the solution, one
for ȳ of order one, and the other for ỹ of order one. These two expansions
should be somewhere in a similar form. This is a kind of overlap region
which has ȳ small and ỹ large. Forcing the two expansion to be equal in
this limits of ȳ small and ỹ large gives the unknown A.

In practice, it gives Ū(0) = 1which should be equal to Ũ(ỹ) at infinity,
i.e. Ũ(∞) = A. So A = 1, the velocity in the inner region is then:

Ũ = (1− e−ỹ).

So we have expressed the solution after slpitting the the domain in two
regions. An outer one, where the scale is the most evident one, and a second

Figure 10: The exact solution profile
seen in the boundary Layer scales
and the asymptotic solution, for in-
creasing suction [Adobe / Quick-
Time]

Figure 11: Composite and exact so-
lutions seen in the 0(1) scales for
increasing suction [Adobe / Quick-
Time].

the inner one, where we had to process a change of scale to focus on the
boundary. Both region over lap.

6.7 Composite Expansion

But, as we have just seen, both solutions, the outer and inner ones, are
valid for different scales and different layers:

1 ≥ ȳ > 0 we have Ū = 1− ȳ
∞ > ỹ ≥ 0 we have Ũ = (1− e−ỹ)

We can put all this together if we define a composite expansion:

Ūcomposite = Ū(ȳ) + Ũ(ȳ/ε)− Ū(0)

which gives
Ūcomposite = 1− ȳ + (1− e−ȳ/ε)− 1

On figure 11 we present whith a dashed curve the exact solution and in
green the comosite one. They are very close.

6.8 Next Orders

it is simple to see that for this example, εŪ ′′ + Ū ′ + 1 = 0 for the outer
problem, we develop

Ū = Ū0 + εŪ1 +O(ε2)
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and by substitution, we have to solve Ū ′0 + 1 = 0 and Ū ′′0 + Ū ′1 = 0 so that
Ū0 = 1− ȳ and Ū1 = 0.

For the inner problem: εŨ ′′ + Ũ ′ + εŨ = 0 we developp

Ũ = Ũ0 + εŨ1 +O(ε2)

we have to solve Ū ′′0 + Ũ ′0 = 0 and next Ū ′′1 + Ū ′1 + 1 = 0 so that Ũ0 =
A(1− exp(−ỹ)) and Ũ1 = A1(exp(−ỹ)− 1)− ỹ

6.8.1 Intermediate layer

Matching in the intermediate layer ŷ = ȳ/ε gives

Ū = 1− ηŷ + 0ε

Ũ = A− 0− ηŷ −A1ε

6.8.2 pq-qp

Again the Van Dyke rule will give the same result.

Do
pD

i
qŪ = Di

qD
o
pŪ .

For the left hand side: one takes the inner solution to q + 1 terms and
change ỹ by y/ε. The outer limit of y fixed as ε→ 0 is then taken retaining
p+ 1 terms. A similar process is done for the right hand side.

With p = q = 1:

Do
1D

i
1Ū =Do

1(A(1− e−ỹ) + ε(A1(e−ỹ − 1)− ỹ))

=Do
1(A(1− e−ȳ/ε) + εA1(e−ȳ/ε − 1)− ȳ))

=A− εȳ − εA1

Di
1D

o
1U =Di

1(1− ȳ))

=Di
1(1− ȳε))

=1

(15)

so that A = 1 and A1 = 0.

6.9 For the ”Saint Thomas”

”Saint Thomas” (in french) is a guy who believes only what he sees (in
english ”Doubting Thomas” a skeptic guy). Let us take teh exact solution
of the ODE :

Ūexact = −ȳ +
(1− e−ȳ/ε)
(1− e−1/ε)

when ȳ is fixed and when ε approaches 0, we have:

Ūexact ' −ȳ +
(1− 0)

(1− 0)
= 1− ȳ

We obtain the external solution.
If now we fix ȳ/εand ε approaches 0, we find:

Ūexact ' −ε(ȳ/ε) +
(1− eȳ/ε)

(1− 0)
' (1− e−ȳ/ε)

We obtain the internal solution.
Much more interesting, let us keep ȳ/ε and do not expand it, do not

touch to ȳ, and let ε approaches 0, hence:

Ūexact ' −ȳ +
(1− e−ȳ/ε)

(1− 0)
' (1− e−ȳ/ε) = (1− ȳ) + (1− e−ȳ/ε)− 1

We obtain exactly the composite expansion.
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6.10 using Gerris and freefem++

6.10.1 The problem

For illustration of the utility of the knowledge of existence of singular prob-
lems, we will solve the problem (12) with a ”solver”. A ”solver” means a
numerical code, ”codes” are commercial or free softwares solving the equa-
tions of Physics, and here more specifically equations of Mechanics. We will
use Gerris, a free Navier Stokes solver, and freefem++ a free PDE solver.

We adimensionalise the problem with the physical parameters so a, and
the pressure gradient (k, the pressure gradient is a source term in the
equation) will be taken to unity in the final non dimensional problem so in
(12) U = u0ū and y = aȳ:

− (
v0

u0
)
∂ū

∂ȳ
=

ka

ρu2
0

+
ν

u0a

∂2ū

∂ȳ2
(16)

with u0 so that ka
ρu20

= 1, and so, if va = v0
u0

:

− va
∂ū

∂ȳ
= 1 +

1

Re

∂2ū

∂ȳ2
(17)

The exact solution:

ū(ȳ) =
1

va
(−ȳ + (

1− exp(−vaReȳ)

1− exp(−vaRe)
))

The full problem depends on x, so we use a periodic domain with ∂x = 0
at the borders. so, in fact the problem that we solve is something like:

∂ū

∂t̄
− va

∂ū

∂ȳ
= 1 +

1

Re
(
∂2ū

∂x̄2
+
∂2ū

∂ȳ2
) (18)

in a square with homogenous Neumann conditions right and left, and we
wait for a steady solution.

Here are the scripts for (12) with first Gerris, and then freefem++.

6.10.2 The scripts

script:

#####################################################################

# 29/09/10 Poiseuille aspire par PYL, sauver dans "aspois0.gfs"

# lancer avec: gerris2D -DRe=50 -DVa=0.1 aspois0.gfs | gfsview2D v.gfv

# valeur du Reynolds et de l’aspiration passes en parametres

# definition de 1 boite avec 1 connection

# met le coin gauche en 0,0

1 1 GfsSimulation GfsBox GfsGEdge{x = 0.5 y = 0.5 } {

SourceViscosity {} 1./Re

# precision 2**(-4.) = 1/16=0.06 5-> 32 0.03

Refine 4

# temps initial 0

Init {} { U = 0 }

# on impose un gradient de pression

Source {} U 1.

# AdaptGradient { istep = 1 } { cmax = .1 maxlevel = 5 } U

# GfsAdaptVorticity { istep = 1 } { maxlevel = 5 cmax = 1e-1 }

# sortie tous les 20 pas de calculs du temps en cours

OutputTime { istep = 20 } stderr

# valeurs qui vont sortir pour entrer dans gfsview

# tous les 20 pas de calcul

OutputSimulation { istep = 20 } stdout

OutputSimulation { istep = 20 } SIM/sim-%g.txt {format = text}

EventScript { istep = 20 } { cp SIM/sim-$GfsTime.txt sim.data}

# arret lorsque la variation de U devient "petite"

EventStop { istep = 10 } U 1.e-4 DU

}

#conditions aux limites

GfsBox {

# en haut vitesse nulle

top = GfsBoundary {

GfsBcDirichlet U 0

GfsBcDirichlet V -Va

}

# en bas vitesse nulle

bottom = GfsBoundary {

GfsBcDirichlet U 0
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GfsBcDirichlet V -Va

}

}

# branchement périodique

1 1 right

# fin de fichier

######################################################################
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file run.sh to run the Gerris script:

#!/bin/bash

mkdir SIM

for zeVa in 0.01 0.1 1 ; do

gerris2D -DRe=50 -DVa=$zeVa aspois0.gfs | gfsview2D v.gfv

cp sim.data sim$zeVa.data

cat <<EOUF | gnuplot

set xlabel ’y’

Va=$zeVa

Re=50

set title "Re=50 Va=$zeVa"

p[0:][0:]"< awk ’{if((\$1>0.4)&&(\$1<0.51)){print \$2,\$6}}’ sim.data" w p,\

(-x+(1-exp(-Va*x*Re))/(1-exp(-Va*Re)))/Va t’solution exacte’

EOUF

done;

cat <<EOUF | gnuplot

set term post eps enhanced

set output "prof_aspi.eps"

set ylabel "@^{\261}u(@^{\261}y) "

set xlabel ’@^{\261}y’

Re=50

u(x,Va)=(-x+(1-exp(-Va*x*Re))/(1-exp(-Va*Re)))/Va

set title "Re=50 Va"

p[0:][0:]"< awk ’{if((\$1>0.4)&&(\$1<0.51)){print \$2,\$6}}’ sim0.01.data" t’Va=0.01’ w p,\

u(x,0.01) t’solution exacte’,\

"< awk ’{if((\$1>0.4)&&(\$1<0.51)){print \$2,\$6}}’ sim0.1.data"t’Va=0.1’ w p,\

u(x,0.1) t’solution exacte’,\

"< awk ’{if((\$1>0.4)&&(\$1<0.51)){print \$2,\$6}}’ sim1.data"t’Va=1’ w p,\

u(x,1) t’solution exacte’

EOUF

to plot:

p[0:]"< awk ’{if(($1>0.4)&&($1<0.51)){print $2,$6}}’ sim.data"t’gerris’ w lp,\

(-x+(1-exp(-Va*x*Re))/(1-exp(-Va*Re)))/Va t’solution exacte’

 0

 1
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 5

 6
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 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

– u(
– y)

 

–y

Re=50 Va

Va=0.01
solution exacte

Va=0.1
solution exacte

Va=1
solution exacte

Figure 12: A 2D channel flow with suction and blowing. We see that as we
imposed the pressure gradient to be one, and measure in this NS simulation
the velocities with the Poiseuille scale, the velocity is smaller and smaller.
This shows how powerful is MAE, as it gives the right scale for the velocity.
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The same may be done with freefem++

// resolution aspiration

// PYL sept 10

// ./FreeFem++-CoCoa aspiration.edp

exec("echo aspiration ");

verbosity=-1;

real s0=clock();

real h0=1; //hauteur domaine

real L0=1.; //longueur

int n=25; //nbre de points

// definition des cotes Maillage

border b(t=0,1) { x= t*L0; y = 0 ; };

border d(t=0,1) { x= L0; y = h0 * t ; };

border h(t=1,0) { x= L0*(t); y = h0 ; };

border g(t=1,0) { x= 0; y = h0 * t ; };

// maillage

mesh Th= buildmesh(b(n)+d(n)+h(n)+g(n));

//espace EF

fespace Vh(Th,P2);

Vh U,UT;

real dVa = 0.05;

real Va=0.0000000001;

real Re=50;

U=1;

problem Aspi (U,UT) =

int2d(Th)(

-1./Re*(dx(U)*dx(UT) + dy(U)*dy(UT)) )

+ int2d(Th)( Va*dy(U)*UT)

+ int2d(Th) ( UT)

+ on(b,U=0)

+ on(h,U=0) ;

while((Va<20))

{

Aspi;

cout << "Va = "<< Va <<" ---------------- +++++++++++++++" << endl;

plot(Th,cmm="U Re=50 Va="+Va,U,fill=1,wait=1);

{ ofstream gnu("NplotU.gp");

real x,y,Uinf;

gnu << "# vals x T" << endl;

for (int i=0;i<=4*n;i++)

{y =(i*h0)/n/4;

x=L0/2;

Uinf= (-y+(1-exp(-Va*y*Re))/(1-exp(-Va*Re)))/Va ;

gnu<< y << " " << U(x,y) << " " << Uinf << endl; }

}

Va=Va+dVa;

}

cout << "CPU " << clock()-s0 << "s " << endl;

to plot:

p[0:]’NplotU.gp’ u 2:1 w l,’’u 3:1 w l

6.10.3 Discussion

With both codes, we compare well the numerical solution and the asymp-
totic one.

But, we see that the case V a = 1 and Re = 50 is not so simple to be
computed, though the values are moderate. We need an enough large
number of points to do this. Let us discuss the number of points that we
need to ”have enough points in the boundary layer”.

• Fixed mesh size:
With our choice of parameters, the order of magnitude of the boundary
layer is 1/(V a ∗ Re). The solution in the boundary layer is written with
(1 − exp(−V a ∗ y ∗ Re). Let us guess the physical ”size” of the boundary
layer: as exp(−4.) ' 0.02 is enough small, we guess that a physical layer of
size about 4/(V a ∗Re) is involved here. Hence, if we want to put 4 points
in the boundary layer to describe it, we guess that the smaller size of the
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Figure 13: A 2D channel flow with suction and blowing. Increasing the
suction shifts the velocity to the wall, it changes at a small scale. Beware
of the mesh size!

mesh should be ∆x = ∆y = 1/(V aRe). The language Gerris proposes the
Refine N directive to monitor the mesh size. It means ( Gerris language)
that ∆x = 2−N , so we have to adjust the number of points so that

N = log2(V aRe),

so for Re = 50, we take Refine 6 for a correct description, 5 is not enough.
Then we see, that the larger V a or Re, the larger the number of points
N , for Re = 1000 N = 10... hence increasing Re increases drastically the
computational time and the storage space in memory. But that is the
price to catch the solution.

• Adapting the mesh size:
The solver allows mesh refinement, freefem++ as well. For example, with
Gerris we can use either AdaptFunction AdaptGradient AdaptVorticity

to focus on region where the field changes quickly. So, it is important to
adjust the number of points in order to have few points where variations of
velocity are not large and enough points where the velocity changes quickly.

We change the lines in the script:
Refine 4

AdaptGradient { istep = 1} { cmax = .25 maxlevel = 18 } U

It means that there are 24 points at least, but that every change of value
cmax = 0.25 of U , we refine. This refinement is done up to the maximal
level of say 18. This is an a priori large value that we do not want to
obtain, that is a kind of limit of precision. To have a correct computation,
we should not pass this value.

We will now show that there is a relation between N and Re so that the
number of points obtained is ”an automatic asymptotic change of scale”

The solution in the boundary layer has a large derivative at the wall
∂u/∂y|0 = −Re. The numerical derivative in 0 is evaluated as : u(∆y) −
u(0))/∆y hence as with our choice u(∆y)− u(0)) = cmax then

∆y = cmax/Re

which is as ∆y = 2−N , we therefore obtain the following equation which
gives the number of points necessary as a function of the Reynolds number
(and the criteria):

N = log2Re− log2(cmax)
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for cmax = 0.25, we have N = log2Re + 2 for cmax = 0.5, we have
N = log2Re + 1, etc. This is a way to reobtain automatically the
asymptotics of the problem.

 2

 4

 6
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 10

 12

 14

 2  4  6  8  10  12  14

N
+

lo
g 2

 (
cm

ax
)

log2(R)

cmax=0.125
cmax=0.25
cmax=0.50

x

Figure 14: In order to satisfy the criteria of variation of value cmax, the
mesh refinement N is function of the Reynolds number Re according to the
asymptotics of the problem. The relation is N + log2(cmax) = log2Re. We
verify it here for three values of cmax.

• Conclusion

What have here a very important feature. Thanks to adaptative mesh
refinement, the computation automatically puts more points at the right
place: the boundary layer. This allows to do multiscale computations with
enough points disposed at the ”good” place. The number of points be-
haves according to the asymptotics, the number of points obtained is ”an
automatic asymptotic change of scale”.

This interaction between the numerics and the asymptotics is very
important to understand the flow and put enough points to describe it
with enough precision.

Figure 15: An example of mesh, starting from 2−4 to 2−8 at the wall, right
a zoom near the wall.

This is a new tool which will have an increasing use.
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7 Example with a boundary layer in the center of
the domain

In this section we have an example of matched asymptotic expansions with
a boundary layer either at the right wall, the left or in the flow far from
the walls!

This was an exam.

7.1 Questions

Let us look at (see Kevorkian [13] and [14])

εy′′(x)− y(x)y′(x) + y(x) = 0. (19)

with the following boundary conditions y(−1) = 0 and y(1) = 0. The trivial
zero solution is excluded y(x) = 0.

1. 1.) Solve the outer problem (with ε = 0). Write with ”bars” the
solution :y(x) = ȳ(x̄). Show that the problem is singular.

2.) plot the various a priori solution for ȳ. If there is a boundary layer
in x̄ = 1, what is the value of ȳ in x̄ = 1− (x̄ < 1 )

2. Inner problem. Let us first place a boundary layer in x = 1.

1.) So we change the scale x = 1 + µ(ε)x̃. Justify this notation: what
is the order of magnitude of x̃, what is µ(ε)? We write y(x) = ỹ(x̃),
why? Waht is the order of magnitude of ỹ,

2.) Put this in (19) and say ε goes to 0. Find µ. Obtain the inner
problem.

3.) Integrate once and obtain:

− ỹ′(x̃) +
(ỹ(x̃))2

2
= 2K2. (20)

What do you think ofK? Show that ỹ(x̃) = 2Kth(Kx̃) = 2K eKx−e−Kx
eKx+e−Kx

is solution of (20).

4.) Find K by asymptotic matching. Plot the inner and outer solu-
tions.

Write the composite approximation.

5.) Observe by symmetry that the behavior in x = −1 awith inner
solution ȳ = −1 + x̄ is the same than the one in x = 1 we have
computed.

3. Case of a ”shock” in x = 0.
1.) Show that ȳ = 1 + x̄ for −1 ≤ x̄ < 0 and ȳ = −1 + x̄ for 0 < x̄ ≤ 1
is a outer solution of the problem.

2.) Show that in x = 0 we may follow 2-1) 2-2) and 2-3).What is the
new value of K, plot the solutions.

7.2 Answers

The external solution is ȳ′(x) = 1 any solution like ȳ(x) = x+C is allowed.
It is possible to have a boundary layer at the right, at the left, at the right
and the left...
We may imagine:

• ȳ(x) = x− 1 a boundary layer in x = −1

• ȳ(x) = x a boundary layer in x = −1 and another in x = 1.

• ȳ(x) = x+ 1 a boundary layer in x = 1.

• ȳ(x) = x+ 1 for x < 0, a shock in x = 0 and ȳ(x) = x− 1 for x > 0.

Say that in any point x = x0 the external solution is y0 from one side
and 0 to the order (boundary layer case). Or the solution is y0 at one side
and −y0 at the other (shock case). Near x = x0 + µx̃, we have µ = ε so

that ỹ′′(x̃) − ỹ(x̃)ỹ′(x̃) = 0. by integration −ỹ′(x̃) + (ỹ(x̃))2

2 = 2K2, with
y0 = 2K by matching.

This problem allows even several shocks.

Note that this is similar to the Bürgers equation ut + uux = uxx. Note
that the thickness of a shock with NS equations is ν/c0 which is more or
less the free mean path. Navier Stokes equation are not valid at this scale.
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Figure 16: Solutions of (19) for various values of ε. Note that the boundary
layer may be any where: either at one boundary, left or right, either on the
two boundary, or in the center of the domain (this is a kind of shock)...
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Figure 17: Solutions of the inner problem, left a boundary layer, right a
shock.
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8 Case with logarithms

8.1 A remark on the large / small scale

The problems are not always defined at scale one, and solved locally at
a small scale. The reverse may happen, for some reason the problem is
defined in some scales of order one, and one has to look at a larger scale
to solve it. Let us take a very simple example.

The following problem needs a ”zoom in” in y = 0 to be solved:

εu′′(y)− u = 0 with f(0) = 1, f(∞) = 0

outer solution for variable y is u(y) = 0. This solution does not fit the
boundary condition in y = 0. The inner solution with ỹ = y/

√
ε is

ũ = Ae−ỹ +Beỹ, with A = 1 by boundary condition in 0 to reobtain 1 the
lost B.C. and B = 0 by matching.

The following problem needs a ”zoom out” from y = O(1) to be solved:

u′′(y)− εu = 0 with f(0) = 1, f(∞) = 0

of solution u(y) = A+By clearly A = 1, one can admit that if B 6= 0, then
u(∞) is unbounded, so that B = 0 is a good candidate. Then u(y) = 1 for
y = O(1) and using a large variable Y =

√
εy, then U ′′(Y )− U(Y ) = 0 so

that U(Y ) = Ae−Y +BeY , with A = 1, B = 0 by matching and boundary
condition.

The following example seems to be the same than this one, but there is
a new difficulty.

8.2 The Lagerstrom problem

We present here a case which involves logarithms and is more difficult. It
is a classical example, it is reminiscent of the Stokes problems around a
sphere or around a cylinder. We will see this in the chapter small Reynolds

the Stokes paradox for a flow around a cylinder. But here it is a bit more
simple. This problem may be interpreted as heat equation in a cylinder
(see [13] page 89 or [14] page 101 or Hinch [12] p 67):

frr +
2fr
r

+ εffr = 0

with conditions f = 0 in r = 1, and f → 1 as r →∞.

8.3 Near approximation

Let us try a simple expansion as usual:

f = f0(r) + εf1(r) + ...

at order ε0 we find log(f ′0) = −2log(f0) so that f0 = A− 1/r with the BC:

f0 = 1− 1

r
,

at order ε1 we have

f ′′1 +
2f ′1
r

= −f0f
′
0

with f1(0) = 0 and f1 → 0 at infinity. We rewrite in a compact form the
derivative

1

r2
(r2f ′1)′ = − 1

r2
+

1

r3

so that the solution is (noting
∫
r−2ln(r)dr = −ln(r)/r−1/r by integrating

by parts), and as f1(1) = 0

f1 = −ln(r)− lnr

r
+A1(1− 1

r
).

The expansion is then, up to now:

f = f0(r) + ε(−ln(r)− lnr

r
+A1(1− 1

r
)) + ...

Let us look at the boundary condition, we must have that f approaches
one at infinity. There is a problem as the condition at infinity cannot be
satisfied due to the logarithm: far from 1, ln(r) is large.

Far from the origin
f = 1− εln(r) + ....

so writing ρ = εr, this new variable is a variable which describes what
happens far from the origin. So that, in this layer,

f = 1− εln(ρ/ε) + ....
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or

f = 1− εln(1/ε)− εln(ρ) + ....

This term in εln(1/ε) gives us the idea to insert a new term before ε1:

f = f0 + εln(
1

ε
)fln + εf1 + ....

or

f = (1− 1

r
) + εln(

1

ε
)fln + εf1 + ....

The expected development was ε0, ε, ε2, ε3.... The fact that a new
unexpected term arises εln(1

ε ) and interplays in the sequence was called
”Switchback” by S. Kaplun (Low Re number flow J Math & Mec V6 No
5 1957). ”in trying to find terms of a certain order one is forced to recon-
sider lower order terms.” (in ”fluid mechanics and singular perturbations
collection of paper by Kaplun editor Lagerstrom )

After substitution, we obtain for fln the same equation than f0 so

fln = Aln(1− 1

r
).

8.4 far approximation

We have just seen that

f = 1− εln(1/ε)(1−Aln)− εln(ρ) + ....

in a layer far from the origin, where ρ = εr, so the equation becomes
fρρ +

2fρ
ρ + ffρ = 0 we are at large distances from the origin, so let search

for:

f = 1 + εln(
1

ε
)g1(ρ) + εg2(ρ) + ...

Both g1 and g2 satisfy the same equation

g′′ + (2/ρ+ 1)g′ = 0 i.e. (ρeρg′)′ = 0.

the solution with g = 0 at infinity is

gi = Bi

∫ ∞
ρ

e−t

t2
dt

where
∫∞
ρ

e−t

t2
dt is linked to the Incomplete gamma function:

Γ(a, x) =

∫ ∞
0

ta−1e−tdt

it may integrated by parts:
∫∞
ρ

e−t

t2
dt = [ e

−t

t2
]∞ρ +

∫∞
ρ

e−t

t dt.

The integral E1(x) =
∫∞
x

e−t

t dt is called exponential integral (Bender Orzag
p 252), it is solution of

dE1(x)

dx
= −e

−x

x
= −1

x
+ 1− x

2
+ ...

so that

E1(x) = C − ln(x) + x− x2

4
+ ...

Bender Orzag [3] p307 or Abramowitz and Stegun [1] 5.1.11, the constant
is C = γ

γ = limn→∞(1 +
1

2
+

1

3
+ ...+

1

n
− ln(n)) ' 0.5772

so that it is classical that:

γ = limx→0+(

∫ ∞
x

e−t

t
dt+ lnx).

proof
It seems that a way to prove it, is to start from the fact that the definition
of Γ from Euler and Weierstrass are:

Γ(x+ 1) =

∫ ∞
0

txe−tdt = e−γx
∞
Π
n=1

ex/n
(
1 + x/n

)−1

and so ([6]):

Γ′(1) =

∫ ∞
0

Log(t)e−tdt = −γ

and integrating par parts:

γ = F (x)− Log(x)−R(x)

with

F (x) =

∫ x

0

1− e−t
t

dt =
∞
Σ
n=1

(−1)n−1xn

nn!
and R(x) =

∫ ∞
x

e−t

t
dt.
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QED

So going back to the integral∫ ∞
ρ

e−t

t2
dt = −e

−ρ

ρ2
+

∫ ∞
ρ

e−t

t
dt

we then obtain after developing e−ρ/ρ = 1/ρ− 1 + ρ/2 + ...∫ ∞
ρ

e−t

t2
dt = (1/ρ− 1 + ρ/2 + ...) + (γ − ln(ρ) + ρ− 1

ρ
+ 1− ρ2

4
+ ...)

so the final integral is∫ ∞
ρ

e−t

t2
dt ∼ 1

ρ
+ ln(ρ) + γ − 1− ρ

2
+ o(ρ)

Finally we say that

f = 1 + εln(
1

ε
)g1(ρ) + εg2(ρ) + ...

and near the origin

f = 1 + εln(
1

ε
)B1[

1

ρ
+ ln(ρ) + γ − 1− ρ

2
] + εB2[

1

ρ
+ ln(ρ) + γ − 1− ρ

2
] + ...

8.5 Matching

At this point, we may guess that from the behavior in r � 1

f = 1− εln(1/ε)(1−Aln)− εln(ρ) + ....

and the previous expression

f = 1 + εln(
1

ε
)B1[

1

ρ
+ ln(ρ) + γ − 1− ρ

2
] + εB2[

1

ρ
+ ln(ρ) + γ − 1− ρ

2
] + ...

at first glance we see −εln(ρ) and εB2ln(ρ), so B2 = −1 would be good.
As εB2 terms seem to have no counter parts in −(1 − Aln), so maybe
(1−Aln) = 0 and B2 = 0.

To be more precise, we introduce (again see Hinch [12]) the intermediate
variable

r̂ = εαr = ρεα−1.

After substitution of the intermediate variable and matching term to term
in the overlap layer the r solution

= (1− εα

r̂
) +

+ εln(1/ε)Aln(1− εα

r̂
) +

+ ε[−αln(1/ε)− ln(r̂) +A1 − αln((1/ε)
εα

r̂
))− εα ln(r̂) +A1

r̂
] + ...

and the ρ description

= 1 +

+ εln(1/ε)B1[
εα−1

r̂
+ (α− 1)ln(1/ε) + lnr̂ + γ − 1 + ...] +

+ εB2[
εα−1

r̂
+ (α− 1)ln(1/ε) + lnr̂ + γ − 1 + ...] + ...

So at ε0 we have 1 = 1
at εαln(1/ε) we have 0 = B1/r̂
at εα we have −1/r̂ = B2/r̂
at εln(1/ε) we have Aln − α = B2(α− 1)
at ε we have −ln(r̂) +A1 = B2(ln(r̂) + γ − 1
so we find B1 = 0, B2 = −1, Aln = 1 and A1 = 1− γ.

The solution for r fixed:

f = (1− 1

r
) + εln(

1

ε
)(1− 1

r
) + ε[−ln(r)− lnr

r
+ (1− γ)(1− 1

r
)] + ...

while for ρ fixed

f = 1 + 0εln(
1

ε
)− ε

∫ ∞
ρ

e−t

t2
dt+ ...

It is to be noticed that the pq-qp rule does not work in this case due to the
term εln(r) which changes of order (see Hinch [12] for discussion).

8.6 Remark

This problem (introduced by Lagerstrom in a seminar in 1960) is reminis-
cent to the flow round a a sphere. The problem

frr +
fr
r

+ εffr = 0
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is more reminiscent to the flow around a cylinder at small Reynolds, the
so called Stokes Oseen problem (see François among others). A log arises
from the very beginning. This problem is ”a worse problem” according to
Hinch [12].

He proposes even a ”terrible problem” : frr + fr
r + f2

r + εffr = 0!
In Stokes flow, near the cylinder, it seems to be impossible to match

with the imposed freestream velocity as log terms arise. A Re/ln(Re) term
arises. Far from the cylnder, the velocity is the imposed velocity plus an
expansion in powers of 1/ln(Re). The Stokes paradox around a cylinder is
in the chapter small Reynolds,
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9 Exercices

9.1 Polynomia

For each of the following cases, say if the Eε is singular of regular. Find
the solution with the change of scale, compare to the exact solution.
• Is x2 − x+ ε = 0 singular or regular?
• Is εx2 − x+ 1 = 0 singular or regular?
• Is εx3 − x+ 1 = 0 singular or regular?
hint: recover that the solutions of the last one are:
x1 = 1 + ε1/2 + 3ε+ ..., x2 = ε−1/2 − 1/2 + ... and x3 = −ε−1/2 − 1/2 + ...

9.2 ODE

For each of the following cases, slove the external problem show that the
problem is singular. Change of scale, solve the inner problem, match the
layers.
• Look at the problem

εf ′ = −f
with f(0) = 1.

• Look at the problem

ε
d2f

dy2
+ y

df

dy
− yf = 0

with f(0) = 0 and f(1) = e.

Find that the scale is
√
ε and that outer and inner solution are:

f0(ȳ) = eȳ and f̃0(ỹ) =
√

2/π

∫ ỹ

0
e−ỹ

2
dỹ

• Solve
0 = 1− u+ εu′′

with u(0) = u(1) = 0. Show that we have two boundary layers.

10 Conclusion

We have demonstrated nothing, but we have seen what is a singular
and a regular problem. In the framework of Matched Asymptotic Devel-
opments ”Méthode des Développements Asymptotiques Raccordés”, we
have seen that the first thing to do when we deal with a problem with
small parameter ε is to solve the external problem when the parameter
ε is set to 0. Then we do a rescaling. This rescaling uses the ”Least
Degenerascy Principle”, or ”Dominant Balance” (”Principe de Moindre
Dégénérescence”). It means that we try to recover the maximum of
terms in the equation. In fact, the terms that we neglected were not so
small in some regions. Of course, we try to reobtain the terms previously
neglected. We solve then the internal problem. It is indeterminate.
The indetermination is resolved by the ”Asymptotic Matching” (”Rac-
cord Asymptotique”), the top of the layer matches with the bottom of
the other. Or in other words, there exist an overlapping intermediate
region where the two developments are the same. This is called ”matching”.

Again, we have demonstrated nothing (see Guiraud [11] for an introduc-
tion to ”non standard analysis” which is maybe the most sound basis for
MAE), but we have check that the method works on simple cases.

Some times we have logarithms, this makes the solution more com-
plicated. The Friedrichs problem looks like high Reynolds number and
Boundary Layer, the Lagerstrom problem is for Stokes flow.

We will use this method intensively in the case of aerodynamics (from
Blasius solution to Triple Deck theory).

We have seen what are Matched Asymptotic Expansions. In the following
books we find those classical examples with different points of view. Most
of them are in the ”Bibliothèque de Mécanique” Tower 55n, 4th floor.
• Chapter 1 and 2 of Kevorkian & Cole (81)
• Chapter 1 and 4 of Nayfeh (73)
• Chapter I, (II) and III from Claude François (81)
• Chapter IX5. from Paul Germain (86)
• Chapter 5 Milton Van Dyke
• Chapter 7 and 9 Bender Orzag
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• Chapter IX p 149 Paterson
• Chapter 1 of A. Ruban
• Chapter 1,2 and 5 of John Hinch
Of course there are other classical Books from settlers of this theory Cole,
Kaplun, Lagerstorm, Eckhaus... Look at the following bibliography (after
the annex), at some wiki links and partial google books.
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11 Annex: Restricted Three-Body system

11.1 Hill equations

In fact most of the techniques were developed for use in celestial mechanics
(for instance see Hinch [12] p92). Here, as an example among a lot of other,
we consider here the motion of three gravitational masses (earth, moon and
a satellite) in the limit when one of the masses is smaller than the other
two....

m(
d2−→r
dt2

+2−→ω × d
−→r
dt

+−→ω ×(−→ω ×−→r )) = −Gm1
(−→r −−→r 1)

|−→r −−→r 1|3
−Gm2

(−→r −−→r 2)

|−→r −−→r 2|3

ω2 = G(m+m1 +m2)/(|−→r 1 −−→r 2|)3

First the equations are written in a non dimensional form as:

d2x

dt2
= −(1− µ)

x− ξ1

((x− ξ1)2 + (y − η1)2)3/2
− µ x− ξ2

((x− ξ2))2 + (y − η2)2)3/2
.

d2y

dt2
= −(1− µ)

y − η1

((x− ξ1)2 + (y − η1)2)3/2
− µ y − η2

((x− ξ2))2 + (y − η2)2)3/2
.

where µ is the reduced mass. The equations are then written in a rotating
frame centered to one of the large bodies.

After some algebra and using τ t̄ = t and δx̄ = x δȳ = y the good scales
are δ = µ1/3 and τ = 1:

d2x

dt2
= − x

(x2 + y2)3/2
+ 2

dy

dt
+ 3x,

d2y

dt2
= − y

(x2 + y2)3/2
− 2

dx

dt
,

which are known as Hill equations, see [13] page 179.

11.2 Rendez Vous Spatial/ Space Rendez Vous

Very near one planet the equations reduce to the Clohessy -
Wiltshire equations ( http://www.lmm.jussieu.fr/%7Elagree/SIEF/

GRAVITATION/RDV/rdvtheo/rdvtheo.html):

x′′ = 2ωy′ + 3ω2x and y′ = −2ωx′

Figure 18: The Space Rendez-Vous is a problem of asymptotic expansions

with ω = (GM/R3)1/2. The general solution is obtained after derivation:
x′′′ = −4ωx′ + 3ω2x′ so (x′)′′ = ω2(x′) which gives x = B1 cos(ωt) +
B2 sin(ωt) +B3

Then we obtain y = C1 + tC2 + 2B2 cos(ωt)− 2B1 sin(ωt) Next, putting as
initial conditions: x(0) = x0, y(0) = 0, x′(0) = u0, y

′(0) = v0, we have:

x(t) = (2v0/ω + 4x0)− (2v0/ω + 3x0) cos(ωt) + u0/ω sin(ωt)

y(t) = (−2u0/ω+y0)−(3v0+6ωx0)t+2u0/ω cos(ωt)+(4v0/ω+6x0) sin(ωt)

Some examples from left to right
x0 = y0 = 0, u0 = −1, v0 = 0 we go to the left, Coriolis makes turn to the
right... ellipsis
x0 = y0 = 0, u0 = 0, v0 = 1 forward, and then backward!!
x0 = y0 = 0, u0 = 0v0 = −1 backward and then forward!!

To play, use the ”flash” in this pdf, or download it on http://www.lmm.

jussieu.fr/%7Elagree/SIEF/GRAVITATION/RDV/rdv.html.
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Figure 19: Click to launch a ”flash” game: ”Space Rendez Vous by PYL”,
[Acrobat Reader Required]; use arrow to move the Apollo vessel and join
the Soyouz crew. The Hewlett Packard HP-65 was used by the astronauts
during the historical rendez vous in July 15th 1975. This was the end of
the cold war.
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Figure 20: Asymptotics in Paris: the ε is everywhere! [update : Oups,
recently this famous Café of place Jussieu changed his marvellous name to
a stupide one]
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[5] J. Cousteix & J Mauss &(2006) Analyse asymptotique et couche limite,
Springer M et A 57. http://books.google.fr/books

[6] J-P Demailly ”Sur le calcul numérique de la constante d’Euler”
http://www-fourier.ujf-grenoble.fr/ demailly/manuscripts/gamma gazmath.pdf

[7] W. Eckhaus, Asymptotic Analysis of singular perturbations, Stud. in
Math. and Appl. 9, North Holland (1979)
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