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CHAPTER

NINE
BOUNDARY-LAYER THEORY

His career has been an extraordinary one. He is a man of good
birth and excellent education, endowed by nature with a phenom-
enal mathematical faculty. At the age of twenty-one he wrote a
treatise upon the binomial theorem, which has had a European
vogue. On the strength of it he won the mathematical chair
at one of our smaller universities, and had, to all appearances, a
most brilliant career before him. But the man had hereditary
tendencies of the most diabolical kind. A criminal strain ran
in his blood, which, instead of being modified. was increased
and rendered infinitely more dangerous by his extraordinary
mental powers.

—Sherlock Holmes, The Final Problem

Sir Arthur Conan Doyle

9.1 INTRODUCTION TO BOUNDARY-LAYER THEORY

In this and the next chapter we discuss perturbative methods for solving a differ-
ential equation whose highest derivative is multiplied by the perturbing parameter
& The most elementary of these methods is called boundary-layer theory.

A boundary layer is a narrow region where the solution of a differential
equation changes rapidly. By definition, the thickness of a boundary layer must
approach 0 as ¢ — 0. In this chapter we will be concerned with differential equa-
tions whose solutions exhibit only isolated (well-separated) narrow regions of
rapid variation. It is possible for a solution to a perturbation problem to undergo
rapid variation over a thick region (one whose thickness does not vanish with &).
However, such a region is not a boundary layer. We will consider such problems
in Chap. 10.

Here is a simple boundary-value problem whose solution exhibits boundary-
layer structure.

Example 1 Exactly soluble boundary-layer problem. Consider the differential equation
"+ (L+e)y +y=0  y0)=0,y1)=1 (9.1.1)
The exact solution of this equation is

=X - xje
—

W) = o (912)
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420 GLOBAL ANALYSIS

In the limit ¢ — 0+, this solution becomes discontinuous at x = 0, as is shown in Fig. 9.1.
For very small ¢ the solution y(x) is slowly varying for & « x < |. However, on the small interval
OD<x < Ofe) (e —+0+) it undergoes an abrupt and rapid change. This small interval of rapid
change is called a boundary layer. [The notation 0 < x < O(e) means that the thickness of the
boundargf layer is proportional to ¢ as & — 0+.] The region of slow variation of ¥(x) is called the
outer region and the boundary-layer region is called the inner region.

Boundary-layer theory is a collection of perturbation methods for solving
diﬂ'er_entia} equations whose solutions exhibit boundary-layer structure. When the
solution to a differential equation is slowly varying except in isolated boundary
layers, then it may be relatively easy to obtain a leading-order approximation to
that solution for small ¢ without directly solving the differential equation.

3.0

Boundary layer Outer region

(inner region)

0 L 1 1 1 | 1 |

0 0.2 0.4 0.6 0.8 1.0
X

Figutc?.l A Plolol'y{xl =fe"" —e )le”! —e ") (0 < x < 1)for £ = 0.1 and 0.025. Note that y(x)
1sslowly varyingfore « x < I (¢ — 0+ ). However, on theinterval 0 < x < O(e), y{x)rises abruptly from
0 and becomes discontinuous in the limit & — 0+. This narrow and isolated region of rapid change
is called a boundary layer.
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There are two standard approximations that one makes in boundary-layer
theory. In the outer region (away from a boundary layer) y(x)is slowly varying, so
it is valid to neglect any derivatives of y(x) which are multiplied by &. Inside a
boundary layer the derivatives of y(x) are large, but the boundary layer is so
narrow that we may approximate the coefficient functions of the differential equa-
tion by constants. Thus, we can replace a single differential equation by a sequence
of much simpler approximate equations in each of several inner and outer regions.
In every region the solution of the approximate equation will contain one or more
unknown constants of integration. These constants are then determined from the
boundary or initial conditions using the technique of asymptotic matching which
was introduced in Sec. 7.4.

The following initial-value problem illustrates these ideas.

Example 2 First-order nonlinear boundary-layer problem. From the initial-value problem
(x—eyly +xy=e"%  y(l)=1l/e (9.1.3)

we wish to determine a leading-order perturbative approximation to y(0) as ¢ =0+,

Although this is only a first-order differential equation, it is nonlinear and is much too
difficult to solve in closed form. However, in regions where y and y’ are not large (such regions are
called outer regions), it is valid to neglect eyy’ compared with e *. Thus, in outer regions we
approximate the solution to (9.1.3) by the solution to the outer eguation

Wy + Xy = €70

This equation 15 easy to solve because it is linear. The solution which satisfies v, (1} = 1/e is

Vour = (1 + In x)e™" (9.1.4)

Note that it is valid to impose the initial condition y(1) = 1/e on y,,,(x) because x = 1 Lies in an
outer region; x = | isin an outer region because (9.1.3) implies that y'(1) = 0,so y(1) and y'(1) are
of order 1 as e =0 +.

As x =0+, both y_ (x) and y, (x) become larger. Thus, near x = 0 the term cyy’ is no
longer negligible compared with ¢~ *. From the outer solution we can estimate that the thickness
& of the region in which £y’ i1s not small is given by

8/In & = Ofe), e—0+.

Thus, & =0+ as = — 0+ [in fact, d = Of« In &) as £ — 0+ ] (see Prob. 9.1), and there is a boun-
dary layer of thickness § at x = 0.

In the boundary layer (the inner region), x is small so it is valid to approximate ¢ * by 1.
Furthermore, since y varies rapidly in the narrow boundary layer, we may neglect xy compared
with xy'. Hence, in the inner region we approximate the solution to (9.1.3) by the solution to the
inner equation

[x — ey v, = L
This is a linear equation il we regard x as the dependent variable. lts solution is
x =gy, + 1)+ Ce™, (9.1.5)

where C is an unknown constant of integration. Since x = 0 is in the inner region, we may use
(9.1.5) to find an approximation to y(0).
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C is determined by asymptotically matching the outer and inner solutions (9.1.4) and (9.1.5).
Take x small but not as small as 5, say x = O(e"'?). Then (9.1.4) implies that y,,, ~ 1 + In x as
&0+ and (9.1.5) implies that x ~ Ce’ as ¢ — 0+. Thus, C = 1/e and a leading-order implicit
equation for y,(0) is

0= efy,,(0) + 1] + =01, (9.16)

When & = 0.1 and 0.01, the numerical solutions of (9.1.6) are y,(0) = —1.683 and y,,(0) =
—2.942, respectively. These results compare favorably with the numerical solution to (9.1.3)
which gives y(0) & — 1.508 when ¢ = 0.1 and y(0) = —2.875 when ¢ = 0.01. For both values of ¢
the relative error between the perturbative and the numerical solutions for y(0) is about lelne
Figures 9.2 and 9.3 compare the inner and outer perturbative approximations to ¥(x) with the
numerical solution.

Boundary-layer theory can also be a very powerful tool for determining the
behavior of solutions to higher-order equations.

Example 3 Second-order linear boundary-value problem. Let us find an approximate solution to
the boundary-value problem

ey"(x) + a(x)y'(x) + b(x)y(x) =0, 0=<x<1, ¥0)=4, y(l)=B, (9.1.7)

£=10.01

0.5 0.75 1.0
Exact
solution

vix)

Inner solution g (x)

Outer solution yg,(x)

o L

Figure 9.2 A comparison for £ = 0.1 of the exact solution y(x) to the nonlinear differential equation
{9.1.3) and the inner and outer approximations to y(x) using boundary-layer theory. The integration
constant in y, is determined from the initial condition y(1) = l/e. The integration constant in yu
is determined from asymptotic matching. A measure of the accuracy of the boundary-layer approxima-
tion is the magnitude of the error in the predicted value of y(0). When & = 0.1, y(0) = — 1.508 and
Vil0) = — 1683, an error of about 10 percent.

-3
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£=0.01

=1

Exact
solution

0
yix)

Inner solution y, (x)

QOuter solution y,,,(x)

Figure 9.3 Same as Fig 9.2 with ¢ = 0.1 replaced by & = 0.01. Here, y(0) = —2.875 and y,.(0) =
—2942, an error of about 2 percent. Observe that as ¢ — 0+, the inner and outer approximations
Vinlx) and you(x) hug the exact solution y(x) more closely. The error appears to be of order flne
(see Prob. 9.5).

as £ —0+. We assume for reasons to be made clear later that a(x)# 0 for 0 < x < 1, and for
definiteness we choose a(x) > 0; otherwise a(x) and b(x) are arbitrary continuous functions.

We shall analyze the behavior of y(x) as ¢ = 0+ by assuming that in this limit the solution
y(x) develops an isolated boundary layer in the neighborhood of x =0 and that there are no
other regions of rapid change of y(x) (s = 0+ ). We will then justify these assumptions by showing
that no other possibility is mathematically consistent.

The outer region is characterized by the absence of rapid variation of y(x): y(x), ¥'(x), and
y"(x) are all of order 1 (assuming that A and B are finite) as ¢ — 0+. Thus, in the outer region a
good approximation to (9.1.7) is the first-order linear equation

a(x)Vou(x) + b(x)Youlx) = 0. (9.1.8)

Observe that the outer approximation has reduced the order of the differential equation, thereby
making it soluble. The solution to (9.1.8) is yo,(x) = K exp [f} b(tVa(t) di], where K is an inte-
gration constant. In general, it is not possible for y,,(x) to satisly both boundary conditions
y(0) = A and y(1) = B. However, we have assumed that x = | lies within the outer region and
that x = 0 does not. Thus, we should require that y,,(1) = B, but not y,,(0) = A. It follows that
K=B:

Youlx) = B exp []’1 bltYat) d:l. (9.1.9)
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The outer solution (9.1.9) is a uniform approximation to the solution y(x)as ¢ - 0+ on the
subinterval & « x < 1 of [0, 1], where 8(¢) is the thickness of the boundary layer. It is now
becoming clear why we have assumed that a(x,) # 0 for 0 < x,, < L. Il a(x,) = 0 for some Xg 0N
this interval, then y,, (x) would be singular at x,, assuming that b{x,) # 0. This would violate the
assumption that y, y', and " are all of order 1.

The outer solution y,,,(x) is not valid in the neighborhood of x = 0 unless y,,,(0) = A, in
which case y,,(x) is a uniformly valid leading-order approximation to y(x) for 0 < x < 1.
However, since A is arbitrary, in general y,,(0) # 4. Thus, the boundary condition y(0) = A must
be achieved through a boundary layer at x = 0. In other words, the outer solution VoulX) is
approximately equal to y(x) as x approaches 0 from above until x = O(5). At this point Vourlx) is
approaching and already very close to y,,,(0), while the actual solution y(x) rapidly veers off and
approaches y(0) = A (see Fig 9.4).

To determine the behavior of y(x) when x = O(4), we may approximate the functions of a(x)
and b(x) in the original differential equation (9.1.7) by a(0) = « # 0 and h(0) = § because &
vanishes as £ — 0. Also, in the inner region, y is much smaller than y’ because y is rapidly varying.
Therefore, we may neglect y compared with y'. Thus, the inner approximation to (9.1.7) is the
constant coeflficient differential equation

EYin + 2Yin =0, (9.1.10)

Boundary layer

y0)y=4 1) =B
Exact y(x)
A-Cy e e ——
YourlX) Vin (x)
0 N 1.0

Inner region
.

r

Outer region

Figure 9.4 A schematic plot of the solution to the boundary-value problem &y"(x) + a(x)y'(x)
+ b(x)y(x) = 0[0 < x < 1; a(x) > 0] with y(0) = A, y(1) = B, in (9.1.7). The exact solution satisfies the
boundary conditions y(0) = 4 and y(1) = B and has a boundary layer (region of rapid variation)
of thickness Ofe) at x = 0. The outer solution y,,(x) is a good approximation to y(x) in the
outer region, but y,,(0) = 4 — C,. The inner solution is a good approximation to ¥(x) in the
inner region. The asymptotic match of y,(x) and y,,(x) occurs in the overlap of the inner and outer
regions; in the overlap region y,,(x) and y,,,(x) both approach the constant A — C 2.
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which is soluble. The most general solution to (9.1.10) is
Yulx)=C, + Ce™™"
Finally, we must require that y,(0) = y(0) = A. Thus,
VialX) = A + Cyle™™" = 1) (9.1.11)

The remaining constant of integration C, will be determined by asymptotic matching.

Since y,,(x)in (9.1.11) varies rapidly when x = O(e), we conclude that the boundary-layer
thickness & is of order & The asymptotic match of the inner and outer solutions takes place
between the rightmost edge of the inner region and the leftmost edge of the outer region, say for
values of x = O(g'*). For such values of x,

VinlX) ~ A = Cy, g0+,
and .
Vo) ~ Youl0) = Bexp [ J buwmdrl. £ 04

Thus, if y,,(x) and y,,(x) are to be good approximations to y(x) in the overlap of the inner and
outer regions, then we must require that C; = A — y,,(0).
To summarize, the boundary-layer approximation is

1

wx)~ Bexp lJ b(t),fu(r]dt], O<x<le—04+;

x

(9.1.12)

y(x) ~ Ae™*0= 4 B(1 — ¢~ #O=") exp JI h[::u’a(.!)dl], x=0(e), e -0+,

We may proceed further by combining the above two expressions into a single, uniform
approximation y,_,, valid for all 0 < x < 1. A suitable expression is

Yuritl®) = Yourl%) + ¥ialX) = Ymaienlx):
where y_,.., = 4 — C,. Hence,

+ e (9.113)

1 1
Yunielx) = B exp l[ bit)alr) dr A~ Bexp [[ bir)/air) de
x ‘o

To verify that y,{x) ~ y(x) (e — 0+), one must examine it for values of x in the inner and
outer regions and check that it reduces to the two expressions in (9.1.12). Equation (2.1.13)is a
uniform approximation in the sense that the difference between y(x) and y,,,{x)is unifo rmly Ofe)
(0<x<1,&-0+)(see Prob. 9.2)

We conclude this example with several observations. First, if a(x) < 0 throughout [0, 1],
then no match is possible with the boundary layer solution (9.1.11) at x = 0 because y;,(x) grows
exponentially with x/¢ unless C, = 0. On the other hand, il the boundary layer occurs at x = 1,
then matching is possible if a(x) < 0 (see Prob. 9.3} If a(x) = 0, it is impossible to match to a
boundary layer at x = 1 for the same reason that a match cannot be made at x = 0 when
a(x) < 0.

Second, there can be no boundary layer at an internal point x, (0 < x, < 1)ifa(xg) # 0.1fa
boundary layer did exist at x,, then within this narrow layer we could approximate the original
differential equation (9.1.7) by ey}s + a(xo)yl, = 0. The general solution to this equation is

Vin = Cl 4 Cz" -alzgh= = sghie

If a(x,) > 0 { <0), then no asymptotic match is possible at the left (right) edge of the boundary
layer unless C, = 0 because the approximation must remain finite. Thus, the matching conditions
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require that C, = 0. Hence, the outer solutions to the left and right of the boundary layer both
approach the same constant C, as x — x, from below and above. Thus, the outer solutions
approach each other and there 1s no internal region of rapid change.

In summary, then, when a(x) in (9.1.7) satisfies a(x) > 0 for 0 < x < | the boundary layer
always lies at x = 0 and when a(x) < 0 for 0 < x < | the boundary layer always lies at x = 1.

This completes our heuristic introduction to boundary-layer theory. Our pur-
pose in this section was to show how to convert difficult differential equations into
easy ones by seeking approximate rather than exact solutions. However, several
questions must be answered before the ideas of boundary-layer theory can really
be applied with confidence. For example, how can one know a priori whether the
solution to a differential equation has boundary-layer structure? How can one
predict the locations of the boundary layers? How does one estimate &, the
thickness of the boundary layer? How can we be sure that there is an overlap
region between the inner and outer regions on which to perform asymptotic
matching? Is it useful to decompose a solution into its inner and outer parts if one
is seeking a high-order approximation to the exact answer? These questions will
be answered in the next two sections.

9.2 MATHEMATICAL STRUCTURE OF BOUNDARY LAYERS:
INNER, OUTER, AND INTERMEDIATE LIMITS

Having demonstrated the power and broad applicability of boundary-layer
analysis in Sec. 9.1, it is now appropriate to formalize and restate more carefully
some of the rather loosely defined concepts. This section deals with the questions
about boundary-layer theory that were raised at the end of the previous section.

To keep our presentation as concrete as possible we will use Example 1 of Sec.
9.1 as a model boundary-layer problem and will analyze its mathematical struc-
ture in detail. You will recall that the function

-x _ e—m’!

e
y{x)=e—1___e~ T/e (9:2.1)

which is the exact solution of the boundary-value problem
ey" +(1+e)y+y=0, y(0)=0, y(1)= 1, (9.2.2)

has a boundary layer at x = 0 when ¢ — 0+. The function y(x) has two compo-
nents: e”*, a slowly varying function on the entire interval [0, 1], and e™ ¥ a
rapidly varying function in the boundary layer x < O(4d), where § = O(g) is the
thickness of the boundary layer.

In boundary-layer theory we treat the solution y of the differential equation as
a function of two independent variables, x and ¢ The goal of the analysis is to find
a global approximation to y as a function of x; this is achieved by performing a
local analysis of y as ¢ = 0+.

To explain the appearance of the boundary layer we introduce the notion of
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an inner and outer limit of the solution. The outer limit of the solution (%.2.1) is
obtained by choosing a fixed x outside the boundary layer, that is, d«x<l,and
allowing ¢ — 0+. Thus, the outer limit is
Youlx)= lim y(x)=e'"™ (9.23)
e=0+
The difference between the outer limit of the exact solution and the exact solution
itself, | y(x) — You(x)|, is exponentially small in the limit ¢ — 0 when 6 « x. ‘
Similarly, we can formally take the outer limit of the differential equation
(9.2.2); the result of keeping x fixed and letting ¢ - 0+ is simply

y:»ul + Yo = 0, {92'4)

which is satisfied by (9.2.3). Because the outer limit of (9.12) is a ﬁf'sr-order
differential equation, its solution cannot in general be required to satisfy _both
boundary conditions y(0)=0 and y(1)=1; the outer limit of (9.2.1) satisfies
¥(1) = 1 but not y(0) = 0. o

In other words, the small-¢ limit of the solution is not everywhere‘close to .th':
solution of the unperturbed differential equation (9.2.4) [the differen_nal equation
(9.2.2) with & = 0]. Thus, the problem (9:22) is a singular perj(urbauon problem.
The singular behavior [the appearance of a discontinuity in y(x) as e = 0+}
occurs because the highest-order derivative in (9.2.2) disappears when ¢ = 0

The exact solution satisfies the boundary condition y(0) = O by developing a
boundary layer in the neighborhood of x = 0. To examine the nature of tl-ns
boundary layer, we consider the inner limit in which £ — 0+ with x < O(c). In this
case x lies inside the boundary layer at x = 0. For this limit it is convenient to let
x = £X with X fixed and finite. X is called an inner variable. X is a better variable
than x to describe y in the boundary layer because,as ¢ » 0+, y varies rapidly asa
function of x but slowly as a function of X. It follows from (9.2.1) that

Vinlx) = Y(X) = lim yleX)=e—e'"% (9.2.5)

Similarly, the inner limit of the differential equation is obtained by rewriting
(92.2) as

1d*Y 1 dY
il il — 4+ Y=0, 9.2.6
¢ dX? (e 1) ax (026)
where we define Y(X) = y(x) and use
dy_dv by _EY
Cax ax’  Cdx! T ax®
Thus, taking the inner limit, ¢ — 0+, X fixed, gives
2 .
d"Y(X) + d—uY'"[X) = (). (9.2.7)
dx? dX
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Observe that the inner limit function (9.2.5) does satisfy (9.2.7) together with the
boundary condition Y,,(0) = 0.

Boundary-layer analysis is extremely useful because it allows one to construct
an approximate solution to a differential equation, even when an exact answer is
not attainable. This is because the inner and outer limits of an insoluble differen-
tial equation are often soluble. Once Vin and y,,, have been determined, they must
be asymptotically matched. This asymptotic match occurs on the overlap region
which is defined by the intermediate limit x — 0, X = X/e— o0, &—0+. For exam-
ple, if x = ¢*z with z fixed as ¢ — 0, then an intermediate limit is obtained. A
glance at (9.2.3) and (9.2.5) shows that the intermediate limits of Youl(x) and
Yin(X) = ¥a(X) agree: lim, ., y.(x) = limy_, ¥.(X)=e This common limit
verifies the asymptotic match between the inner and outer solutions. (It is not
generally the case in boundary-layer theory that the intermediate limit is a number
independent of x and X, as we will shortly see.) The above match condition
provides the second boundary condition for the solution of (9.2.7): Y,(00) =e.
Observe that although the x region is finite, 0 < x < 1, the size of the matching
region in terms of the inner variable is infinite. As we emphasized in Chap. 7, the
extent of the matching region must always be infinite.

A very subtle aspect of boundary-layer theory is the question of whether or
not an overlap region for any given problem actually exists. Since one’s ability to
construct a matched asymptotic expansion depends on the presence of this over-
lap region, its existence is crucial to the solution of the problem. How did we
know, for example, that the intermediate limits of You and ¥, would agree? That
is, how did we know that the inner and outer limits of the differential equation
(9:2.2) have a common region of validity?

To answer these questions we will perform a complete perturbative solution
of (9.2.2) to all orders in powers of ¢, and not Just to leading order. First, we
examine the outer solution, We seek a perturbation expansion of the outer solu-
tion of the form

YoulX)~ X yalx)", &0+, (9.2.8)
n=0
and restate the boundary condition y(1) = 1 as
=1L y(1)=0 y(1)=0, y1)=0 ... (929

Note that y,,,(x)in (9.2.8) is not the same as Your(X)in (9.2.3); y,u(x) in (9.2.3) is the
first term yy(x) in (9.2.8).

Substituting (9.2.8) into (9.2.2) and collecting powers of ¢ gives a sequence of

differential equations:
Yo + Yo =0, Yo(l) =1,
P:e+}'n=_)’:—1—y:-—1» yn{l}zosnzl
The solution to these equations is
yO - ei. —.‘i,

9.2.10)
Ya=0, nz=l (
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Thus, the leading-order outer solution, y,, =e' "%, is correct to all orders in
perturbation theory. This is the reason why in the outer region, x > &, the_dlffer-
ence between y(x) and y,.(x) is at most exponentially small (subdominant):
| ¥ = You| = O(e") for all n as e -+ 0+. ‘ ‘ ‘

Next, we perform a similar expansion of the inner solution. We assume a
perturbation series of the form

Yo (X)~ ¥ £Y(X), &-0+, (9.2.11)
n=0
and restate the boundary condition Y,,(0) = y(0) =0 as
Y,0)=0, n=0. (9.2.12)
Substituting (9.2.11) into (9.2.6) gives the sequence of differential equations:
Yo+ Y5=0, Y5(0) =0,

Y:+Y;|=_Y;|-I_Yn—lv }1![0):0‘"21

These equations may be solved by means of the integrating factor e*. The results
are
YolX) = Ap(1 — e 7%),
" : (9.2.13)
LX)=[ (e =Y \e))ds,  n=1,
0

where the A, are arbitrary integration constants. '
Does this inner solution match asymptotically,_order b)_r order in powers of ¢,
10 You(x)? To see if this is so, we substitute x = £X into y,,, in (9.2.10) and expand
in powers of &:
2y2 3y3
e’ X e X 14
.Vom(x)zel_‘:e(l—t:X"f'T BETH + ) (9.2.14)
Returning to equation (9.2.13), we take X large (X — oo) and obtain Y,(X) ~ 4,
(X = o0). Thus, comparing with the first term of (9.2.14), we have 4, = ?’ as we
already know. Now that Y, is known, we may compute Y, from (9.2.13):

Yi(X) = (4, + Ap)(1 — e™¥) — eX.

Asymptotic matching with y,,, [comparing Y, (X)), when X — go,_with theysa;c)m_d
term of (9.2.14)] gives A, = —e, so Y,{‘X} = —eX. Similarly, Y,(X)=
e[(—1)/n!]X". Hence the full inner expansion is

YlX)=¢ i e"[rl):xu —el Xzl X etk (9.2.15)
in = n

i i ion i i i i t only for
Evidently, the inner expansion is a valid asymptotic expansion no
values of X inside the boundary layer [X = O(1)] but also for large values of X
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[X =O(e7%), 0 < « < 1). At the same time the expansion for y,,,(x) is valid for
£« x <1 (e—=0+) [Voulx)is not valid for x = O(e) because it does not satisfy the
boundary condition y(0) = 0; nor does it have the boundary-layer term ¢!~ *
which is present in ¥,,(X).] We conclude that to all orders in powers of & it is
possible to match asymptotically the inner and outer expansions because they
have a common region of validity: ¢ « x « 1 (¢ —0+).

We have been able to demonstrate explicitly the existence of the overlap
region for this problem because it is soluble to all orders in perturbation theory. In
general, however, such a calculation is too difficult. Instead, our approach will
always be to assume that an overlap region exists and then to verify the consis-
tency of this assumption by performing an asymptotic match. In the above simple
boundary-value problem, we found that the size of the overlap region was
independent of the order of perturbation theory. In general, however, the extent of
the matching region may vary with the order of perturbation theory (see Sec. 7.4
and Example 1 of Sec. 9.3).

One final point concerns the construction of the uniform approximation to
y(x). The formula used in the previous section to construct a uniform approxima-
tON iS Yynir(X) = YialX) + You(X) = Vmaren(x), Where youcn(x) is the approximation
to y(x) in the matching region and y,,(x) is a uniform approximation to y(x).
This formulais applicable here too. For the boundary-layer solution to (9.2.2),itis
easy to verify that if yi,(x), You(x), and Ymacn(x) are calculated to nth order in
perturbation theory, then |y(x) — y,.,(x)| = O(e"*}) (e = 04+;0<x < 1).

The differential equation (9.2.2) is sufficiently simple that Yunir(x) can be cal-
culated to all orders in perturbation theory. It follows from (9.2.10) for y,u(x),
(9.2.15) for y;,(x), and the result y,,,,..(x) = €' ~* that

Yunit = el—x - “)1 -
is the infinite-order uniform approximation to y(x).

1t is remarkable, however, that this expression, which is the result of summing
up perturbation theory to infinite order, is actually not equal to y(x) in (9.2.1).
Thus, although the perturbation series for y,ir is asymptotic to y(x) as £ — 0+, the
asymptotic series does not converge to y(x) as n, the order of perturbation theory,
tends to co; there is an exponentially small error, of order ¢~ %, which remains
undetermined. Boundary-layer theory is indeed a singular, and not a regular,
perturbation theory.

Why is boundary-layer theory a singular perturbation theory? The singular
nature of boundary-layer theory is intrinsic to both the inner and outer expan-
sions. The outer expansion is singular because there is an abrupt change in the
order of the differential equation when & = 0. By contrast, the inner expansion is a
regular perturbation expansion for finite X (see Example 2 of Sec. 7.1). However,
since asymptotic matching takes place in the limit X — oo, the inner expansion is
also singular (see Example 4 of Sec. 7.2). Another manifestation of the singular
limit ¢ — 0 is the location of the boundary layer in (9.2.1); when the limit £ — 0+ is
replaced by £ — 0—, the boundary layer abruptly jumps from x =0 to x = 1.
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(E) 9.3 HIGHER-ORDER BOUNDARY-LAYER THEORY

In Secs. 9.1 and 9.2 we formulated the procedure for finding th‘e leading-order
boundary-layer approximation to the solution of an ord:_nary differential equa-
tion: i.e.. to obtain outer and inner solutions and asymptotically match thern in an
overlap region. The self-consistency of boundar}r-Iayer theory dcper}ds on the
success of asymptotic matching. Ordinarily, if the inner and outer solutions match
to all orders in ¢, then boundary-layer theory gives an asymptotic approximation
to the exact solution of the differential equation. Accordingly, in Sec. 9:2 we
showed how to use boundary-layer theory to all orders in powers of £ for a simple
constant-coefficient differential equation. ‘

In this section we give an example to illustrate how bounda‘ry-layer th eory is
used to construct higher-order approximations for more oompl:f:ated equations.
As we shall see, an interesting aspect of boundary-layer problems is that the size of
the matching region depends on the order of perturbation theory.

Example 1 Boundary-layer analysis of a variable-coefficient differential equation. We wish to
obtain an approximate solution to the boundary-value problem

e+ (1+x)y +y=0 yO)=1Lyl)=1 (93.1)

which is correct to order &*, . o .
We seek an outer solution in the form of a perturbation series in powers ol &:

Youl®) ~ yolx) + eyy(x) + lys(x) + -, £=0+. (93.2)

Since 1 4+ x > 0for 0 < x < 1, we expect a boundary layer only at x = 0 (see Sec. ?.1). Thus, the
outer solution must satisly the boundary condition y,,,(1) = 1 and we must require that

yoll)=1,  »(0)=0, nzlL (9.3.3)
Next, we substitute (9.3.2) into (9.3.1) and equate coefficients of like powers of & This

converts (9.3.1) into a sequence of first-order inh 2 q

(14 %o +¥o =0 (L+xW, + 3= =yo (L+xXPa+y2= —Vioooo
The solutions to these equations which satisfy the boundary conditions (9.3.3) are
yolx) = 2(1 + x)” '
yalx) =201+ x)72 =1+ x)74
palx)=6(1 + %) =41 +x)? =31 +x)7"

Thus,
2 1
T+xP 2A1+x)

6 __1 1
(T+xP 2(l+xf 4(1+x)

2
le[.K} ~ T-i-:( +E

s b Em04 (934)

i es the determination of the outer solution to second order in powers of &
e ‘:,sn:::etcted the outer solution (9.3.4) does not satisfy the boundary oondiliop ¥0) =51, ls::h:
boundary layer at x = 0 is necessary. As in Example 3 of Sec. 9.1, wee_x[?vc( the ttugkmss :r he
boundary layer to be Ofg). (In Sec. 9.4 the procedure for det_errmn.:ng the Ithkl‘lﬂ?: l
boundary layer is explained and examples of boundary layers having thicknesses other than £ are
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given.) Therefore, we introduce the inner variables X = x/eand Y, (X) = y,(x). In terms of these
variables (9.3.1) becomes
dl‘]f“‘

dy,
Tt L) R ke =0 (9.3.5)
If we represent Y,,(X) as a perturbation series in powers of &,
Yo X) ~ YolX) + ¥, (X) 4+ 2Vy(X) -, &0+, (9.3.6)
then the boundary condition y(0) = | translates into the sequence of boundary conditions
Y0)=1, Y¥(0)=0, ¥y0)=0 ... (93.7)
Substituting (9.3.6) into (9.3.5) and equating coefficients of like powers of & converts (9.3.5)
into a sequence of second-order cc oefficient equati
'y, d¥Y,
—_—t =0,
dx*  dX
4y, dv, dv,
— w2, 9.3.8
dx® " dx ax ° (938)

d*Y, dY. dY,
:+ 1 _y4h
dX dx dXx

Each of the solutions of (9.3.8) which satisly the boundary conditions (9.3.7) have one new
arbitrary constant of integration:

YolX) =1+ Agle™* ~ 1), (9.3.9)

YiX)= =X + Ag(—4X%e "+ X)+ A, (e = 1), (9.3.10)
Yy(X)=X? = 2X + Ag(iX*e ¥ - X + 2X)
+A(=4XZeT N+ X))+ Ayfe = 1) (9.3.11)
This completes the determination of the inner solution to second order in powers of &.
We determine the constants 4, 4, 4,, ... by asymptotically matching the inner and outer
solutions. The match consists of requiring that the intermediate limits [e— 0+, x =0+,
X = x/e = + 0] of the inner and outer solutions agree.

First, we perform a leading-order (zeroth-order in £) match. As x — 0+ in the outer solution
(9.34). v, (x) =2+ Oz, x) (x =0+, £ = 0+). where the symbol

Ofa, b, ¢, ...) means Ofa) + O(h) + Ofc) + -,

The error term O(r. x) indicates that we have neglected powers of & higher than zero and that we
have expanded the solution in a Taylor series in powers of x and have neglected all but the first
term.

On the other hand, in the limit X — o« and £X = x — 0+ the inner solution becomes
Y (X)=1- A, +OfX) eX -0+, X o0, (9.3.12)

where the correction of order £X arises from the term £Y,(X ) in the expansion of ¥,,(X). The inner
and outer solutions are required to match to lowest order [that is, y,,(x) ~ Y,,{X) in the inter-
mediate limit]. Thus, 2 = | — A, or 4; = — L. This completes the leading-order match. Observe
that the match oecurs lor values of x for which 1 « X = x/e as well as x <« 1. Thus, the size of the
overlap region is determined to leading order as e« x «< 1 (g + 04 ).

Mext, we match to first order in &. We expand the outer solution, keeping terms of order &
and x but discarding terms of order &2, x?, and ex. The result is

VoulX)=2=2x + 3+ 0", ex. x?). x—=0+. -0+, (9.3.13)
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We also expand the inner solution for X » 1 (x outside the boundary layer), but neglect terms of
order £2X? = x*, £*X = ex, and £°. The result is

Y (X)=1— Ay —eX +edX —ed, +O(x?), X =0+ X o0 (9.3.14)

Matching (9.3.14) with (9.3.13) gives 4, = — 1, which we already know, and 4, = —3/2.

Observe that for a successful match to first order it is necessary to neglect terms of order £2,
x*, and &x, compared with x and &. If we had retained some of these terms, we would have found
that there is no way to choose the constants of integration to make (9.3.13) agree with (9.3.14)
Since matching now requires that x* < &, the size of the overlap region is smaller than it was in the
leading-order match. Its extent is & « x «&'? (- 0+).

To perform a second-order match, we expand the inner and outer solutions and neglect
terms of order £, £2x, £x?, and x*. The result is

Youl¥) = 2= 20 + 202 + &} - Yx) + He* + Ofe*, £¥x, ex, x*),
e+0+, x=0+,
and Y (X)=1- Ag = eX +eAgX — ed, + £2X? = 263X - 24, X2 + 2624, X (9315)
+ 874, X — 24, + O, £'x, ex?, X)),

eX =04, X — .

Matching requires 4, = —1, 4, = =3/2, 4, = -21/4

Since one must neglect x* compared with & to obtain a match in second order, it follows
that the size of the matching region, & « x <« £ (g — 0+ ), is smaller than it was in the first-order
calculation.

The process of asymptotic matching may be carried out to all orders in powers of & (see
Prob. 9.10). And as the order of perturbation theory increases, the size of the matching region
continues to shrink. In nth order the common region of validity of the inner and outer expansions
is £« x « &' (g 0+) However, the extent of the matching region in terms of the inner
variable is still infinite as g~ 0+: 1« X «< ™ """V (5= 0+)

Once the boundary-layer solution is determined, one may construct a uniform approxima-
tion to the solution y{x) using the formula y,;(x) = YoulX) + VialX) = Venatenlx), where — I
the expansion of either the inner or outer approximations in the matching region. To third order
in & (see Prob. 9.12), '

2 L (2]
(T;';}s‘z(.”]*(z" z]"

Yunit, 3(¥) = (&r - e"‘) T

6 1 1 1 3 21y J
2 - - - _x‘__xl_'____ X
P E 2T e a1+ x) (s PR
Lol 3 1 s
T 2T exp AT+xP 16(1+x)
Lyo 3 ye 2y 199 . -0 93.16
+(Ex T +§X 8 Jv + 0@, =0+ (9316)

This expression is a uniform approximation to y(x) over the entire region 0 < x < I

| Fumiealx) — ¥(x)| = Ofe*). -0+ (9.3.17)



434 GLOBAL ANALYSIS

Also, y,qi(x) may be used to approximate the derivatives of y(x):
|Vomira(x) = ¥(x)] = O(*), =0+, (9.3.18)
|Vomirslx) = ¥7(x)] = Ofe*), &= 0+, (9.3.19)

for 0 < x < 1 (see Prob. 9.13).

In Figs. 9.5 to 9.8 we show how well y,..(x) approximates the exact solution y(x). We plot
the percentage relative error [percentage relative error = 100(y,,; — y¥y] for the first four uni-
form approximations y,. . (n =0, 1,2, 3). ¥.u_, is the uniform approximation to y(x) accurate
to order &"; for example, y,.ir , i5 obtained from (9.3.16) by neglecting the terms containing & and
&*. Figures 9.5 to 9.8 suggest the asymptotic nature of the boundary-layer approximation; the
uniform approximation in (9.3.16) is the first four terms of a divergent asymptolic series in powers
of & (see Prob. 9.14)

Relative error (%)

L

Figure 9.5 A plot of the percentage relative error between the exact solution y(x) to the boundary-
value problem in (9.3.1) with £ = 0.05 and the zeroth-order, first-order, second-order, and third-order
uniform approximations to y(x) obtained from boundary-layer analysis [see (9.3.16)]. The percentage
relative error = 100[y,aie(x) — y(x))/¥(x). The graphs in this plot lie below the x axis because y,qi
underestimates y(x). Observe that as the order of perturbation theory increases the relative error
decreases. However, for sufficiently large order the asymptotic nature of boundary-layer theory will
surface and the relative error will increase with order.

)
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Figure 9.6 Same as in Fig. 9.5 except that ¢ = 0.1

9.4 DISTINGUISHED LIMITS AND BOUNDARY LAYERS OF
THICKNESS # ¢

Until now, most of the boundary layers we have seen have had thickness = ¢.In
general, however, the thickness of a boundary layer need not be of order ¢ as
¢ — 0+. There are examples where & = O(&"/?), & = O(¢*), and so on.

The determination of & requires the notion of a distinguished limit which
involves nothing more than a dominant-balance argument. We return to Example
3 of Sec. 9.1 to illustrate the relevant techniques. The solution of the boundary-
value problem

ey" +a(x)y +b(x)y=0, y(0)=4,y(1)=B, (94.1)
has a boundary layer at x = 0 if a(x) > 0 (0 < x < 1). In the inner region we let
y(x)= Yu(X), X = x/3, so

dy _1dY,(X)

dx & dX 042)
d’y 1 d*Y,(X)
ax? 8 dx*
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Order |

Relative error (%)

- Order 0

Figure 9.7 Same as in Fig. 9.5 except that &£ = 0.2,

Thus, the differential equation (9.4.1) assumes the form
e d*Y, a(éX)dY,

Faxr T s ax
Our task is to determine &(). There are three possibilities to consider:
d(e) << &, 6(e) ~ ¢, and & « 3(e) as ¢ — 0. In the first case, & « ¢, we may approxi-
mate (9.4.3) by d*Y,, /dX?* = 0. Thus, Y;,(X) = A + cX, which satisfies the boun-
dary condition Y,,(0) = A. This inner limit does not match the outer solution
because limy_.,, Y;,(X)= o unless ¢ = 0, while y,,(0) is finite and not generally
equal to A.
Similarly, £ « 6 in (94.3) gives a(0)dY, /dX =0, so Y, (X)= A because
Y.,(0) = 4. Again, no match is possible if A # y,,.(0).
Finally, the choice 6 = ¢ in (9.4.3) gives the leading-order equation
dz 1/I.l'| deIII
ax: PO
The choice § = ¢ is called a distinguished limit because it involves a nontrivial
relation (a dominant balance) between two or more terms of the equation (9.4.3);

+ b(6X )Y,y = 0. (9.4.3)

0.
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Figure 9.8 Same as in Fig. 9.5 except that ¢ = 0.3. For this value of ¢ the asymptotic nature of per-
turbation theory is evident; optimal accuracy is reached in first order and the relative error
increases with the order when the order is greater than 1.

two terms are of comparable size while the third is smaller. The cases §(¢) « ¢and
€ « d(c)as ¢ — 0 are undistinguished. In general, only the distinguished limit gives a
nontrivial boundary-layer structure which is asymptotically matchable to the
outer solution.

In the above argument we have used the notation é ~ ¢ and have neglected
the possibility that § ~ ce where ¢ is a constant. This is because we are only
interested in the order of magnitude of the boundary-layer thickness. We will
always ignore any constant of proportionality.

Example 1 Boundary layer of thickness § = "2, Consider the boundary-value problem
ey —x*y —y=0, )y =y(l)=1 (9.4.4)

We will show that the leading-order solution to this problem has two boundary layers, one at the
[T

right boundary x = 1 for which 4 = ¢ and one at the left boundary for which § = g%,
The leading-order outer solution satisfies —xy, — v, = 0, 50

yolx) = Coe'™. (9.4.5)
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Next, observe that the coefficient of ' in (9.4.4) is negative at x = 1. Thus, on the basis of
Example 3 of Sec. 9.1 we expect that a boundary layer of thickness £ will develop at x = 1 as
&—0+. In terms of the inner variable X = (I — x)/¢, the leading behavior in this boundary layer
is governed by d*¥, ., /dX* +dY, . /dX = 0. Hence,

Yo rgnd X) = Ao + Boe ™%, (9.4.6)

The boundary condition y(1) = | requires that Y, ,.(0) = 4, + B, = 1 and matching to the
outer solution (9.4.5) in the neighborhood of x =1 requires that A, = Cge. Hence,
By=1—Cge. But this does not complete the solution because Cy is still undetermined.
Moreover, as x — 0+ the outer solution (9.4.5) becomes infinite unless C, = 0, so it certainly
cannot satisly the boundary condition y(0) = 1.

Thus, we must have a boundary layer at x = 01if we are to satisfy y(0) = 1. To determine the
thickness of this layer, we use Z as the inner variable and substitute x = 2 and (9.4.2)into (9.4.4)
to obtain

e d? r;n.lll‘l ngm.klr

5 azt oz 5z Yoo tenn =0,
where ¥,, ..n{Z) = y(x) in the left boundary layer. The distinguished limits are &/6* ~ 8, 8 ~ I,
or £/6* ~ 1 as £ — 0+, The first case, § ~ £'/?, is inconsistent because the undifferentiated term is
dominant; the second case, § ~ 1, reproduces the outer limit. Thus, the only consistent choice of
boundary-layer scale is § = ¢'/. With this choice (9.4.4) becomes

@¥ipre
T Vo = 122

dll"II'!.]IfI ‘.

The leading-order inner solution Y, .. (Z) therefore satisfies d*Yy 1o fAZ? = Yy 10, = 0,
whose solution is

Yo.1en(Z) = Doe” + Eqe 2, (9.4.7)

The boundary condition y(0) = 1 implies that ¥, ,.,(0)=1 or that D, + E; = 1.

Finally, we must match Y, ,,(Z) to the outer solution y,(x). However, no match is possible
unless Dy, = 0; otherwise the inner solution grows exponentially as Z — cc. Matching also re-
quires that C, = 0; otherwise the outer solution y(x) grows exponentially as x — 0+. It follows
that Ay =Cy =Dy =0, B, =E,= 1.

A uniform approximation to y(x) over the entire interval 0 < x < 1, including both boun-
dary layers, is given by

Yunit = Yo + Yo, 1en + Yo, cigm = Yiets maten — Veight maren
- ey g, (948)

Thus, outside the boundary layers at x = 0 and x = 1, the solution is exponentially small. Figures
9.9 and 9.10 compare the exact solution to (9.4.4) with a plot of the leading uniform asymptotic
approximation to y(x) in (9.4.8) for ¢ = 0.05 and ¢ = 0.005. Observe the close agreement.

Example 2 Higher-order treatment of & = &''* boundary layer. In this example we will obtain a
leading- and higher-order approximation to the solution of the singular perturbation problem

ey 4 xly —y=0, y0)=p(l)=1 (9.49)

Note that this differential equation differs from that of the previous example by a sign change in
the one-derivative term.

This problem does not quite satisfy the assumptions of the third example of Sec. 9.1, There,
we assumed that a{x) > 0 (0 < x < 1); in this example a(x) = x?, so this inequality is violated at
the left boundary. Nevertheless, a(x) = 0 for all other x, so the conclusions of Sec. 9.1 (that a
boundary layer could not occur at x = 1 or at an interior point) are still valid. By elimination,
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L2 &=0.05

0.9

0.6 Exact solution y(x)
/ Uniform asymptotic approximation
to y(x) from boundary-layer theory
0.3
| | 1 |
0 0.2 0.4 0.6 0.8 1.0

X

Figure 99 A comparison of the exact solution y(x) to the boundary-value problem in (9.4.4) with
the leading uniform asymptotic approximation to y(x) from boundary-layer theory (9.4.8). For this
plot £ = 0.05.

then, a boundary layer can and indeed does occur at x = 0. As in the previous example, the
boundary layer at x = 0 has thickness § ~ £'/%.

In general, whenever a boundary-layer thickness is not of order ¢, the matching of the inner
and outer solutions is affected in a peculiar way. Recall that in the first example of Sec. 9.3, where
the boundary-layer thickness was &, the first term of the inner solution and the first term of the
outer solution were matched. Next, we matched the first two terms of the inner and outer
solutions and, finally, we matched the first three terms of each solution. In general, an rith-order
match in this problem consists of matching the first (n + 1) terms of the inner and outer solutions.

In the present example, as in the previous example, the boundary layer is comparatively
thick (¢ « & = £"* as ¢ — 0+ ), so many more terms of the inner solution are required to describe
its behavior in the matching region. Specifically, when the boundary-layer thickness is £'?,
(2n — 1) terms of the inner expansion are required to match to n terms of the outer ex pansion.
This and the next example will illustrate this phenomenon.

We begin the analysis by assuming an outer expansion of the form

Vourl®) ~ ¥olx) + &y, (x) + -, =0+
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1.5

0.9

£ =0.005

0.6

Exact solution v{x)
0.3 . o
Uniform asymptotic approximation to
»(x) from boundary-layer theory
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0 0.2 0.4 0.6 0.8 1.0
x

Figure 9.10 Same as in Fig. 9.9 except that & = 0.005. Observe that the left boundary layer, whose
thickness is of order £'2, is much larger than the right boundary layer, whose thickness is of order .

This series leads to the sequence of equations
o=yo=0. Xy -y=-y. nzl

whose solutions are

z

Yolx) = Coe™ !,
(9.4.10)
yilx) = Coldx™> = dx7*)e "1 4 C e 1,

and so on. Since the coefficient of ¥ in (9.4.9) is positive at x = 1, we conclude from Example 3 of
Sec. 9.1 that there cannot be a boundary layer at x = 1 when & = 0+. Thus, y_,(1) = | and the
constants C,, C,, ... are all determined: C, = ¢, C, = 3¢/10, ...

A boundary layer is required at x = 0 because the outer solution does not itsell satisfy the
boundary condition y(0) = 1. To reveal the structure of this boundary layer, we introduce the
inner variable X = x/3. In terms of X, (9.4.9) becomes

d*Y, dy,
5 axs O G Ym0
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where y; (x) = ¥, (X). As in the previous example, the only consistent distinguished li mit gives
& =£"?, and with this choice (9.4.9) becomes

d*y, —)
i~ e —c"’X"d—;. (94.11)

Since the small parameter in this equation is £"'? and not ¢, the appropriate perturbation
expansion of the inner solution is

Yo X)~ YolX) + e Y (X)) +eVy(X) + . &=04. (94.12)
Substituting (9.4.12) into (9.4.11) gives

d
dx

la

wle

dY,
Xt nz=

o
- Y, =0 — 1.
2 0 d.x -

dx
The solutions to these cquélwns form =0, 1, and 2 have the form
Yo{X) = Age™ + Bye™ ",
Yi(X) = Ao(—4X* + 4X* — 1X)e"
+ By X —4X? —1X)e " + A, €" + Bie 7T,
Fo(X) = Ag(dX0 — X5 + JoX* 4 JX7 = JX7 4 §X)e (94.13)
+ Byl X® + X + X — X — HX - 5 X)e
+ A= +1XT = 1X)e" + B, (—1X° — 1 — 1)
+ Ay’ + Bye.

It is not possible to match the inner and outer solutions unless A=A, = A, = =0;
exponentially growing terms are discarded because they blow up in the intermediate limit x — 0,
X — o, £— 0+. The remaining constants By, B, ... are determined by the boundary condition
Y(0)=y0)=1: By=1, B, =B, =--=0. It is rather remarkable that the outer solution
(9.4.10) and the inner solution (9.4.13) match asymptotically in the overlap region X — co, x - 0,
£—+0+ for all values of the constants C,, C,,..., By, By,...,s0 long as A, =4, =---=0,
because both the inner and outer solutions are exponentially small. There is no interaction
between the outer solution and the inner solution in this problem!

To leading order, the uniform asymptotic approximation to y(x)for 0 < x < l is

Yomio =€V +exp (—x//2) + Of"?),  £—0+. (9.4.14)

To first order in & we need one additional term from the outer expansion and rwo additional terms
from the inner expansion to construct the uniform expansion. The result is

1 1
Vanir,1 = €' ""{l - iax" - gr.t" + —E)

/— .\'3 XI x XE XE
+clp(-zf\8][1—§—rﬁ—;+:&:i+m

X‘ X’ .\'2 X‘/E 32
+9—ﬁe—;§ﬁ—ﬁ——f)+t)ls ) e 04+. (9.4.15)
In general, it is necessary to compute two new terms in the inner expansion for every new term in
the outer expansion.

Figures 9.11 to 9.13 compare the above two uniform approximations to y(x) with the actual
numerical solution to y(x) for & = 0.05, 0.01, 0.001. Note that y,; , does not approximate y{x)
better than y,., o until £ is as small as 0.001.
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1.5

Exact y(x)

1 | 1 1
0 0.2 0.4 0.6 0.8 1.0
X

Figure 9.11 Comparison of exact and approximate solutions to &y" + x*y' — y = 0 [y(0) = y(1) = 1]
for & = 0.05. The two approximate solutions Vyair, olx) and yuur, 1(x) are derived using boundary-layer
theory and are given in (9.4.14) and (9.4.15). Note that even for this small value of & Yuair,o(x) is 2
better approximation to y{x) than y,.,,(x) Note that the higher-order approximation y,qir, 1(x)
crosses the exact solution y(x) more frequently than y,.olx); for very small &, Yy, 1(x) hugs the
curve y(x) more closely than y,u ol(x) (see Figs. 9.12 and 9.13).

Example 3 Boundary-layer problem involving In e. Consider the singular perturbation problem
g +xy —xy=0, y0)=0y)=e (9.4.16)

Again, in this example there is a boundary layer at x = 0 whose thickness is of order eli?,
and not &. However, the novelty of this example is that the inner expansion is not just a series in
powers of £'/2, Terms containing In & also appear.

The outer expansion is obtained by assuming that

Youlx) ~ yolx) + ey, (x) + Eyy(x) + -1 £=0+. (9.4.17)

Substituting (9.4.17) into (9.4.16) gives yp — yo = 0, Xy, — Xy, = — Yoy (0 = 1} A boundary
layer may appear at x = 0 but not at x = 1, so the boundary condition satisfied by y,.(x) is
Youl1) = €. The resulting outer solution is

1 3

e +E + 0y e—=0+. (9.4.18)

1 2
YoulX) ~ € — ge* In x + e2¢* i[lnxy_; +
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Figure 9.12 Comparison of the errors (not the relative errors) between the exact solution of &y
+ x%y" — y = 0[y{0) = y(1) = 1] for £ = 0.01 and the zeroth- and first-order uniform approx imations
10 Veuserlx) (see Fig. 9.11). Note that £ = 0.01 is still too large for yya,1(x) to be a better approx-
imation than y,.q o(x)

Since yu,(0) # 0, there must be a boundary layer in the neighborhood of x = 0. Substituting
(9.4.2) into (9.4.16) gives

¢ 'Y, 4%

——— -8XY, =0
& dX? dX

Thus, if 5(e)/e"'? — 0 or @ as £ — 0, matching to the boundary condition Y,,(0) = 0 and the outer
solution for X — a0 would be impossible. The distinguished limit is §=¢" 50

&y,  _dy,
24X —— =X Y, =0 9.4.19
T (0419)
We would like to represent Y, (X) as a perturbation series, and in (9.4.19) the small pa-
rameter is £V (and not £). Thus, it would seem ble to an expansion of the form
Yo(X) ~ Yo(X) + 63V, (X) + eHy(X) + o, £=04, (9.4.20)

where the boundary condition y(0) = 0 becomes ¥,(0) =0 (nz0)
Substituting the expansion (9.4.20) into (9.4.19) gives Y5 + XY, =0, whose solution is

X
YlX) = A, [ e, (9.4.21)
o



BOUNDARY-LAYER THEORY 445

444 GLOBAL ANALYSIS 30

0.012

241
0.010
0.008 =+ Yunif, 0%) ~ Yexae (¥)

1.8
0.006

Uniform approxi-
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Exact solution y(x)
Funir, 1():) _ye.ucl(x)
0.002 :
/ //_\ 0.6k
0 | | | 1 ]
0.2 0.4 0.6 0.8 1.0
- x
=0.002 | 1 1 1
0 0.2 0.4 0.6 0.8 1.0
s x
—0.004 ™= Figure 9.14 Comparison between the exact solution y(x) to ey” + xy' — xy =0 [y{0) =0, y(1) = ¢]

and the lowest-order uniform approximation to y(x) obtained from boundary-layer analysis [see

Figure 9.13 Same as in Fig. 9.12 except that & = 0.001. This value of ¢ is sufficiently small for (9.4.23)]. The value of ¢ is 0.05.

Yunit, 1(X) to be a better approximation to y.(x) than yu. olx)

where A, is a constant to be determined by matching. Also, Y, + XY, = XY,_, (n > 1), 50 the
relation between ¥ and ¥,_, is

X X t

V(X)=A, [ e ar 4| e dt| @Y, (5) ds. (9.422)
o ‘o o

These integrals cannot be evaluated in closed form; nevertheless, we can still match the inner and

outer solutions.

Matching is done by taking the intermediate limit ¢ = 0+, x =0+, X - o0. To leading
order, the outer solution (9.4.18) becomes y.;"_(‘f) =1+ O(x, e Inx), (g/x* =0, x = 0+), while
the leading-order inner solution is ¥o(X) ~ ,/n/2 A, (e = 0+, X — 20) with exponentially small
corrections. It follows that 4, = \@. Thus, to leading order, a uniform approximation to the
solution of (9.4.16) is

2. 2™
Yunit, olX) = € + \/: [ e idt— 1 =& - \/i [ e (9.4.23)
ey nly

A comparison between this approximation and the exact solution to (9.4.16} is given in Fig. 9.14.
To second order, the intermediate limit of the outer expansion is

Vourl¥)~ 1+ x +4x? —elnx + de®x 72 + Ix* —ex In x

=37+ O(x%, ex? In x, £¥(In x)%, £2/x%), g =0+, x-0+.  (9.4.24)

We must also compute the intermediate limit X — oo of the inner expansion:
dy,
dx

to within exponentially small terms. Therefore,

n
Y,(XJ~J5»4°X+C,, X = o,

X
- -x2 -xa [ 2 ~ EA X -
=Ae +e | 25 ofs) ds 5 Ao .
o

to within exponentially small terms, where C, is an integration ¢ which sub the
constant 4, in (9.4.22). Proceeding similarly in next order, we find that

Ya(X) ~ J;AD&X’—IH X+1X)4+C,X+C,+0(X %), X-ox,

and  Y(X)~ J;sutw - XIn X -3X7)+ C,(3X* ~In X)

+C X +Cy+0(X77), X = a0,

where C, and C, are integration constants.
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The matching condition on y,,,(x) and ¥,(X) is therefore

1 1 1 3
T+x+-xt—elx+-elx 4 -x?—gxInx—-glx!
3 eln x + 5 &'x g -exinx 6%
T 1z ] 2 ! -2 I.'I.I’Z 3 32 3 Aly-1
= [540|1 +¢ X+E.=.X —zlnX+EsJ( +3£ X' —¢ XInX—Ee X

1
+e'2C, (I +e'?X + icX‘ -¢ln XJ +eC,(1 + £V2X)

+e¥2C, + O(x*, ex* In x, &(In x)%, &¥/x*), x =0+, gx* =0+, (9.4.25)

with X = xe~ ", However, matching is not possible here because, when the right side of (94.25)1s
rewritten in terms of x = £"'2X, terms of order ¢ In & appear!

Apparently, the assumption that the inner solution is a series in powers of £/ is naive.
Instead, the inner expansion in (9.4.20) must be modified to read

YalX) ~ Yo(X) + 613Y,(X) + £X,(X) + & In £9,(X) + €22¥,(X)
+e el (X)+ -, e-0+.

Terms of order & In ¢, £*(In £)?, and so on, must also be included in higher order.

In the intermediate matching region the additional terms contribute to the right side of
(9.4.25) as

7.
zhz\};—'dz{] +&"2X) + ¥ In eC5,

where C, is a new integration constant. Now the match in (9.2.25) can be accomplished. The
matching conditions are 4, = ./2/r, A, = —44,.C, =C,=C,=C, =0,

9.5 MISCELLANEOUS EXAMPLES OF LINEAR BOUNDARY-
LAYER PROBLEMS

This section is a collection of six examples of linear differential-equation
boundary-value problems which can be solved approximately using boundary-
layer theory. We have selected these problems because they illustrate the broad
spectrum of analysis that boundary-layer theory entails. The first two examples
involve higher-order differential equations.

Example 1 Third-order boundary-value problem. Consider the third-order boundary-value
problem

ey"(x) = ¥ix) + xylx) =0, y(0)=y(0)=p(1) =1, (9.5.1)

in the limit ¢ = 0+ The novelty of this tricky third-order problem is that boundary layers occur
atboth x=0and x = 1,

In the outer region which contains no boundary layers, we assume an expansion of the form

YoulX) ~ ¥olx) + £p,(x) + e2y;(x) + --- (£ = 0+ ). This reduces (9.5.1) to a sequence of first-order
differential equations:

, ]ﬂ, n=0,
Yo~ 1}'.‘1

1

9.52
n =0 ( )
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We find that
Yolx) = ape™?, (9.53)
yilx) = [aolx*/4 + 3x/2) + a,Jer?, (9.5.4)

and so on.
Next, we consider the possibility of a boundary layer of thickness & at x = 0. In terms of the
inner variable X = x/8 with ¥, (X) = y(x), (9.5.1) becomes

e &Y, 14dY,

& dx* 6 dX

+6XY, =0 (9.5.5)

There are two consistent distinguished limits, = O(1) and é = O(e"'?) (e - 0+). However,
8 = O(1) reproduces the outer limit. Thus, the only consistent choice for the boundary layer
thickness is & = "2 For this choice (9.5.5) reduces to

'Y, dY,

dx*  dX

= —&X¥,, (9.5.6)

The next step is to approximate Y, by an appropriate inner expansion. However, as we will
see, the most obvious choice for an inner expansion,

Yol X) ~ Yo(X) + e¥,(X) 4 £—0+, (9.57)
is inadequate. Substituting (9.5.7) into (9.5.6) gives

&Y, _dy, o, n=0,
dx® dX  |-XY_,, n>0
whose solutions are
Y,(X) = Age* + Boe ¥ + Cy, (9.5.8)
Y, (X) = [—A40(X?/4 — 3X/4) + A, Je"
+ [~ BolX¥4 +3X/4) + BJe™ " + Co X2+ C,, 9.5.9)

and so on. The boundary conditions y(0) = y(0) = 1 become
dy,, .
- " (0) = &"2. (9.5.10)
Y0 =1 5! )=¢

Note that Y,,(0) = 1 implies that A, + B, + Co = 1, 4, + B, + C, = 0,and so on. However,it1s
not possible to satisfy the condition ¥7,(0) = &''* for any choice of constants! Apparently, our
choice of inner expansion in (9.5.7) was wrong. There is no way to represent ¥;,(0) = £V by an
expansion in integral powers of &

We therefore revise the inner expansion to read

Yo(X) ~ Yo(X) + 6¥2Y, 5(X) + eYy(X) 4, 60+, (9.5.11)
where Y, and Y, are still given by (9.5.8) and (9.5.9) and
Yia(X) = A" + Bype™ + Cyp. (9.5.12)

Note that the equations for ¥, with n integral and n hall integral decouple because £!? does not
appear explicitly in (9.5.6)
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The boundary conditions (9.5.10) can now be satisfied:

Yo(0) = 1: Ag+ By +Co=1,
¥4(0) = 0: Ay, — By =0,
¥,12(0) = 0: Ay + By + €y =0, (9.5.13)
¥ia(0) = L A= Buia =1
Y,(0) = 0: A, +B, +C, =0,
Y,(0) = 0: A, — B, =0

It is also necessary to require that 4, = 4,,, = A, = - = 0. (Otherwise, each term in the
inner expansion would contain terms that grow exponentially and this would prevent the inner
and outer expansions from being matched.) Combining this requirement with (9.5.13) gives
Ag=By=A,,=4,=B,=C,=0,C;=C,; =1, B,;; = = 1. Thus, our final expression for
Y[ X) correct to order & is

YX)~ 14+ Je(l —e ¥ ) +eX¥2+ -, e-0+. (9.5.14)
In the overlap region defined by x <0+, X = o0, & — 0+, we have
YoulX) = ag + agx*/2 + g, + O(x*) + Ofex?) + Ofe?),  x—=0+. -0+,
Yl X) =1+ 6"+ X2 + 0¥ X2), X =00, 6" X 20+

and again there is trouble! Matching is impossible because there is no ¢'/? term in the expansion
of y_.(x) Apparently, it is necessary to include £'* terms in the outer expansion as well as the
inner expansion. The outer expansion must be generalized to

Voul¥) ~ ¥olx) + €2y, a(x) + ey (x) + -0 =0+,

and from (9.5.1) we have y, ;(x) = a,,, &% The new (and now correct) outer expansion in the
matching region is

Youl¥) = g + @9 X2 + a,36" + a6 + O(x*) + O"2x*) + O(¥?),  x—=0+.e—0+.

The inner and outer expansions now match and the matching condition is a5 =1, a,,, = I,
a; = 0. Thus, our final expression for y_,(x) correct to order ¢ is

Voulx) ~ &1 + 612 4 g(x¥/4 + 3x32) + =),  e=0+. (9.5.15)

This outer solution does not satisfy the boundary condition y(1) = 1. Thus, there is another
boundary layer atx =1, Again, the only distinguished limit is = £ Thus, the appropriate
inner variable is X = (1 — x)e” V2 Letting ¥,(X) = y(x), (9.5.1) becomes

3
‘:;; _ ‘ZZ;" =27, — XY,
This suggests an inner expansion of the form
FulX)=Fo(X) +&'2F, (X) +eF (X)) + - (9.5.16)

The remainder of this problem is routine. We solve for ¥;, ¥,,;, and ¥, by imposing the
boundary condition y(1) = 1 and matching ¥, (X)to y_ (x). The results are given in Prob. 9.21.
By combining these results with (9.5.14) and (9.5.15), we obtain the following uniform asymptotic

2.0

1.0

0
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approximation to the solution of (9.5.1) correct to terms of order &:

Vomil®) = UL+ eV 4 e(xtd + 3xY2)] - \fs exp {-x_a’ﬁ}
+exp [ (1 — X /e][(Ve — 1 + 4x — )

+ (=9 = 3 4 3 + x Se)8 - e /e] (9.5.17)

In Fig. 9.15 we compare the exact solution to (9.5.1) with the uniform asymptotic approximation
to y(x) in (9.5.17).

Example 2 Fourth-order boundary-value problem. Consider the inhomogeneous fourth-order
boundary-value problem
4

d
Pt

dx*

S 0tat 0= O =)=y =1, (95.18)

in the limit ¢ = 0+. As in the previous example, we will see that boundary layers occur at x =0

and at x = 1.
In the outer region the £ d*y/dx* term is small, so we are inclined to use an outer ex pansion

in powers of &%

YoulX) ~ yolx) + ely(x) + 0o, e—=0+. (9.5.19)
However, our experience from the previous example suggests that this choice may be naive. To
determine the correct form for the outer expansion, let us first examine the boundary layers at

x=0and atx= L
We take the inner limit in the neighborhood of x = 0 by introducing the inner variable

Exact solution y(x)

Uniform approximation to y(x)

L

T 71T 1.1

1.0

Figure9.15 Comparison between the exact solution y(x) to ey” — ' + xy = 0[x(0) = y'(0) = W1)=1]
and the uniform approximation (9.5.17) to y(x) (correct to terms of order &) obtained from boundary-
layer analysis. The value of & is 0.05. When & = 001 the uniform approximation and the exact
solution are not distinguishable on the scale of the graph.
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X = x/é and setting ¥,,(X) = y(x). In the inner region (9.5.18) becomes

e d¥Y,, 1 +48X d*Y, :
§* dXx* & dx*

The distinguished limits are 8 = 1, which reproduces the outer limit, and § = ¢. Setting § = ¢, we

have - "
Y, d'y
d)("“ — (1 +£X) ek 2, (9.5.20)

which suggests an inner expansion in powers of &:
Yol X) ~ Y(X) + Y (X) + 2 X,(X) + -, e—0+. (9.5.21)

We assume an inner expansion in powers of £ and not £ for two reasons. First, there is a term
containing & in (9.5.20). Second, the boundary conditions at x = 0 when written in terms of the
inner variable X read Y,(0) = 1, dY, /dX(0) ==

Substituting (9.5.21) into (9.5.20) gives the following equations and boundary conditions:

&Y, &Y,
dX*  dx?
wn_Wn=an
dx*  dx? dx?’

0, H(0) =1, Y3(0)=0;

Y,(0)=0, ¥}(0) = 1.

The solutions to these equations are
YolX) =1+ Ag(e* —1 = X) + Byle ™" = 1 + X),
Yi(X) =X + 34,(X %" — 5Xe" + 5X) = 1By(X%e ¥ + 5Xe ¥ - 5X)
+ A" —1-X)+Bfe -1+ X)

s

However, these equations simplify ably because matching to the outer solution is impos-
sible if terms growing like e* as X — + oo are present. Therefore, we must require that 4, = 0 for
all n:
YolX)=1+ Bgle ™™ = 1 + X),
’ ° ) (9.5.22)
Y,(X)= X — 1By(X?e™ + 5Xe ¥ — 5X) + B,(Xe ¥ — 1 + X).
In the matching region near x = 0, the intermediate limitis x -0+, X = x/e = + 0. Thus,
in the matching region (9.5.22) becomes

Yo(X) ~ 1 + Bo(X — 1), X = +m,

(9.5.23)
V(X)~ X +3BoX +B(X — 1), X+,

with exp ially small corr
A similar inner expansion can be made in the neighborhood of x = 1. The appropriate inner
variable is X = (1 — x)/e. The first two terms of the inner solution are

To(X)=1+ Bylexp (-/2 X) - 1 + /2 X],
FX)= -X +4B[/2 X* exp (- /2 X) + SX exp (- /2 X) - 5X]  (9.5.24)
+B|[cxp(—ﬁX]— 1 +ﬁ ),

where the inner expansion is ¥,(X)~ ¥, + ¢¥, + - (= 0+) In the matching region near
x=Lx=1- X=(1-x)e— +o0,50

Po(£)~ 1+ By(—1 + /2 %), L=+,

B (9.5.25)
FiX)~ X —§BoX +B\(-1+/2X), X— 4.

BOUNDARY-LAYER THEORY 451

In terms of the outer variable x, (9.5.23) becomes
Byx 3 N 5
YolX)=— +1=B, +x+IB‘,x+B,x-sB, + Ofe*) 4+ Ofex) + O(x*),
13

x—0+, x/e— +3,  (9.526)
and (9.5.25) becomes

?“w)=&JEL%f+1—Ar4l-ﬂ—gmu~x)+&vﬁu—ﬂ

~ By +O(e?) + Ofe(1 — x)) + O[(x — 1)'},
x=1=, (1= x)e— +00. (9.5.27)
Now we can tell if the outer expansion in (9.5.19) is valid. If we substitute (9.5.19) into

(9.5.18) and equate coefficients of like powers of ¢, we obtain the leading-order outer equation
—(1 + x)(d?yo/dx*) = 1. The solution to this equation is

Yolx)= =(1 4 x)In (1 + x) + agx + by.
In the intermediate limit the outer solution behaves near x = 0 like
Yolx) ~ bg + @gx — x + O(x?),  x—0+. (9.5.28)

Demanding that (9.5.28) match asymptotically with (9.5.26) implies that By = 0, b, = 1, B, = 0,
ap = 2, which is consistent. However, demanding that Youlx) also match asymptotically with
(9.5.27) gives different values for the constants a, and by! Near x = 1 we have

Yolx)~ =212 +ag + by + (1 = x)(1 —ay +1In 2) + Of¢%, (1 - x)} (1 = x)],
E=+04, x—=1-. (9.5.29)

Matching (9.5.29) to (9.5.27) gives By =0, B, =0, b, =In 2 - l_. a,=2+In .2'
Apparently the outer expansion (9.5.19)is wrong it is overd ||3.|uud. Even though
¢? seems to be the natural expansion parameter for (9.5.18), matching requires that the outer

expansion should in fact be dome in powers of & yeulx) ~ yolx) + ey y(x) + eyalx) + -
{e— 0+ ) With this expansion y,(x) is the same as before but

nix)=a,x + b,

With these additional terms in the outer expansion the matching conditions at x = ]
become By = 0,b, = 1,1 + B, = ay — 1, b, = — B,. Similarly, the rnat_ching conditions atx = 1
become By =0,1=aq + by — 210 2,1 —ag +1In 2= /2 B, -1, —B, = a, + b,. Thus, acon-
sistent match at both x=0 and x =1 is possible if By=By=0, by=1, a,=2In2,
B,=2In2-2b,=2-2In2 /2B, =2-In24,=(n2)y/2-/2-2-21n 2 andso
on.

Notice that to lowest order the outer solution becomes

Vealx)==(1+x)I0 (1 +x)+2xIn2 +1+0() &—0+, (9.5.30)

which satisfies the boundary conditions y,.(0) = y.u(l)=1 However, y,(0)#1 and
y.u(1) # 1. Apparently, boundary layers appear at x =0 and at x = 1 to adjust the slope of the
outer solution to the imposed boundary values. The values of ' have an O(1) jump across the
boundary layers whose thickness is O(¢). The outer solution satisfies the boundary conditions
correct to O(g) because the jump in y across the boundary layers is O(e):

T
Jump in y at boundary layer=0({ y dx)= Ofe), e—0+.
‘o
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Similarly, we observe that the boundary layer at x = 0 in Example I has an O(1) jump in y' but an
Ofe'?) jump in y [see (9.5.15)].

In the next three examples we examine the boundary-layer structure of a

singular differential equation.

Example 3 Boundary-value problem having no boundary layers. Consider the boundary-value
problem

1
B Y =0, ¥(1) = e™ 12, y(0) finite, (9.5.31)

in the limit ¢ = 0 +. The point x = 0 is a regular singular point of the differential equation (see
Sec. 3.3). Frobenius' method gives the indicial exponents 0 and 1 — 1/g, 50 if £ < 1, the condition
that y(0) be finite suffices to determine the solution uniquely. (Why?) However, the condition on
¥(0) is so weak that the solution does not exhibit a boundary layer at x = 0 as ¢ — 0+, even
though 1/x = 0 for x > 0!

Suppose there were a boundary layer of thickness 4 situated at x = 0. Then, we could
introduce the inner variables X = x/3, Y, (X) = y(x) and rewrite the differential equation as

e &Y, 1 dY,

S b = 4 ¥,
sax: Taxax ©

=0
Ohbserve that there is no distinguished limit for < 1! The singularity of the differential equation
at x =0 ensures that the solution to (9.5.31) has no boundary layers at x = 0, despite first
appearances. Therefore, a complete approximation of the solution to the problem on the interval
0 < x < 1 is given by the outer expansion

YoulX) ~ yolx) + &y (x) + ?yy(x) + -, =0+ (9.5.32)

Even though there is no boundary layer at x = 0, (9.5.32)is not a regular perturbation expansion
(see Prob. 9.24).
Substituting (9.5.32) into (9.5.31) gives

0, n=0,
=Yoot n=0

There is no boundary layer at x = 1 because 1/x > 0, so we must require that y (1) =e~ "2,
Y1) =0 (n > 0). We obtain yy(x) = ™/ y (x) = —4(x* = 1)*¢ "2 and so on. Using these
equations we can predict the value of y(0):

1, |
;}‘.+}’.-l

¥0)=1-¢/4+0(?)., &=0+. (9.5.33)

Example 4 Singular boundary-value problem. Let us reexamine (9.5 >1)in the limit & = 0—. With
¢ <0 in Example 3, the effect of the coordinate singularity at x = 0 changes abruptly. Now,
Frobemus’ method gives two positive indicial exponents 0 and 1 — 1/¢, so the condition that y(0)
be finite does not suffice to determine the solution. The value of y(0) must be specified.

Let us change the sign of ¢ and pose a representative problem:

' = yfx—-y=0, D=x<l, y0)=1,p(1)=1, e 0+,
The boundary condition y(0) = 1 uniquely determines the outer solution
Vol ¥) = e 721 + g(x* = 2x*)/4 + O(?)), e—0+,

because —1/x is negative for x > 0. so no boundary layer can exist at x = (.
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A boundary layer of thickness ¢ is required at x = 1. Using the matching procedures
developed in this chapter, we find that the inner solution is

Yo (X)=(1-e V)1 = de(X? - aX)]e™ " + &7 [1 +eX] + Of?), -0+,  (9534)
where X = (1 = x)/e. A uniform approximation to y(x) for 0 < x < I, accurate to order ¢, is

Vour = €1 + e(x? = 1)7] + (1 — €7 3)[1 — Le(X? - 4X)}e ™. (9.5.35)

E ple 5 Imposition of boundary conditions near a singularity of the differential equation. Sup-
pose we change the boundary conditions in (9.5.31) slightly and formulate the new boundary-
value problem

ey +yfx+y=0,  yle)=0p1)=e""?

on the restricted interval € < x < 1. There is no coordinate singularity on the intervale < x < |,
so boundary conditions must be imposed at both x = ¢ and x = L
The outer solution, away from a boundary layer near x = ¢, is given correctly to order £ by

Youlx) = e [0 — x? — 1)2/4] + O(e?), e—0+. (9.5.36)

The interesting feature of this example is the character of the boundary layer at x = ¢. To
determine the structure of the boundary layer, we introduce the inner variables X = (x — £)/4,
¥,.(X) = y(x) In terms of these variables (9.5.31) become

e &Y, 1 lay,

P - A
Fdxt Terexsax "

The only distinguished limit with 8 « 1 is & = ¢. For this choice the differential equation
becomes

4y, 1ody,

—_— e 4+ Y, =0

axt Freexdx e

The solution to this equation in the narrow boundary layer at x =& must satisly the
boundary condition y(¢) = ¥,,(0) = 0 and match asymptotically with (9.5.36). We find that (see
Prob. 9.22)

YoX)=1—e ¥ — (X2 + X —d)e ¥+ 4] + O)  e—-0+. (9.5.37)

The next example is somewhat contrived, but it illustrates the remarkable

phenomenon of a boundary-layer structure inside a boundary layer.

Example 6 Nested boundary layers. Consider the differential equation
exy + xfy =y +6)=0, (9.5.38)
subject to the boundary conditions
yo)y=1, ()= (9.5.39)

This differential equation has a regular singular point at x = 0 with indicial exponents 0 and
1. Therefore, both linearly independent solutions at x = 0 are finite and it is consistent to impose
the boundary conditions in (9.5.39).
First, we determine the outer solution by assuming an outer expansion of the form
Vo ~ Yo + ¥, + - (e — 0+ ). Substituting this expansion into (9.5.38) gives the equations for y,
and y,:
By =y =0, xyy =7y = o
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There is no boundary layer possible at x = 1 because the coefficient of ' is positive. Therefore, y,
and y, satisfy the boundary conditions yo(1) = \_a‘-e, y,(1) = 0. Solving the above pair of differen-
tial equations and imposing the boundary conditions at x = 1 gives the first two terms in the
outer expansion:

Youlx) = €7 + 6l = x4 &= 0+, (9.5.40)

Even though yo(0) = L, a boundary layer is required at x =0 because the second term
becomes infinite at x = 0. To determine the thickness of the boundary layer we set X = x/4,
¥,.(X) = y(x), and obtain

£ X d*Y,,
& dXx?
There are two distinguished limits for which § « 1: 8 = ¢ and & = &%,

We examine the case 8 = & first because the outer solution becomes large when x is of order

£ Setting § = ¢ in (9.5.41) gives

Y.
+ox? ‘:_X —YEX +6)=0 (9.541)

X

,dY, &y, L
— = Y,=—eX -7 + XY,
dx dX

Assuming an inner expansion of the form ¥, (X) ~ Yo(X) + e¥,(X) + - (& —+0+) gves

X0y =
dX Yo
whose solution is
Y, = age” U¥
ey o x4k
and dx 1= e’

whose solution is

2 1 .
Y, =a,e V¥4 “"(F - IF)E_“'

To determine the values of x, and x, we match Y, (X)to y,,(x). Writing ¥, and Y, in terms
of the outer variable x and taking the intermediate limit x -0, X — o gives ¥, (X)~
2o(1 — 8/x) + 2, + O(e?) + O(e*/x*) (e — 0+, x/e — +o0). This expansion matches asymptot-
ically with that in (9.5.40) in the limit x =0+ and we obtain the matching conditions
ay = o, = L. Thus,

2

Yo(X)=e 1 3 %) +0(), =0+ (9.5.42)

I+£[l+

So far our analysis has been straightforward. However, now we observe that it is still not
possible to satisly the boundary condition y(0) = 1 with ¥,,(X)t Y,.(X) vanishes exponen-
tially as X —0+. Apparently, there is an additional boundary layer very near x =0 which
enables us to satisfy the boundary condition y(0) = 1. The thickness of this boundary layer must
be & = & because this is the only other distinguished limit for the differential equation. Therefore
we set § = ¢* in (9.5.41),

a7, dr,

Tl _p o _gg2iim 5%
de! ¥ X ix +e XY,

and assume an inner-inner expansion of the form

Po~Fo+elf,+, =0+
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¥, satisfies

'Y Y
dX* X
whose general solution is a linear combination of modified Bessel functions (see Prob. 9.25):

Fo(X) = G0 /X 1,2%) + Bo /X K,(2\/X). (9.5.43)

Since !,{2\/}] grows exponentially as X — oo, we will be unable to match ¥, (X) unless
&, = 0. P, is determined by the boundary condition ¥y(0) = 1. We find that B o=2 (see Prob.
9.25).

Observe that ¥,(X) and Y,(X) match asymptotically in the intermediate limit X —0,
X — co. In the matching region they both vamish exponentially.

(D) 9.6 INTERNAL BOUNDARY LAYERS

Boundary layers (localized regions of rapid change of y) may occur in the interior
as well as on the edge of an interval. However, the structure of internal layers
tends to be complicated, so we confine our discussion to the leading-order behav-
ior of solutions only.

We consider the simplest second-order differential-equation boundary-value
problem that can exhibit internal boundary layers:

ey +alx)y’ +blx)y=0, y(=1)=4,y(1)=B. (96.1)

We know that if a(x) # 0 for —1 < x < 1, then there are no internal boundary
layers. However, suppose we now assume that a(x) has a simple zero at x =0,

a(x)~ax, x-—0,

and that a(x) has no other zeros for —1 <x <1. We also assume that
b(x) ~ B # 0 (x — 0). There are two cases to consider.

Cast I a > 0. Here a(x) has positive slope at x = 0,50 a(—1) < 0 and a(1) > 0.
Thus, boundary layers at either x = +1 or x = — 1 are not possible.

For this problem there are fwo outer solutions, one to the left and one to
the right of x = 0. Either outer solution y,,,(x) has an expansion of the form
VoulX) = Yolx) + eyi(x) + ---. Thus, to lowest order we have a(x)yo(x)
+ b(x)y = 0.Because there are no boundary layers at x = + 1, both outer solu-
tions are determined by the boundary conditions at x = +1:

Yo,rigm = B exp [J l gg—;drl, x>0, (9.62)
Yoen = A €Xp ["Jfl %dt s x <0. (9.6.3)
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Next we investigate the neighborhood of x = 0. Setting x = 4X, y(x) =
Yin(X), (9.6.1) becomes

e d*Y, + a(6X) dY;,

&% dX? 6 dX

+ b(3X)Y;, = 0.

To investigate the immediate neighborhood of x = 0, we replace a(x) by ax
and b(x) by . The only distinguished limit for which é « 1is é \/_ Thus, to
leading order we have
d? Yo dy,
X — Y,=0 .6.
where Y,, = ¥, + higher-order terms.

The solution to the differential equation (9.6.4) cannot be expressed in
terms of elementary functions. As we will now show, (9.6.4) is related to the
parabolic cylinder equation, one of the standard equations in mathematical
physics. To solve (9.6.4) we let

Yo = e W, (9.6.5)
W(X) satisfies

w
§X2+[,6 o -’ X)W =0.

Next, we let \/a X = Z and obtain

a&w (B 3
ERASNITY | N N W=0,

dzz (D{ i iz )
which we recognize as the parabolic cylinder equation (see Sec. 3.5). Assuming
that B/ is not a positive integer (we discuss this special case later), the general
solution to this equation is an arbitrary linear combination of parabolic
cylinder functions: W(Z) = C, Dy, ,(Z) + C; Dy y(—Z). Thus,

Yo(X) = e ™ [C Dy (X /) + C1 Dy (- X /). (9.6.6)

The intermediate limit is defined by x - 0+, X — + 0. Does the inner
solution Y, in (9.6.6) match asymptotically with the outer solutions in (9.6.2)
and (9.6.3) in the intermediate limit? If it does, we hope that the constants C,
and C, are determined by the matching condition. In the intermediate limit
the arguments of the parabolic cylinder functions become large. Therefore, it
is necessary to use the asymptotic behaviors of the parabolic cylinder function
for large positive and negative arguments, which were determined in Sec. 3.8:

D,(t) ~ t'e™, t— 400,

i (9.6.7)
D,(—I}~I e” ﬁ—_vj' t—

+ 0.
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Thus, as X — + o0,

. —Bja \/2_11'
Yo(X) ~ Co(X/2)~* (=) (9.6.8)

and as X — —o0,

g /2T
Yo(X) ~ Cy(— X Ja)™* = fa)’ (9.6.9)

where we have discarded exponentially small terms. Finally, in preparation
for asymptotic matching, we replace the inner variable X in (9.6.8) by the
outer variable x:

Y. (X)~ 1\.-' W’F —Blag —3[|nx||fu x =0+, [9610)
C2n -
Yo(X) ~ fafe) Plag=Mumi=xa  x _, Q—, 9.6.11)
It is now clear that (9.6.2) and (9.6.10) match as x — 0+ because
J b{‘) —-Eln X, x=0+,
x a{f] *
and that (9.6.3) and (9.6.11) match as x - 0— because
o, B
-ZIn(-x), x—-0-.
L
Moreover, we can determine the constants C; and C, because
" b(t) "lbe) _ B
NP -0+,
J alt }dr +Pinx~ JO a0 " d, x— 0+
b)), B “hibe) _ B
- - ~In (—x)~ — ——|d -0-,
and ~[-1 a(r)dt + &ln (—x) L at) " w , X

where the two integrals on the right exist. Specifically,

C, = B%‘%"}( Jalep exp 10l o) _ B4, (9.6.12a)

alt) ot

AT(1 - /o) L M) B
and C, = —\/2_;-— (Jafey'™ exp Jo ) " m dt. (9.6.12b)
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The results in (9.6.2) and (9.6.3), (9.6.6), and (9.6.12) may be combined
into a single uniform asymptotic approximation which is valid on the interval
-1<x<l:

Vanit(X) = E{‘L:/%ﬂ (\/‘”_J"rs)ﬂfﬂe‘nlm
X (A exD{-[" {@ - %]d{} Dy 1(x/2/E)

< lalt)
+ Bexp j-: % - a%l dt} Dy,.- ,{—x\@)). (9.6.13)

This result is verified in Prob. 9.30.

Example 1 Internal boundary layer, case I. Consider the boundary-value problem
ey 4+ 2y + (L+x3)y=0, y=-1)=2y(1)=1, (9.6.14)
in the limit ¢ = 0+. For this problem z = 2 and § = 1. Also,

['fo_2 m=j"‘[""’ R

o lal) " at]™ o

ﬂ-[l_}:(i'

T4
and C, = 2(e/2e)"*, C, = (¢/2¢)"'*. Therefore, the two outer solutions are
Fowme = X V2 S 1) po = 2-x) T e —x g
and the inner solution is
Yo(X) = Yo(x//2) = e~ = 25(e/26) (2D _ 1 (x/2/6) + D 5~ x/ 2N}

The outer and inner solutions may be combined to give a uniform approximation to y(x):
‘,Il =zt 14
Yonel) = e=[T) [2D_ e /2E) + D sl —x/26)] (9.6.15)

In Fig. 9.16 we compare this leading-order uniform approximation with the exact solution to
(9.6.14).

Case Il a <0. Let us return to (9.6.1) and see what happens when o < 0.
Now a(x) has negative slope at x = 0,s0 a(—1) > 0 and a(1) < 0. This implies
that boundary layers may occur at both x = —1 and at x = 1. We are thus
faced with the possibility of having three boundary layers at x = — 1,0, 1,and
two outer solutions between — 1 and 0, and 0 and 1! [t is quite surprising that
the solution to this problem is much less complicated than the solution in
case I.

The proper way to approach this problem is to analyze the inner solution
at x = 0 first. Using the same analysis as in case I we find that (see Prob. 9.30)

Yo(X) = e ™ [C,D_yul/—2 X) + C2D_pu(—/ =2 X)]. (9.6.16)

Uniform
approximation
to y(x)
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1071

Exact solution
yix)

0 1

X

Figure 9.16 Comparison between the exact solution y(x) to ey” + 2xy" + L+ xy=0[p-1)=2,
y(1)=1] and the leading-order uniform approximation (9.6.15) obtained from boundary-layer
analysis. The value of ¢ is 0.2,

Now, « is negative, so the term e~ **/* grows exponentially in both directions
as X — +oo. (In case [ it decays exponentially in both directions.) Observe
that as X — + 00, D_,(—+/—aX) also grows exponentially as X — + o0,
assuming that — /e + 0, 1, 2,3, ... (We treat the integer case later.) Thus, no
asymptotic match to the right outer solution is possible unless C; = 0. Sim-
ilarly, as X - —o0, D_ a,-,,(\/—_a X) grows exponentially. Thus, no asymptotic
match to the left outer solution is possible unless C, = 0. We therefore obtain
the very simple result that Yo(X) = 0. Apparently, there is no region of rapid
change at x = 0 in case IL

Next, we consider the outer solutions which satisfy a(x)y(x) + b(x)y = 0.
This is a first-order homogeneous linear equation. Therefore, each outer solu-
tion is determined up to a multiplicative constant. However, requiring that
the outer solutions match to Y,(X) implies that each multiplicative constant
must be 0. We conclude that to leading order the solution vanishes every-
where except for boundary layers at x = —1 and at x = 1!
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The leading-order boundary-layer solutions at +1 are easy to write
down:

Yo jer = Ae™ 7 T (9.6.17)
Yo right = Beet N = xye, (9.6.18)

Combining (9.6.17) and (9.6.18) we obtain the leading-order uniform asymp-
totic approximation

y‘m"[x}= Ae—ﬂl—llx+ Lyfe + Ben(lbu-xl.fc_ {9619)
Example 2 Case I1. Consider the boundary-value problem
e =2y + (L+xy=0, y(—=1)=2y(1)=1, (9.6.20)
in the limit £ — 0 4. For this problem a = — 2. The leading-order uniform asymptotic approxima-
tion for this problem is
Vo = 207 HEHIE L o= 20—t (9.6.21)
In Fig. 9.17 we compare the exact solution to (9.6.20) with the uniform asymptotic approximation
in (9.6.21).
jp
y +
. I T
Uniform
approximation -] T
to y(x) . T
Exact solution

yix)

x

Figure 9.17 Comparison between the exact solution y(x) to ey” — 2xy' + (1 + x})y =0 [y(=1) = 2,
y(1)=1] and the leading-order uniform approximation (9.6.21) obtained from boundary-layer
analysis. The value of ¢ is 0.15.
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There are two exceptional cases that we have not yet discussed, namely,
a>0with f/fa=1,2,3,...and « <0 with B/ =0, —1, —2,.... In both of
these cases leading-order boundary-layer analysis breaks down. Let us see
why.

Case lll a > 0, f/x = 1,2,3, .... This case is special because the indices of the
parabolic cylinder functions in (9.6.6) are nonnegative integers. Recall that
D,(Z) = He,(Z)e #* whenn =0, 1, 2, ..., where He,(Z) is a Hermite poly-
nomial of degree n, and that D,(—Z) = (—1)"D,(— Z). Therefore, D,(Z) and
D,(—Z) are not linearly independent and the general leading-order inner
solution Y,(X)is not given by (9.6.6). Instead, as shown in Sec. 3.8, the general
solution has the form

Yo(X) = e ™ ¥*[K,Dyo 1 (/o X) + K2D_puliy/x X)) (9:622)
From (3.7.18), the leading behavior of (9.6.22) as X — o0 is
Yo(X)~ Ky(i/a X) P2, X — +o0. (9.6.23)

The contribution of the terms multiplied by K, is exponentially small
compared to those multiplied by K,. Therefore, the coefficient K, plays no
role in the asymptotic matching and must remain undetermined!

No boundary layers are possible at x = +1 when o > 0, so we must
match yo(X) to the outer solution y, ., = A exp [—[%, b(t)a(t) di] (-1 <
x < 0) and yo ,gn = B exp [[} b(t)/a(t) dt] (0 < x < 1). Matching to yo . in
the intermediate limit X — —o0, x —0— gives

K, = (iy/a/e)f* 4 ex i a2A

B ’ P Ju a(t) ot

On the other hand, matching to yg ;g in the intermediate limit X' — + oo,
x— 0+ gives

K, = (iy/2/c)*B exp J’ LU dr.

o lalt) at

Only in rare cases will the values of K, determined in these two different ways
agree. In most cases the problem has no leading-order solution because the
coefficient K, is overdetermined.

Case IV & <0 with fla=0, —1, —2,.... In contrast with case LII, the
leading-order boundary-layer solution in case IV is underdetermined. Here,
the general leading-order inner solution Y5(X)is not given by (9.6.16). Instead
it has the form:

Yo(X) = e',lel4[Kl D—,s,--{\,v‘ —a X)+ K; Dy, 1[i\x —a X)} (9.6.24)
From (3.7.18), the leading behavior of Yo(X)as X — t oo is

Yo(X) ~ K (/=a X) ¥ + Ky(iy/—a X)P"te™ ¥, X - +o0. (9.625)
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Since a < 0, matching is only possible if K; =0, so

Yo ~ Ki(/—afe x) %%, x//e— too. (9.6.26)
The leading-order outer solution for 0 < x < 1 that matches to (9.6.26)
when X = +o00, x =0+ is

. X b
Yorigm(x) = Ky (x/ —a/e) ¥ exp I B _b) dt, x>0, (9.6.27)

Yo lat alt)
while the leading-order outer solution for —1 <x <0 that matches to
(9.6.26) when X — —o0, x =+ 0— is

Youien(x) = Ky(x/ —a/e) ™ exp _[0 % ~ g dt, x<0. (9.6.28)

Since a < 0, the outer solution (9.6.27) can be asymptotically matched as
x—1— to a boundary-layer solution; the leading-order boundary-layer
approximation is

Vo cgne = B~ K (/=) {1 — X011
LB b0

xexpjo ;I—m

The outer solution (9.6.28) can also be matched as x - — 1 + to a boundary-
layer solution at x = — 1 because a < 0:

YD.I:[: = Ae o Dixtlye Ki[_ /— ﬁ:)—ma[l _ eme- ll(xfl’h’zl

b _ Bl 4. (9.6.30)

dt. - (9.629)

at) at

x exp J-0
-1

The boundary-layer solutions (9.6.29) and (9.6.30), together with the outer
solutions (9.6.27) and (9.6.28) and the internal layer solution (9.6.24) with
K, = 0, match to leading order in . However, K, is still arbitrary, so leading-
order boundary-layer theory has not determined a unique solution to the
boundary-value problem!

Discussion of cases I1I and IV Cases III and IV have serious difficulties because
Dy(z) (n=0, 1, 2,...) decays exponentially as z— +o0 and as z— —o0. In
contrast, D,(z) (v # 0, 1,2, ...) decays exponentially only as z — + co and grows as
z— —o0. Thus, in case II, for example, where f/a # 0, —1, —2, ... we could
logically argue that C, = C, = 0 in order for a match to be possible. In case IV,
where f/a =0, —1, —2, ... and a < 0 we can no longer argue that K, =0.

The resolution of the difficulties in cases III and IV is not trivial. Sometimes it
is possible to resolve these difficulties by carrying the boundary-layer analysis to
higher order. A higher-order treatment may give rise to solutions in the internal
boundary layer which do not decay exponentially as X — + o0 and as X — —co.

m
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When this happens, the higher-order analysis proceeds as in cases [ and IT and a
unique solution can be determined (see Probs. 9.31 and 9.32). Higher-order
boundary-layer analysis does not always resolve the difficulties discussed here.
Often it is possible to determine a unique asymptotic solution to ambi guous
internal boundary-layer problems using the methods of WKB theory (see Probs.
9.33 and 10.28).

9,7 NONLINEAR BOUNDARY-LAYER PROBLEMS

Boundary-layer analysis applies to nonlinear as well as to linear differential equa-
tions. This section is a collection of three illustrative examples. The first example is
very elementary. We include this example merely to show that the techniques we
have used to solve linear boundary-layer problems can apply equally well to
nonlinear problems.

Consider the boundary-

Example 1 Leading-order analysis of a nonli q
value problem
»(0) = y(1) = 0. (©7.1)
If & were a linear function of y, there would be a boundary layer at x = 0 (and no boundary layer
at x = 1) because the coefficient of y' is positive. This nonlinear problem also has just one
boundary layer at x = 0.

The outer expansion has the form

e+ 2y + =0,

YoulX) ~ yolx) +eyi(x) + -, e=0+. 9.72)

Substituting (9.7.2) into (9.7.1) gives 2y; + e = 0, whose solution is y, = In 2/(x + ¢,). Assum-
ing that there is no boundary layerat x = 1 (a boundary layer at x = 1 leads to a contradiction;
see Prob. 9.37), we impose the boundary condition y(1) = 0. Thus,

2 9.7.3)
1+x
The boundary layer has thickness & = & (Why?) Therefore, setting X = x/e, Yu(X)= p(x)in
(9.7.1) gives

Yolx) = In

&y, v,
ax? toax

= —ge'n.

Assuming an inner expansion of the form ¥, = ¥, + ¥, + - gives in leading order
Yo = Ag + Bye . (9.74)

The constants A, and B, are determined by the boundary condition at x =0, Yg(0) =0,
which gives A, + B, = 0 and the asymptotic match of (9.7.4) with (9.7.3)in the intermediate limit
x =0+, X = +ao, which gives 4, = In 2. Thus,

Yy(X)=(l —e **)In 2 (9.7.5)

We can combine (9.7.5) and (9.7.3) into a single uniform asymptotic approximation:

Yumielx) = In 1—2 - — e 3 n 2, (9.7.6)
+x

A comparison between (9.7.6) and the exact solution to (9.7.1) is given in Fig. 9.18. For a
higher-order treatment of (9.7.1) see Prob. 9.38.
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1.0
0.9
08
0.7
0.6

0.5 Exact solution y(x)
for e =0.1
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Uniform
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0.3 approximation to v(x)
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Figure 9.18 Comparison between the exact solution to the boundary-value problem ey + 2y' + & =0
[#(0) = (1) =0] for & = 0.1 in (9.7.1) and yue(x) = In [2/(1 + x)] — ™2 In 2, the leading-order
uniform asymptotic approximation to y(x) obtained using boundary-layer theory.

Our treatment of Example 1 was very straightforward. However, one should
not be misled. Similar nonlinear boundary-layer problems can be extraordinarily
difficult (see Prob. 9.39). In the next example we study a boundary-value problem
that has many solutions; some can be predicted by boundary-layer theory while
others are beyond the scope of boundary-layer methods.

Example 2 Boundary-layer analysis of a nonlinear problem of Carrier. An extremely beautiful and
intricate nonlinear boundary-value problem of a type first proposed by Carrier is

ey +21—xAy+yi=1 y—1)=yl)=0 (9.7.7)
If we attempt a leading-order boundary-layer analysis of (9.7.7), we are immediately

surprised to find that the outer equation obtained by setting ¢ = 0 is an algebraic equation rather
than a differential equation:

Yo + 2L = )y — 1=0.

Because this equation is quadratic, it has two solutions

Vou,e(¥)=x2 = 1 2 /T + (1 = xH) (9.7.8)

In Fig. 9.19 we plot the two outer solutions. Observe that neither one satisfies the boundary
conditions at x = + 1. Therefore, there must be boundary layers at x = — | and at x = + 1 which
allow the boundary conditions to be satisfied. The question is, Which of the two outer solutions
can be joined to inner solutions which satisfy the boundary conditions?

Let us examine the boundary layer at x = L. If we substitute the inner variables
X = (1 = x)/a. ¥,,(X) = y(x) into (9.7.7). we obtain in leading order

ay, &

W+?{Yﬁ|— 1)=0.
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~_ |

Your, +(X)
-1 0 1
x
Exact solution
-1

Yout, - %)

Figure 9.19 Exact solution to the nonlinear boundary-value problem in (9.7.7), ey" + 2(1 — x*)y
+ y2 = 1[s{=1) = ¥(1) = 0] for& = 0.01. Also shown are the two outer approximations y,,,, » in(9.7.8).
As predicted by boundary-layer amalysis, the lower outer approximation is an extremely good
approximation to y(x) away from the boundary layers at x = + 1. Observe that y(x) has a local
maximum in both boundary layers. y,., in (9.7.12) with the lower choice of signs is an accurate
approximation to y(x) for —1 < x < 1; it predicts that the maximum value of y is 2.

Thus, the distinguished limit is § = \_&_ The solution to the leading-order inner equation

dy,
S+ ¥Yi-1=0 9.79
dxl + n l ( }
must satisfy the boundary condition Y,,(0) = 0 and must match asymptotically with one (or both)
of the outer solutions. That is, ¥,, must approach either +1 as X — + w0,
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Is it possible for Y, to approach 1 as X — +o0? Suppose welet ¥,, =1 + W(X)IT Y — 1,
then W(X)— 0 and we can replace (9.7.9) with the approximate linear equation W" + 2W = 0.
However, solutions to this equation oscillate as X — + oo and do not approach 0. This simple
analysis shows that it is not possible for ¥, to match to y,,, , in (9.7.8).

Fortunately, the same argument suggests that it is possible for ¥, to match to y,,, -. Let
Y, = -1+ W(X). Now i ¥,,—» —1 then W — 0 and we can replace (9.7.9) by the approximate
lincar equation W™ — 2W = 0. Since this equation has a solution which decays to 0 exponentially,
it is at least consistent to assume that ¥;, matches asymptotically with y,,, .

Having established this much, let us solve the inner equation exactly. Substituting
Y, = —1+ W(X)into (9.7.9) gives the autonomous equation

W'+ W - 2W =0, (9.7.10)

subject to the boundary conditions W(co) = 0, W(0) = 1. Also, since we expect W to decay
exponentially as X — + oo, we may assume that W'(co) = 0. To solve (9.7.10) we multiply by
W'(X), integrate the equation once, and determine the integration constant by setting X = co.
We obtain  YW') + {W® — W? =0, which is a separable first-order equation:
dW/W.,/2 — 2W/3 = +dX. Integrating this equation gives

—-J2tanh ' J1-W3=+X+C

The integration constant is determined by the requirement that W = | at X = 0. Apparently,
there are two solutions:

X .
Yio(X) = —1+ 3 sech? ( t-r"_i + tanh ™! ,;‘2;‘3]. 9.7.11)
W
There are also two inner solutions at x = — 1 which satisfy the boundary condition y(—1) =0

and match to the lower outer solution y,,, _ in (9.7.8).
We can combine the outer with the two inner solutions to form a single uniform approxima-
tion valid over the entire interval —1 < x < 1:

1 -
Vemel¥)=x2 =1 = ST+ (1= x*)P +3 sech’(i-Tz: + tanh ™! ﬁj_})

(9.7.12)
+3 sech? ( + 15X tanh-t .fz;s)_
\,-"28

Notice that the solution in (9.7.12) is not unique. There are actually four different solutions
depending on the two choices of plus or minus signs in the boundary layer. For one choice of sign,
Vunelx) in the boundary layer rapidly d ds from its boundary value y(+ 1) = 0 until it joins
onto the outer solution y,,, _. For the other choice of sign, y,.(x) rises rapidly until it reachesa
maximum and then descends and joins onto the outer solution. It is easy to see that this
maximum value of y,,; is 2 because the maximum value of sech is 1. It is a glorious triumph of
boundary-layer theory that all four solutions actually exist and are extremely well approximated
by the leading-order uniform approximation in (9.7.12)! See Figs. 9.19 to 9.21.

The analysis does not end here, however. The existence of four solutions to (9.7.7) may lead
one to wonder if there are still more solutions. One may begin by asking whether there can be any
internal boundary layers. We will now show that.internal boundary layers are consistent.

Assume there is an internal boundary layer at x = 0. The thickness of such a boundary layer
isd= \f.:. (Why?) The leading-order equation is

Yo(X)+2Y, + Yi=1 (9.7.13)

Since y,,, -(0)= —1 — /2, the boundary conditions on Y,, in (9.7.13) are lim,_, , ¥, (X)=
-1- ﬂ The exact solution to (9.7.13) which satisfies these boundary conditions contains an
arbitrary parameter A:

Y, =3./Z sech? (27 V4x/Je + A) = 1= /2.

Exact solution

BOUNDARY-LAYER THEORY 467

Your,-(X)

Figure 9.20 Same differential equation as in Fig. 9.19, but a different solution. y.., becomes a good
approximation to the plotted solution for the upper choice of signs.

Note that if 4 = + oo then there is no internal boundary-layer structure. However, for all finite
values of A there is a narrow region in which ¥ rises abruptly to a sharp peak at which it attains a
maximum value of 2\/5 — 1 = 18 Do you believe from this analysis that there are actual
solutions to (9.7.7) having an internal boundary layer at x = 07 In fact, in Figs. 9.22 t0 9.24 we see
that for each solution in Figs. 9.19 to 9.21 there is another solution which is almost identical
except that it exhibits a boundary layer at x = 0! What is more, the maximum in the boundary
layer is close to 1.8,

Now that we have observed solutions having one internal boundary layer we may ask
whether there exist solutions having multiple internal boundary layers. [t is here that boundary-
layer theory is no longer useful. Boundary-layer analysis shows (see Prob. 9.42) that it1s consis-
tent to have any number of internal layers at any location. However, boundary-layer theory
cannot predict the number or the location of these boundary layers. In fact, for a given positive
value of £ there are exactly 4(N + 1) solutions which have from 0 to N internal boundary layers at
definite locations, where N is a finite number depending on & To determine N it is necessary to
use some rather advanced phase-plane analysis to establish a kind of WK B quantization condi-
tion (see the References). In Figs. 9.25 to 9.28 we give some examples of solutions having several
internal boundary layers. In Figs. 9.19 to 928 ¢ = 0.01.
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Exact solution

Figure 9.21 Same differential equation as in Fig. 9.19. yuur in (9.7.12) is a good approximation to
the plotted solution for one upper sign and one lower sign. There is also another solution which is
the reflection about the y axis of the one shown here.

In the next example we use boundary-layer theory to study the approximate
shape of a limit cycle in the phase plane.

Example 3 Limit cycle of the Rayleigh oscillator. The Rayleigh equation is

@ [amsla)

- — - =0, 9.7.14
o a3\ *r=0 ( )
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Exact solution

Figure 922 An exact solution to the boundary-value problem in (9.7.7). Apart from the internal
boundary layer at x = 0, this solution is nearly identical to the solution in Fig. 9.19. The outer
approximation y,,,, - (x)in (9.7.8) is a good approximation to y(x) between the boundary layers. The
function y,, = 3,/2 sech? (2~ ¥*x/, /&) — 1 — /2 gives a good description of y in the internal boundary
layer. It predicts that the maximum value of y, is 2,2 -1 = 1.8, a result which is verified by
this graph.

This autonomous equation can be rewritten as the system

dy

- = 9.7.15

i ( )
dz 1

LU S 9.7.16

T T3t ¥ ( )
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Exact solution

Yout,-X)

Figure 9.23 An exact solution to the boundary-value problem in (9.7.7). Apart from the internal
boundary layer at x = 0, this solution is nearly identical to that in Fig. 9.20.

whose trajectories can be studied in the phase plane (y, z). The Rayleigh equation is an interesting
model because, for any initial conditions and any ¢ > 0, y(t) approaches a periodic solution as
t —+ + oo, This periodic solution corresponds to a limit cycle in the phase plane (see Prob. 9.45). In
Sec. 11.3 we study the approach to this periodic solution when ¢ is large using multiple-scale
perturbation theory. In this example we consider the opposite limit £ — 0+ and use boundary-
layer theory to determine the shape of the limit cycle in the phase plane.
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Exact solution

Yout, _(x)

Figure 9.24 An exact solution to the boundary-value problem in (9.7.7). Apart from the internal
boundary layer at x = 0, this solution is nearly identical to that in Fig. 9.21 reflected about the y axis.

We begin by dividing (9.7.16) by (9.7.15) to obtain
Fdz z—223i-y
“dy z

and treat z as a function of the independent variable y. First, we look at the leading-order
approximation to (9.7.17) as £ — 0+. The outer limit is obtained by simply setting £ = 0. This

(9.7.17)
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Exact solution

Figure 925 An exact solution to (9.7.7) having two internal boundary layers. Apart from the
internal boundary layers, this solution is nearly identical to that in Fig 9. 19.

gives the algebraic equation
Zouw = Y0 = ¥ (9.7.18)

This curve is plotted as a dashed line in Fig. 9.29. Observe that for |¥] <3 there are three
possible values of z,,,. We will show that it is consistent to have a boundary-layer solution which
joins the point A(y = 4, z = 1) to the point B(y = i,z = —2) by the almost vertical line shown in
Fig. 9.29 and to have a second boundary-layer solution which joins the point C(y = —3,z = —1)
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Exact solution

|
|

Yout, -0

Figure 9.26 An exact solution 1o (9.7.7) analogous to that in Fig. 9.23 except that it has two internal
boundary layers.

to the point D(y = —%, z = 2). The limit cycle consists of the four segments DA and BC satisfying
the outer equation (9.7.18) and AB and CD given by boundary-layer approximations.

To obtain the boundary-layer approximation joining the outer solutions DA and BC from A
to B, we introduce the inner variable Y = (y — 3)/é and obtain a distinguished limit § = &:

dZ Z-2Z3 -} -¢Y
i . S—— 1.
=t > (9.7.19)
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y
1 -
l |
-1 0 x 1
Exact solution
-1
Your, -(X)
_2 b—

Figure 9.27 An exact solution to (9.7.7) analogous to that in Fig. 9.26 except that it has three internal
boundary layers.

where Z(Y) = z(y). The leading-order approximation Z, to Z satisfies

4z, _2,-2p-3

(9.7.20)
dy Z,
The solution of this separable equation is
2 2 1 1
_= 2 n|Z,—-1| -———— = —==(Y 9.7.21
9In|20+ |+9n|., 1] 3Z,-0) 3( +c), [ )
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¥y
| |
-1 0 x 1
Exact solution
-1k
Yout, - (%)
_2 —

Figure 9.28 An exact solution to (9.7.7) analogous to that in Fig. 9.27 except that it has four
internal boundary layers. Observe that as the number of internal boundary layers increases, the outer
solution y,, -(x) becomes a poorer approximation to y(x) between boundary layers. Indeed, in this
figure the regions of rapid variation of y(x) are no longer localized in isolated boundary layers.
Rather, individual boundary layers are so close together that y(x) exhibits rapid variation on a
global scale. This configuration is similar to that in Fig. 7.3. Boundary-layer analysis is useful only
when the regions of rapid variation are localized.
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—
—
~—_0>D +

T~

- I 4\

B T=
—
—
N

Fignre 9.29 A plot of the leading-order outer solution in (9.7.18) to the Rayleigh oscillator (9.7.14).
The outer solution is given by the solid lines connecting the points D to A and B to C. The dashed
lines are additional segments of the graph of the algebraic functon in (9.7.18). Boundary-layer
solulions connect the points A to B and C to D along the curves y = +13, respectively.

" where ¢ is a constant of integration. In the boundary-layer region this solution is a double-valued
"~ function of Y. As Z, decreases from 1, Y increases from — oo; Y reaches a maximum at Z, = 0,
“Y=3c+43In2- 1 As Z; decreases from 0 to —2, Y decreases from its maximum to - 0.

. ’Asymptotic matching to lowest order is accomplished by the intermediate limits (¥ Zou) =

(3= 1) (Y. Zg) = (=0, 1) and (y, z2,,)— (3=, =2), (Y, Zy) = (— oo, —2) These asymptotic
matches complete the lowest-order boundary-layer analysis. Note that the constant ¢ remains
undetermined in leading order.

In the same way, it is possible to join the points C and D in Fig. 9.29 by a boundary-layer
approximation; this approximation is given by (9.7.21) with the signs of Z, and ¥ reversed. The
solution obtained in this way is periodic in t because the trajectory is closed in phase space. In
Fig. 9.30 we plot the exact limit-cycle solution to the Rayleigh oscillator (9.7.14) in the (y, z) phasc
plane. Note how well leading-order boundary-layer theory predicts the shape of the limit cycle
(see Fig. 9.29) In Fig. 9.31 we plot y and z versus t for the limit cycle in Fig. 9.30.

The leading-order boundary-layer solutions (9.7.18) and (9.7.21) can be used to compute a
leading-order approximation to the period of the limit cycle of the Rayleigh equation as & —+ 0+.
Since z = dy/dt, the period T of the limit cycle is given by

Tw§ &y (9.7.22)
!z
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Exact limit cycle\

——t—+—+ —t—
=2 1 Y 2
Uniform
approximation

to limit cycle

-3

Figure 930 Comparison between the exact limit cycle of the Rayleigh oscillator (9.7.14) and the
leading-order uniform approximation plotted in Fig. 9.29. The value of ¢ is 0.05.

where the integral is taken over the full limit cycle. The leading-order approximation to the
period T is dominated by the contributions to the integral (9.7.22) from the outer solutions
(9.7.18). The contribution to T from the boundary layer goes to 0 as ¢ — 0+ because the width of
the boundary layers in y is O(e). Therefore,

dy ¢ dy ti-2% "2 (1-2%)
T~ 2+ 2= ¥—"4 L PR -
L,. o _[2 - z+[_l Hz=3-2m2 =0+ (0723)

The full asymptotic expansion of the period T(e) of the limit cycles of (9.7.14) is very difficult
to obtain. Dorodnicyn showed that

TE)~3-2In2+3ae® +delne+ -, &e=0+, (9.7.24)

where a is the smallest zero of Ai (—t) (x = 2.3381). We check the accuracy of this expansion in
Table 9.1. One may wonder why the series (9.7.24) for T{(z) is so complicated when the leading-
order boundary-layer analysis is so simple. The reason for the complexity of (9.7.24) becomes
apparent when we attempt a higher-order boundary-layer analysis.
The next-order corrections to the outer solution (9.7.18) are found by expanding
2,4 = 2o + 2, + . Here the leading-order outer approximation satisfies (9.7.18), zo — =y
and from (9.7.17), the equation for z, is z, dz, /dy = (1 = z3)z,. Thus,
“0
Tt (9.7.25)
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z(1)

(=]
y|||.1|||-..|l

L

Figure 9.31 A plot of y(r) and z(t) versus ¢ for the limit cycle of the Rayleigh oscillator (9.7.14)
plotted in the phase plane in Fig. 9.30. The value of ¢ is 0.05.

To perform asymptotic matches at points 4 and B (see Fig, 9.29), we will need the expansions of
Zow N the neighborhood of the points 4 and B:

71 2 . 2
~ 2 i =Nt eyt (9726
o H\/a y+6(* 3]+4(§—y}+ Yoyt 92.26)

1 2
(see Prob. 9.46). The coefficient of /4 — v in (9.7.26) is positive because z > z, along DA, if 2
were less than z, along DA, then (9.7.25) would imply that dz/dy > 0 which is false.
The next-order boundary-layer approximation behaves in the neighborhood of the point A

;-—.g—.c-m (9.727)

like
P 1 +21n|}'1-i|+ 2in3
TYve My +of (Y +¢)?

1
+z(—aYZ+$Y|n Y)+---. Y= -0, eV =0+, (9.7.28)

and in the neighborhood of the point B like

Z~-2-Y¥, Yo -we¥ =0+ (9.7.29)

There is no trouble petforming the asymptotic match at B; ¥ = (y — 3)e, so0 (9.7.27) and (9.7:29)
match to first order in &. On the other hand, (9.7.26) and (9.7.28) do not match at the point 4; in
particular, the term | /3 — v in (9.7.26) is not present in (9.7.28).

This failure of boundary-layer analysis in higher order is remedied as in Example 6 of Sec.
9.5 by introducing a new scale and a new boundary layer in which the higher-order match near A
can be accomplished. Surprisingly, it turns out that this new boundary-layer scale near 4 must be

(E)

(E)

m

(E)

(D)

U]
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Table 9.1 Comparison between the exact period T(¢) of the Rayleigh oscillator and
the asymptotic approximation (9.7.24) to T(e), T(e) ~3 — 2 In 2 + 3oe®? +
Ofe In &) (e — 0+), for various values of ¢

& Exact value of T(e) 3~2n2 3-21n2 4+ Jae?/?
1 6.687 1.6137 8.6280
0.25 18155 1.6137 4.3973
0.04 23211 1.6137 24341
0.01 19155 1.6137 1.9393
0.0025 1.7355 1.6137 1.7429

thicker than the lowest-order boundary layer of width . To seek a new distinguished limit near
the point A weset y =3 + 6%, z= 1 + #Z, with ¥ and Z both of order 1 in the boundary layer.
Substituting into (9.7.17), we obtain

andZ __(nZ)' + 0Z))3 + 8F
5 dY 148 '

A new distinguished limit is obtained by choosing en/é = n* = 8,50 8 = £¥*, = ¢"*. Thus, the
thickness of the new intermediate boundary layer is £*'. This explains why there is a term of
order &% in the expansion (9.7.24) for T(c). (See Prob. 9.48.)

PROBLEMS FOR CHAPTER 9

Section 9.1

9.1 Show that the solution to the asymptotic relation &/In & = O(z) (¢ — 0+ ) satisfies & = Ofe In ¢)
(e=0+)
9.2 Verily that y,.,(x) — y(x) = Ofe) (¢ = 0+; 0 < x = 1), where y,,{x)is givenin (9.1.13) and y(x)is
the solution to (9.1.7).
93 (a) Show that if a{x) < 0 for 0 < x < 1, then the solution to (9.1.7) has a boundary layer at x = L.

(b) Find a uniform approximation with error O(g) to the solution (9.1.7) when afx) <0 for
0<x<l

(¢) Show that if a(x) > 0, it is impossible to match to a boundary layer at x = L.
9.4 Find leading-order uniform asymptotic approximations to the solutions of

(a) &y" + (cosh x)y —y=0,y(0)=y{1)=1(0=x < 1)

(B) ey + (¥ + 1)y = x*y = 0, y(0) = y{1) = 1 (0 < x < 1), in the limit ¢ = 0 +.
9.5 Estimate the error between y(0) and y,,(0) in the limit as ¢ — 0+ where y(x) is the exact solution to
(9.1.3) and y,,(0) is given by (9.1.6).
9.6 Consider the initial-value problem ' = (1 + tdgx")y* =2y + 1 [y(1) = 1] on the interval
Dsxs<l

() Formulate this problem as a perturbation problem by introducing a suitable small
parameter &

(b) Find an outer approximation correct to order & (with errors of order £?). Where does this
approximation break down?

{¢) Introduce an inner variable and find the inner solution valid to order 1 (with errors of order
£). By matching to the outer solution find a uniformly valid approximation to y(x) on the interval
0 < x = 1. Estimate the accuracy of this approximation.
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(d) Find the inner solution correct to order & (with errors of order &%) and show that it matches to
the outer solution correct to order &
9.7 How does the solution to (9.1.1) behave in the limit ¢ + 07

Section 9.2

9.8 Use boundary-layer theory to find a uniform approximation with error of order ¢ for the problem
ey’ + ¥ + y=0[y(0) = e, y(1) = 1]. Notice that thereis no b y layer in leading order, but one
does appear in next order. Compare your solution with the exact solution to this problem.

9.9 Use boundary-layer methods to find an approximate solution to the initial-value problem
&y" +ay + by =0 with y(0) = 1, y(0) =1, and a > 0. Show that the leading-order uniform approxi-
mation satisfies y(0) = 1 but not y (0) = 1 for arbitrary b. Compare the leading-order uniform approxi-
mation with the exact solution to the problem when a(x) and b(x) are constants.

Section 93

9,10 Show that the matching region in nth-order boundary-layer theory for the problem discussed in
Example 1 of Sec. 93 is e < x « ™! (= 0+)
9.11 Obtain a uniform approximation accurate to order e as ¢—0+ for the problem
e + (L + x)iy +y=0[0)=1,¥(1)=1]
9.12 Verify (9.3.16).
9.13 Verify (9.3.18) and (9.3.19).
9.14 Show that the series (9.3.16) diverges like the series 3 n! x".

Clue: Try to find a recursion relation for the coefficient of {1 + x)~"!in the outer solution.
9.15 Find first-order uniform approximations valid as £ — 0+ for the solutions of the differential
equations given in Prob. 9.4.
9.16 Find second-order uniform approximations valid as ¢ = 0+ for the solutions of the differential
equations given in Prob. 9.4.

Section 9.4
9.17 For what real values of the constant a does the singular perturbation problem ey"(x) + y'(x)
—xy(x)=0, p(0)=1, y(1)=1 (0 <x<1) have a solution with a boundary layer near x = 0 as
e—0+7

Clue: Perform a local analysis to decide if the problem has a solution. Show that if« < —2, there
is no solution that behaves like y(x) ~ 1 (x =0+ ). Also show thatif ~2 <a< -1, the thickness of
the boundary layer at x = 0is £/ ** and thatifa > —1, the boundary layer at x = 0 has thickness &.
9.18 Consider the problem (discussed by Cole) ey” + /x ¥ —y =0 [y(0)=0,y(1) = el

(a) Show that there is a boundary layer of thickness e atx=0

(b) Show that a leading-order uniform approximation to Y(x) IS Vyairolx) = exp (Zﬁ}— 1
+ [G_)lrs‘;rﬁ}] j;g-i.ue—zue:,; dr.

(c) Show that the next correction to the outer solution is y,,(x)~ exp [2\/;) +e(—1/2x
+2/x = Pexp (2/x) 4+ (= 0+)

(d) Find integral representations for the first four terms of the inner expansion in powers of ¢
That is, calculate Y, ~ ¥, + 7Y, + Y, + eV 4 (e~ 0+)

(¢) Show that the first two terms in the outer expansion match with the first four terms in the
inner expansion.
9,19 Find a lowest-order uniform approximation to the boundary-value problem ey” + y' sin x +
y sin (2x) = 0 [y(0) = =, y(n) = 0]
9.20 Consider the problem ey” + x*y' + y = 0 with y(0) = y(1)=1ase—0+.For what values of x is
there a boundary layer at x = 07 What is the thickness of the boundary layer?

3,
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Section 9.5

9.21 Complete Example 1 of Sec. 9.5.
(a) Show that

0, =
&7, dY, fo. n=0.
Freiats Sl b -
'Y-—m_i?.-p ">i‘

(b) Next, show that in terms of the inner variable X, the outer expansion (9.5.15) becomes
You = /€ + 2 fell — X) + e/e X2 + OX, £ X7),

(c) Finally, show that the first three solutions to these equations which satisfy y(1) = 1 and which
match asymptotically to y,,(x) are

7 (%) = (1= Jele* + e
Pa () = [~e— 4o - DRl T= JeX + e
7,(%) = /e ~ DF? — e+ DX =R /ele T+ Ve X = JeX +3/e

(d) Venfy (9.5.17)
922 Verify (9.5.37).
923 Consider the boundary-value problems:

(@) ey +y/x+y=0[p(—1)=2e"" 1) =e" 7],

(b) ey + ¥/x* + y=0[y{0) =0, y(1) =" ],
as £—0+. Do these problems have a solution? If so, find a leading-order approximation to the
solution.
924 Show that the outer expansion (9.5.32) diverges.

Clue: One way to do this is to study the exact solution to (9.5.31), which is
y=e 12 xte mh-’m - u:;(x.l"v"?]”t.-z |,rz.('|a"\.-’f£)-
925 (a) Venly (9.543)

(b) Show that & =0 and B, = 2 in (9.5.43)
9.26 (a) Find a leading-order uniform approximation to the solution to the problem £(x + &*)y" +
xy +y=0[{0)=p(l)=1]ase—=0+.

(b) Show that the term ¢’y” is always a small perturbation, even when x « &* (e —0+).

927 Find a uniform approximation accurate to order & for the problem ey” + (1 + 2&/x + 267 xt)y +
2y/x =0 [y(0) = y(1) = 1] as e = O+ Show that:

(a) y(x)~ a + Be™ ¥ (x - 0+), so that y(0) is finite and it is appropriate to specify a nonzero
value for y(0);

(B) Youlx) ~x"? +28(x" = x7) 4+ (e = 0+);

(c) distinguished limits are & = ¢ and 8 = &*;

(d) inner and inner-inner expansions exist at x = 0 which match to each other; the inner-inner
expansion satisfies the boundary condition at x = 0 and the inner expansion matches to yg.(x)
9.28 Use boundary-layer theory to solve ey* + a(x)y’ + b(x)y = é(x) [¥(x) = 0; x < 0] to leading order
in £ as £ — 0+, where a(x) > 0 for x = 0.

Section 9.6

9.29 Find leading-order uniform approximations to the solutions of the following problems in th
limit & = 0+

(a) ey* — 2(tan x)y + y=0[p(£1)=1];

(b) ey" + 2(tan x)y —y =0 [y(x1) = 1];

(¢) &" + Ginh x)y’ + Jo(x)y = 0 [y(1) = 0;

(d) ey* +xy' = x cos x [y(+1) =2];

(e) ey —xy =@ +xpy=0[(£1)=1];

(f) ey + (in x)y — x(n x)y = 0 [y(}) = y@) =1}
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9.30 (a) Verify (9.6.13).

(b) Verifly (9.6.16).

931 Use first-order boundary-layer theory to find a uniform asymptotic approximation to the solu-
tion of ey” + (x* = 1)y + (x* = 1)’y =0 [y(—2) = A4, y(0) = B].

(@) This problem is an example of case IV because x = —2, f = Oatx = — 1. To leading order in
the internal layer near x = — 1, let X = (x + lj.f\,x"Etoobtain d*Y, /dX* — 2X dY, /dX = 0. Show that
¥, =C, +C, [§ ¢ dr. so that matching to the outer solutions requires that C, = 0 but leaves C,
undetermined.

(b) Now consider the next-order correction to the inner equation: &Y, /dX* =2X dY, /[dX +
46X*Y,, = 0. Show that an approximate solution to this equation is ¥,, = e/3{C, D[X,/2 (1 — ¢)] +
C;D,[—X\,’E (1 —¢)]}. Use this result to argue that both constants C, and C; may now be
determined by asymptotic matching, just as in case 1.

932 Examples of singular perturbation problems where higher-order boundary-layer theory resolves
the ambiguity of case IV of Sec. 9.6 are

(1) &y" = xy/ + (n + fx)y = 0 [y(~1) = A4, y(1) = B,

(2) &v" = xy + (n + fx*)y = 0 [y(=1) = 4, (1) = B],
wheree—0+,f#0,andn=0,1,2,....

(a) For each of these differential equations, show that the leading-order approximation to the
internal layer solution Y(X), where X = x/\/ is Yo(X)=e"*[K,D(X)+ K, D_,_,(iX)] The
difficulty with the leading-order boundary-layer analysis given in Sec. 9.6 is that when K, = 0, Y;(X)
grows algebraically with X as X — + o, so matching is possible for any value of K.

(b) Show that there is a higher-order approximation to ¥(X) that grows exponentially as

X | = o if either of K, or K, is not zero. In what order of perturbation theory does Y{X) first grow
exponentially? J
(¢} We may conclude that in order for a match to be possible, it is necessary that K, = K, = 0.
Show that the boundary-layer analysis of these problems then reverts back to that of case I1 of Sec. 9.6.
9.33 Examples of case IV of Sec. 9.6 that are not resolved by higher-order boundary-layer analysis are

(1) &y = x(1 + x)y +xy = 0 [y(~4) = A4, y(}) = B,

{2) &y" — x(1 — x*)y — x(x + 1)y = 0 [y(=1) = 4, y(}) = B].

Show that higher-order corrections to the leading-order internal-layer solution Yo(X) = 1do not grow
faster than algebraically as X — + co. Thus, conclude that boundary-layer theory remains ambiguous
to all orders in " as &€ — 0+, The resolution of this dilemma will be given in Prob. 10.28 using WKB
analysis.

934 Use boundary-layer techniques to find a leading-order uniform approximation to the solution of
£y"(x) + 2xy'(x) — 4x?y(x) =0 (=1 = x < 1), with (= 1) =0, y(+1) = e in the limit £ = 0 +.
9.35 Find leading-order uniform approximations to the solutions of the following problems:
(@) ey — (x + )y =2y = 0 [y(—1) = 4, y(1) = B],
(b) ey" + (x + x*)y +2y = 0 [y(—1) = A, y(1) = B],
(€) ey + (x* = 1)y + (x* = 1P’y = 0 [¥(0) = 4, y(2) = B],
in the limit & = 0 +.
9.36 Consider the boundary-value problem gy" — xy' + y=0[y(—1)= =1, y{(1}) = 1],
{a) Show that there is a one-parameter family of solutions determined by boundary-layer theory.
(b) Solve the original differential equation exactly and show that the solution is actually unique.

Section 9.7

9.37 Show that it is inconsistent to have a boundary layer at x = 1 in (9.7.1) as & = 0 +.
9.38 Solve (9.7.1) correct to first order in &
9.39 Consider the boundary-value problem ey — y + & = 0 [y(0) = 4, y(1) = 0].

(a) Find a leading-order uniform approximation to the solution when 4 < 0.

(b) Discuss what happens when A = 0. Is there a solution? If so, can you find it using boundary-
layer theory?

(D)

(D)

1
(D)
(D)
(D)

M

(D)

(D)

(D)

(D)
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9,40 Discuss the qualitative nature of the solutions to:

{a) &y" — ¥ + ¥* =0 [y(0) = y(1) = 1] in the limit ¢ = 0+

(B) ey" =¥ + Ly = 0 [y(0) = /2, y(1) = 0] in the limit & =+ 0+.
9.41 Do the boundary-value problems,

(@) ey" = (¥)* + &= 0 [y(0) = y(1) = 1],

(b) ey — (¥) + ¥ =0 [y(0) = y(1) = 1],
have solutions when & — 0+ 7 If they do, find a leading-order uniform approximation. Note that these
problems can be solved exactly using the methods of Sec. 1.7.

Clue: Perform a boundary-layer analysis in the phase plane (y, y')

9,42 Show that it is consistent for the solution to (9.7.7) to exhibit an internal boundary layer at any
value of x (-1 <x < 1)

9.43 Find a leading-order approximation to the solution of & d/dx{(2 — x)y dyjdx] = (2 — x) dy/dx
+y=0,withy(0)=y{l)=lase—=0+.

9.44 Use the approach of Example 2 of Sec. 9.7 to study the solutions of ey” — xy — y* = 0[y(1) = 4,
y(0) = 0] in the limit & — 0 + for various values of A.

9.45 Use phase-plane arguments to show that there exists a unique limit cycle of the Rayleigh equation
{9.7.14) which attracts trajectories satisfying arbitrary initial conditions.

9.46 Derive the expansions in (9.7.26) and (9.7.27).

9.47 Show that although boundary layers are possible near any value of y with |y| <4, it is not
possible to construct a closed trajectory of (9.7.14) except for the limit cycle discussed in Example 3 of
Sec. 9.7.

9.48 Compute the term proportional to ¢ in the expansion (9.7.24) for the period T(e) of the limit
cycle of the Rayleigh equation.

Clue: Perform an asymptotic match of the outer solution to the intermediate layer of width &%
and then match the intermediate layer to the inner boundary layer of width &. Show that the leading-
order intermediate-layer solution satisfies a Riccati differential equation whose solution is a ratio of
Airy functions. Argue that the coefficient of Bi is zero by matching to the outer solution [because the
coefficient of . /3 — yin (9.7.26) is positive]. Then match to the inner boundary layer as Y —a, where a
is the smallest solution of Ai (—r) = 0. Finally, compute the ¢* term in (9.7.24) by suitably evaluating
the integral (9.7.22) for Te).

9.49 Perform an asymptotic boundary-layer analysis of the limit cycle of the Van der Pol equation
& d*zfde* — (1 = z*) dz/dt + z = 0 by obtaining appropriate inner, outer, and intermediate expansions
directly from the differential equation (not transformed to the phase plane). Show that the period T(e)
of this limit cycle satisfies T(¢) ~ 3 — 2 In 2 + 32z (¢ — 0+ ), where  is the smallest zero of Ai(—t).
The period of the limit cycles of the Van der Pol and Rayleigh equations are the same because the
substitution z = dy/dt converts the Rayleigh equation into the Van der Pol equation.

9.50 Consider the nonlinear perturbation problem y” + 2y/x +eyy’ = 0 [¥(1) =0, y(+o0) = 1] as
e=+0+.

(a) Find the form of the outer solution accurate to order & Show that the problem is a singulalr
perturbation problem even though & does not multiply the highest derivative term. The problem is
singular because the domain is infinite.

(b) Argue that there must be an “inner” expansion near x = co. Find its scale by setting X = dx
and seeking a dominant balance. Express the inner solution to order ¢ in terms of exponential integrals
Eft)=[re s "ds

(¢) Try to perform an asymptotic match to order & by taking the intermediate limit x — + 20,
X — 0+. The asymptotic expansion (6.2.11) of E(t) =T(1 — n, t)ast— 0+ is helpful. Show that no
match is possible.

(d) Argue that terms of order & In (1/&) must be included in the outer expansion for matching to
succeed. Introduce this intermediate-order term and show that the asymptotic match between inner
and outer expansions can now be completed.
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When you fn;low two separate chains of thought, Watson, you will
find some point of intersection which should approximate the truth.

—Sherlock Holmes, The Disappearance of Lady Francis Carfax
Sir Arthur Conan Doyle

10.1 THE EXPONENTIAL APPROXIMATION FOR
DISSIPATIVE AND DISPERSIVE PHENOMENA

WKB theory _ is a powerful tool for obtaining a global approximation to the
solution of a linear differential equation whose highest derivative is multiplied by
a small parameter ¢; it contains boundary-layer theory as a special case.

The WKB approximation to a solution of a differential equation has a simple
structure. The exact solution may be some unknown function of overwhelming
complexity; yet, the WKB approximation, order by order in powers of ¢, consists
of e)_tponenu_als of elementary integrals of algebraic functions, and well-known
special _func}lons, such as the Airy function or parabolic cylinder function. WKB
approximation is suitable for linear differential equations of any order, for initial-
value and boundary-value problems, and for eigenvalue problems. It may also be
used to evalllualc integrals of the solution of a differential equation. The limitation
of conventional WK B techniques is that they are only useful for linear equations.

Dissipative and Dispersive Phenomena

In our_study of boundary-layer theory we have shown how to construct an
approximate s_o]ution to a differential equation containing a small parameter &.
Thls'corgstructlon requires one to match slowly varying outer solutions to rapidly
varying inner solutions. [In perturbation theory a slowly varying function changes
its vgluc by 0(1) over an interval of size O(1) as ¢ — 0+ while a rapidly varying
funcgin]changes its value by O(1) over an interval whose size approaches 0 as
e+ 0+.

_ ‘An outer solution remains smooth if we allow & to approach 0+. But in this
limit an inner solution becomes discontinuous across the boundary layer because
the thickness of the boundary layer tends to 0. We thus say that the solution
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suffers a local breakdown at the boundary layer as ¢ —»0+. A local breakdown
occurs where the approximate solution is exponentially increasing or decreasing.
This kind of behavior is called dissipative because the rapidly varying component
of the solution decays exponentially (dissipates) away from the point of local
breakdown. The solution of a differential equation having a strong positive or
negative damping term (like ay’ in ey” + ay’ + by = 0) typically exhibits dissipa-
tive behavior.

Some differential equations with small parameters have solutions which ex-
hibit a global breakdown. For example, the boundary-value problem

ey" +y=0, y0)=0y1)=1, (10.1.1)

has the exact solution

_sin (“f’\/;) ¢ =+ (nm)" 2
y(x}—siﬂ{lf\m, %[ﬂ'} ’

which becomes rapidly oscillatory for small ¢ (see Fig. 7.3) and discontinuous
when £ — 0+. The breakdown is global because it occurs throughout the finite
interval 0 < x < 1. A global breakdown is typically associated with rapidly oscil-
latory, or dispersive, behavior. A dispersive solution is wavelike with very small
and slowly changing wavelengths and slowly varying amplitudes as functions of x.

Boundary-layer techniques are not powerful enough to handle dispersive
phenomena. To see why, let us try to solve (10.1.1) using boundary-layer methods.
Setting ¢ = 0 in (10.1.1) gives the outer solution Youlx) = 0, which is obviously a
terrible approximation to the actual solution in (10.1.2). The actual solution in
Fig. 7.3 looks like a sequence of internal boundary layers with no outer solution at
all. Even for this very simple problem, boundary-layer analysis is insufficient.

From our understanding of Chap. 9 we can intuit that it is the absence ofa
one-derivative term which causes the global breakdown of the solution to (10.1.1).
In Sec. 9.6 we showed that internal boundary layers may occur in the solution of
&y" +al(x)y + b(x)y =0 [y(0)=4, y(1)=B] at isolated points for which
a(x) = 0. When a(x) = 0 on an interval, it is not surprising to find that the solution
is rapidly varying on the entire interval. Fortunately, WKB theory provides a
simple and general approximation method for lincar differential equations which
treats dissipative and dispersive phenomena equally well

(10.1.2)

The Exponential Approximation

Dissipative and dispersive phenomena are both characterized by exponential
behavior, where the exponent is real in the former case and imaginary in the latter
case. Thus, for a differential equation that exhibits either or both kinds of behav-
ior, it is natural to seek an approximate solution of the form

y(x) ~ A(x)e’=P, §-0+. (10.1.3)

The phase S(x) is assumed nonconstant and slowly varying in a breakdown region.
When § is real, there is a boundary layer of thickness &; when S is imaginary, there
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is a region of rapid oscillation characterized by waves having wavelength of order
8. When S(x) is constant, the behavior of y(x), which is characteristic of an outer
solution in boundary-layer theory, is expressed by the slowly varying amplitude
function A(x).

The exponential approximation in (10.1.3) is conventionally known as a
WKB approximation, named after Wentzel, Kramers, and Brillouin who popu-
larized the theory. However, credit should also be given to many others including
Rayleigh and Jeffreys who contributed to its early development.

Formal WKB Expansion

The exponential approximation in (10.1.3) is not in a form most suitable for
deriving asymptotic approximations because the amplitude and phase functions
A(x) and S(x) depend implicitly on 4. It is best to represent the dependences of
these functions on § explicitly by expanding A(x) and S(x) as series in powers of 6.
We can then combine these two series in a single exponential power series of the
form

. 6-0. (10.1.4)

Yx)~exp [5 3 875,(x)

This expression is the starting formula from which all WKB approximations are
derived. :

Example | Approximate solution to a Schrodinger equation. A second-order homogeneous linear
differential equation is in Schrodinger form if the y' term is absent. The approximate solutions to
the Schrodinger equation

ey = Qlxly, Q) #0, (10.15)

are easy to find using WKB analysis when ¢ is small. We merely substitute (10.1.4) into (10.1.5).
Differentiating (10.1.4) twice gives

1o [
}""-(— ¥ é‘S;]axp (1 ¥ J"S_], 50,

LS 8,20

1 (= 1y o= 1 = (10.1.6)
y' o~ [—2(2 5"5;] += ¥ &S5|exp (— ¥y os,). -0

é [ e é

a=Q n=0

Next, we substitute (10.1.6) into (10.1.5) and divide off the exponential factors:

g2 2 2t g "

350 +~5—SOS,+ 6-5°+---=Q(x}. (10.1.7)

The largest term on the left side of (10.1.7) is £*55'/6%. By dominant balance this term must

have the same order of magnitude as Q(x) on the right side. (Here we have used the assumption

that Q + 0.) Thus, 4 is proportional to £ and for simplicity we choose 8 = . As in boundary-layer
theory, the small scale parameter 4 is determined by a distinguished limit (see Sec. 9.3).

Setting & = ¢ in (10.1.7) and comparing powers of ¢ gives a sequence of equations which

determine Sy, §,, §,, ...
57 = Q(x), (10.1.8)

25,8, + S5 =0, (10.1.9)

m-l

25,8, 4+ 50, + Y §85,_,=0, nz2 (10.1.10)
i=1
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The equation for S, (10.1.8) is called the eikonal equation; its solution is
=
Solx) = £[ /O at. (10.L.11)

The equation for §, (10.1.9) is called the transport equation; its solution, apart from an additive
constant, is

S,(x)= —4 In Q(x). (10.1.12)

Combining (10.1.11) and (10.1.12) gives a pair of approximate solutions to the Sch rodinger
equation (10.1.5), one for each sign of 5,. The general solution is a linear combination of the two:

Mx) ~ €, @7 (x) exp 11 [ n‘r\/'Q{r)I

es0” 4 (x) exp i—-:_ | dL/Q[:]], £—0, (10.1.13)

where ¢, and ¢, are constants to be determined from initial or boundary conditions and a is an
arbitrary but fixed integration point. This expression is the leading-order WK B approximation to
the solution of (10.1.5); it differs from the exact solution by terms of order & in regions where

Qx)#0.

A more accurate approximation to y(x) may be constructed from the higher
terms in the WKB series. The next four terms, as computed from (10.1.10) by
repeated differentiation, are

X " 5 "2
S:= | lﬁ%ﬁ - ﬁ%%z.ldr' (10.1.14)
502
S, = — 15”22 + 6%3, (10.1.15)

< [dtQiaxt  70Q"  19(Q) | 221Q7(Q) _ L105(Q)° de
Sa—tJ 32Qs.r2 _'32@7;2 I28Q’” + 256QW2 _2,048Ql”2 ’

(10.1.16)

_dtguxt  7QQ"  S(@) _113(Q)Q" | 565(Q) (10.1.17)

Ss=—~ao" T eap* T eagt T 256Q° | 20480°

A discussion of the structure and properties of these expressions is given in Sec.
10.7.

Example 2 Solution of ey” + y = 0 [y(0) = 0, y(1) = 1] as ¢ = 0+. Even though it4s not possible
to solve this problem using boundary-layer theory, the WKB approximation in (10.1.13), with &
replaced by JE leads to the exact solution. For this problem @(x) = — L. Thus, (10.1.13) reduces
to y(x)=¢, exp (ix.n’ﬁ} + ¢ exp (—ixf\/;.} o
Imposing the boundary conditions y(0) = 0 and y(1) =1 reproduces the exact solution in

(10.1.2):
_sin (x//e)
W)= Gk Jey
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Example 3 WKB solution of an initial-value problem. To solve the initial-value problem
£2y" = Q(x)y [¥(0) = A, y(0) = B] we set a = 0 in (10.1.13) and differentiate (10.1.13) to obtain
simultancous equations for ¢, and ¢;:
[QO)]™ (e, +c3) = A,
—1QONQMO)]**(e, + €3) + (e, — c5)[Q(0)]""*/e = B.
For example, when A = 0and B = | weobtaing, = —¢; = Le[Q(0))
mate solution to this initial-value problem is

ylx) ~ e[Q(x)Q(0)] V¢ sinh Ij' 4t /Qleye

If we now take Q(x) = (1 + x*), then a uniform approximation (valid for all x) to the
solution of

. Thus, the approxi-

s e=0.

Sy =(1+xfy,  ¥(0)=0,y(0)=1, ’ (10.1.18)
is x) ~ \/%sinh F (x + x’f}]}, £—0. (10.1.19)
X £

In Fig 10.1 we compare (10.1.19) with the exact solution to (10.1.18) from a computer for three
values of &. Note that £ need not be very small for (10.1.19) to be a good approximation to the
exact solution (see Prob. 10.3).

Example 4 Rederivation of a boundary-layer app ion. Here we show that the WKB
approximation contains boundary-layer theory as a special case. Consider the familiar boundary-
value problem

ey" + alx)y + blx)y =0, ¥w0)= A, y(1) = B, (10.1.20)

where we assume that a(x) > Ofor0 = x < land e —0+.
We begin by substituting equations (10.1.6) into (10.1.20) and neglecting terms which vanish
as & —0:

3 E 3 1
?Sb‘ + 233'03" + ESG + 55‘00 +Sa+b+--=0 (10.1.21)
The largest of the first three terms is £~ 2S and the largest of the next three (assuming that
a#0)is 6 'Sya By dominant balance these two terms must be of equal magnitude, so
&5 2= 0O(67'). Therefore, & is proportional to ¢ and for simplicity we choose d =¢. As in
Example 1, the small scale parameter & is again determined by a distinguished limit. [There is
another distinguished limit possible in (10.1.21); namely, & = 1. However, this limit reproduces
the outer solution below. Why?]

Next we return to (10.1.21) and identify the coefficients of ¢™* and &% The resulting
equations

S+ Spa=0 (10.1.22)
and 25,8, + 85+ S,a+b=0 (10.123)
are easy to solve. Equation (10.1.22) yields two solutions for 5:
Sp=0and §;= —a.

When S, =0, (10.1.23) becomes S, a + b = 0. Thus, §, = — [* [b(t)/a(t)] d¢, and one WKB
approximation to the original differential equation in (10.1.20) is

_J"i‘)d

yilx)~¢, exp a0 t

l, e=0+,

where ¢, is a constant which includes the term %", This is the outer solution of boundary layer
theory.

Relative error (%)
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Figure 10.1 A plot of the relative error between the exact solution to the initia]-.valu.c problem
&2y = (1 + x*Py [¥(0) = 0, y'(0) = 1] in (10.1.18) and the leading-order WKB approximation to y(x),
y(x) ~ e(1 + x3)~ V¥ sinh [(x + x¥/3)/&] (e = 0), in (10.1.19) for three values of & The relative error is
defined as (WKB approximation — exact solution)/(exact solution).

When §, = —a, (10.1.23) becomes a5’ + a" = b. Thus, S,=-lna+f; ih{r)m(;)] dt, and
another WKB approximation to the original differential equation in (10.1.20) is

bty 1
L a_(:"}d'_EL a(t) d:l. e—0+,

where c, is another constant. This is the inner solution of boundary-layer theory. )
The general solution is a linear combination of y, and y;. We must now impose the
boundary conditions to determine ¢, and ¢;. The boundary condition at x = 0 gives

A =c, + c,/al0) (10.124)

1
y3{8) ~ €3 rsexp

and the boundary condition at x = | gives

' blr)
B=c, exp [aju 0" (10.1.25)

where we have neglected the exp jally small term containing exp [—¢" [3 a(t) di]. Solving
{10.1.24) and (10.1.25) simultaneously gives

bt a(0) L b(t) b, 1t
y(x) ~ Bexp [}l md +a_(;i A—Bex L ;[—adr exp lL a[:}d' EL

alt) drl.
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Thus, the eigenfunctions are
This expression simplifies because the second term contributes only when x = Ofe)(e =0+ )itis
negligible for larger values of x. Thus, = Join v
yolx) ~ U v (22( )d:) Q- 4(x) sin
0

bl
A-B epr :—E;u'f
o @ Note that if Q(x) = 1, then the right side of (10.1.33) reduces to ./ 2/= sin (nx), which is the exact

Equation (10.1.26) is precisely the uniformly valid lowest-order boundary-layer solution that solution to y” + y = 0 [y(0) = y(r) = 0].
we obtained in (9.1.13). Notice that (10.1.26) was obtained without ever having to perform an To demonstrate the accuracy of our results, we choose Q(x) = (x + x)*. Then the approxi-
asymptotic match! mate eigenvalues and eigenfunctions are given by

noo.  (10.133)

Mjsmd:}
f3 /o dil’

+ e =0mie, (10.1.26)

-1 by
ylx)~ B exp || %:)}d:

Example 5 WKB analysis of a Sturm-Liouville problem. We know from our discussion of the E ~ 9n? nes o (10.1.34
Sturm-Liouville eigenvalue problem in Sec. 1.8 that the boundary-value problem " a9rt’ ’ 1.34)
y(x)+ EQ(x)y(x) = 0, Q(x) = 0, y(0) = y(n) = 0, (10.1.27) " 6 sin [n(x* + 3x’n + 3nlx)/Tn?)
s - . . . A wlx)~ 55 , =~ 0. 1.
has an infinite number of nontrivial solutions: the eigenvalues E,, E;, E;, ... are discrete, non- o) 1=’ (m + x) nee (10.1.35)
degenerate (sigenvalues associated with different eigenfunctions are unequal), and are all positive
ceal bers; the nth eigenvalue E, is iated with the cigenfunction y,(x); eigenfunctions We have checked these results numerically by computer. The comparisons between the approxi-
associated with different eigenvalues are orthogonal with respect to the weight function Q(x): mate analytical and the computer solutions are given in Table 10.1 and Figs. 10.2 and 10.3.
[ dx p(x)yalx)@x) =0, n#Em (10.1.28)
o
This orthogonality property is easy to prove using integration by parts twice. See Prob. 10.7(b). 0.05
Since the differential equation and boundary conditions in (10.1.27) are homogeneous, the L
eigenfunctions {y,} are determined only up to an arbitrary multiplicative constant. It is conven-
tional to choose the normalization of y, so that 0.04
-
. Exact solution y(x
[ )PQ(x) dx = 1. (10.1.29) 0.03 yx)
o
Now the eigenfunctions form a complete orthonormal set. r
WKB theory may be used to find approximate formulas for E, and y,(x) when n is large. As 0.02F
the WKB theory itself will verify, E, is approximately proportional to n* as n— a0; thus, the L WKB approximation to y(x)
leading-order WKB approximation to the solution of ey"(x) + Q(x)y(x) = 0, where e = 1/E,, is
accurate for large n because ¢ =0 as n — @. 0011 (n= 1) mode
The leading-order WKB approximation (10.1.13) to the general solution of y"(x) L
+ EQ(x)y(x)=0_ is a linear combination of 0~ "4(x) sin [\/E [§ /@) dt] and ) ) , R | ) .
Q" V4(x) cos [/E [ /Qlt) dt]. (Recall that all the eigenvalues E are positive real numbers; also, 0 ) ' ) ' T T T d t 1
we fix the sign of JE to be positive.) The boundary condition y(0) =0 implies that - /2 x m
x =0.01F
y(x) ~ CQ ™ ""*(x) sin lJE [ JoWd| —E-w, (10.1.30) i
‘o
where C is an arbitrary normalization constant. —0.02-
The boundary condition y(n) = 0 determines the eigenvalues -
] =0.03-
B, ~ |-——m "I‘___._] . n—oo. (10.1.31) 3
fs V/QUr) dt -
Next we determine the eigenfunctions. The normalization integral in (10.1.29) fixes C in =0.041
(10.1.30); substituting (10.1.30) into (10.1.29) gives L
-0.05-

1~ I|.K dx Q(x)C} ! sin? [.\/E ‘[x dt \fﬁf_]}. n— .

Vel Figure 10.2 Comparison of the exact solution to y"(x) + E,(x + =)*¥(x) = 0 [y(0) = y(z) = 0}, with

The change of variable u = \/E, [ dt/Q(t) gives 1 ~ (C1/\/E,) fo" du sin? u (n — oo, whence the WKB approximation to this solution as given in (10.1.35) for the lowest (n = 1) mode. Although
, WEKB becomes exact as n — oo, this plot shows that even when n = | the WKB approximation is
Cia o - (10.1.32) extraordinarily accurate.

fa QU dt’
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Table 10.1 A comparison of the exact eigen-
values E, of the Sturm-Liouville problem y"(x)
+ E(x + n)*y(x) = 0 [(0) = y(n) = 0] with the
leading-order WKB prediction [see (10.1.34)] for
these eigenvalues E, ~ 9n%/49n? (n — 0)

As expected, this prediction becomes more accurate as n in-
creases. The relative error is defined as (approximate —

exact)/(exact)

n E,(WKB) E, (exact) Relative error, %
1 0.00188559 0.00174401 81
2 000754235  0.00734865 26
3 0.0169703 0.0167524 1.3
4 0.0301694 0.0299383 0.77
5 0.0471397 0.0469006 0.51

10 0.188559 0.188305 0.13

20 0.754235 0.753977 0.035

40 3.01694 3.01668 0.009

0.04 Exact solution y(x)

L (n = 2) mode

0.01}F WKB approximation to y(x)

0 + _1'. 1 ) 1 ) I i i -
-0.01
-0.02

=0.03-

-0.041

—0.05 L

Figure 10.3 Same asin Fig 10.2 except that n = 2. The exact eigenfunction and the WKB approxima-
tion are almost indistinguishable.

(E)
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The preceding examples demonstrate the power and efficiency of the exponen-
tial approximation (10.1.4). However, we have already scen that rapidly varying
exponentials appear naturally when one attempts to approximate solutions to
linear equations. In Chap. 3 the exponential approximation was found to be useful
for finding the leading behaviors of solutions near irregular singular points [see
(3.4.6)]. In Chap. 6 the rapid variation of exponentials of the form (10.1.3) led to
the principal ideas of approximation methods for integrals such as Laplace’s
method, the method of stationary phase, and the method of steepest descents.
Exponentials also appear in the equations of boundary-layer theory. Thus, we are
not terribly surprised when exponentials resurface in the context of WKB theory
as the basis of the WKB approximation.

10.2 CONDITIONS FOR VALIDITY OF THE WKB
APPROXIMATION

WKB theory is a singular perturbation theory because it is used to solve a differ-
ential equation whose highest derivative is multiplied by a small parameter (when
the small parameter vanishes, the order of the differential equation changes
abruptly). The singular nature of WKB theory is clearly evident in the 1/6 term in
the exponential approximation (10.1.4):

5-0. (102.1)

y(x) ~ exp l; 20 8"S,(x)

Unless Sy(x) = 0, the approximation ceases to exist when 6 = 0. The singular
nature of this approximation also surfaces in a more subtle way—the WKB series
Y. 8"S, usually diverges. (The series converges if it truncates, but this is rare. See
Prob. 10.2.) This is why we use the asymptotic notation ~ rather than =. Never-
theless, even though the WKB series diverges, we know from the numerical
examples in Sec. 10.1 that it can give an extremely accurate approximation to y(x).

This section develops criteria for predicting when the WKB approximation
will be useful. These criteria are quantitative; i.e., they specify how small 6 must be
for the WKB series in (10.2.1) to approximate y(x) to some prescribed relative
error.

In order that the WKB approximation (10.2.1) be valid on an interval, it is
necessary that the series ¥ 6"~ 'S,(x) be an asymptotic series in § as & — 0 uni-
formly for all x on the interval. This requires that the asymptotic relations

S« 3Soleh 50,

55, (x) « §,(x), 50, (102.2)

88,41 (x) < d"71S,(x), -0,
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hold uniformly in x. These conditions are equivalent to the requirement that each
of the functions S, , ,(x)/S.(x) (n =0, 1, 2,3, ...) be bounded functions of x on the
interval (although these bounds may be arbitrary functions of n). If the series
Y 6" 'S,(x) is uniformly asymptotic in x as 6 — 0, the optimal truncation rule
suggests that truncating the series before the smallest term Sy +1(x) gives an
approximation to In y with uniformly small relative error throughout the x
interval.

However, because the WKB series appears in the exponent in (10.2.1), the
asymptotic conditions in (10.2.2) are not sufficient to ensure that
exp [} 8"~ 'S,(x)] will be a good approximation to y(x). For the WKB series
truncated at the term 6"~ 'Sy(x) to be a good approximation to y(x), the next term
must be small compared with 1 for all x in the interval of approximation:

MSuarlx) <1, -0 (10.2.3)
If this relation holds, then exp [6"Sy. (x)] = 1 + O[6"Sy. (x)] (8 — 0). Thus, the
relative error between y(x) and the WKB approximation is small:
y(x) — exp [1/6 Y70 3"S,(x)]
y(x)
Both conditions (10.2.2) and (10.2.3) must be satisfied for WKB to be useful.

~8"Syilx),  8-—0.

Geometrical and Physical Optics

If we retain only the first term in the WKB series, we are making the approxima-
tion of geometrical optics: ¢5°*"¢, However, while this expression may faithfully
reflect the structure of y(x), it does not constitute an asymptotic approximation to
y(x) because S, (x), the next term in the WKB series, is not small compared with 1
as & — 0 (it does not depend on 4) and condition (10.2.3) is not satisfied.

The first two terms in the WK B series constitute the approximation of physi-

cal optics:
y[x) ~ E‘,So(x)n’«!“"smn, 5—0. (1024)

The relative error between y and the approximation of physical optics is of order
85,(x), which vanishes uniformly with § if $,(x) is bounded. Thus, the approxima-
tion in (10.2.4) is an asymptotic relation. For example, if it is required that the
physical-optics approximation be accurate to a relative error of 2 percent on an
interval, we must then choose & so small that |8S,(x)| < 0.02 for all x on that
interval.

Usually, the approximation of physical optics expresses the leading asymp-
totic behavior of y(x) while the approximation of geometrical optics contains just
the controlling factor (the most rapidly varying component) of the leading
behavior.

Example 1 Behavior of Airy functions as x — + 0. The Airy equation y" = xy is a Schrodinger
equation with Q(x)=x and &= 1. Thus, from (10.L.11), (10.1.12), and (10.1.14) we have
So=+4x¥, 8, = —LInx, 5§, = +35¢ % We observe that even when & = 1, the asymptotic
inequalities £§; <« §, <« Sy/¢, &85 <« 1 (x = +o0) hold. We conclude that for fixed ¢ the physical-
optics approximation is valid as x — + co. Indeed, we have just rederived the leading behaviors of
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solutions to the Airy equation as x — + oo as well as the first correction to the leading behaviors
[see (3.5.21)]:
yi() ~CyX - I.l'-‘e‘t]x-‘ﬂl_l (1 + ﬁx—Jﬂ)"

where ¢, is a constant. Note that the rapidly varying exponential factors e* **"** come from the
geometrical-optics approximation.

Example 2 Behavior of parabolic cylinder functions as x — + 0. WKB theory also gives the
large-x behavior of the solutions to the parabolic cylinder equation y* = (x* — v — 4)y. Here
again, even though ¢ =1, the physical-optics approximation is valid as x — +o because
S, « Sofe, 65, < 8§,, 88, « | (x = +a0).
The components of the physical-optics approximation are calculated from Q(x)
=}x? — v =} as follows:
x

s, - t}_. SO0t~ if‘%(l_zv;l]d"" t[{ _(v+%)lnx|, X =+,

where we have used the binomial expansionand §, = —{In @ ~ —4 In (x*)(x = +o0). Hence,
the physical-optics approximation gives

c x" Tl X~ 4@,

- x1,
c_x"e” =4,

,,,_C:e.?nrs.,‘_[

which are the leading behaviors of solutions to the parabolic cylinder equation [see (3.5.12)].
Again, the controlling factor e***'* arises from the geometrical-optics approximation.

Example 3 Accuracy of physical optics. How small must we make & to be sure that the physical-
optics approximation to the exponentially decaying solution of &?y" = .\/)_r y is accurate to 5
percent when x = 17

The physical-optics approximation to y(x) is y(x) ~ cx~ '3 ~4=**/** (g~ 0). The relative
error between this asymptotic approximation and the exact solution is &8, which from (10.1.14)
is |eS,| = 9ex%%/160. This equation shows that we must choose ¢ < 0.9 to make eS| <5
percent for all x > 1.

Example 4 Violation of criteria for validity of WK B. s it valid to use WKB theory to predict the
large-x behavior of the solutions to

¥ix)= (]nTx]ly(x)? (10.2.5)

First, we determine the behavior of y(x) for large x without using WKB. We transform
(10.2.5) by letting s = In x:

d? d
75t ¥s) — & ¥(s) = $*¥(s).

The substitution y(s) = ¢**z(s) eliminates the dy/ds term: (d*/ds*)z(s) = (s* + §)z(s) Finally, the
change of variable t = /25 gives a parabolic cylinder equation

d* [

— ) == + -

a0 [4 s) )
whose solutions are D_4(t) and D_;4(~t) When ¢ is large and positive, the behavior of
parabolic cylinder functions is given by [see (3.5.14)):

verria [ M0 =D
Djt)~re Il e I
G+
e F

/2n
D (1)~ YT r'-‘a’-"l1+

l, o0,
I'(—v)
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Thus, the behavior of y(x) for large x is

p(x) ~ e, /% (In x)7 3B FR[L — A(in x) 72 4], x— + 0w, (10.2.6a)

or yix) ~ c_ /% (In x)" B 0n22 | — B(in x)7F 4], x— 400 (10.2.66)

Now we examine the predictions of WKB. From (10.2.5) we see that Q(x) = (In x)*x~7%.
Thus,

So=+| /OW dt = +3in <),

S,=—-4lnQ@x)=4lnx-4ln(nx)
5= i|x(% - %g;z)dl = +4in(lnx)+ % (Inx)

From these formulas, it is clear that 8, « §, « §, (x — @), but that 1 « §; (x — o). Hence, the

condition in (10.2.2) is satisfied, but that in (10.2.3) with N = 1 is violated. Thus, while the

geometrical-optics approximation e* gives the correct controlling factors in (10.2.6), we are not

surprised that the physical-optics approximation e™ *** gives the wrong leading behavior.
Next, let us calculate 5. From (10.1.15) we have

o e
160~ 64Q°
Here, we are gratified to find that §; « §;, §3 « 1 (x = + ). Thus, we expect the leading

behaviors in (10.2.6) to be given by the first three terms in the WKB series: y(x) ~ % *%1*%
(x = +0o). Indeed, we find that

ot ¥S: o c, ettimmiil 12 {]n _t]' LEERTLY

3 -4 1 -2
S,(x) = = gln )= (n )72 (102.7)

In Prob. 10.10 you are asked to venify that
es.+s.+s,+s,—si (1028}
reproduces the asymptotic formulas in (10.2.6).

We emphasize that in this example we have taken & = 1. If we apply WKB analysis to the
equation

e2y"(x) = [(In x}x]p(x)

then the physical-optics approximation ¢%***¥' is the leading asymptotic approximation to y(x)
as £ —0 for each fixed x > 0. However, this physical-optics approximation is not uniformly
asymptotic to y(x)as & — 0 for all x > 0. To obtain the leading behavior of y(x)as x — oo for fixed
£ it is necessary to use ¢ *$1 **51_See Prob. 10.10(b).

Physical Optics for Higher-Order Equations

WKB analysis is not sensitive to the order of a differential equation. It is very easy
to show (see Prob. 10.11) that for the nth-order equation

d"
e y(x) = Q(x)y, (10.29)
the WKB approximation has the form e/°*<51* ", where

So=o (O] d, o =1, (102.10)

(E)
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1-n

TS
Compare this result with that in (3.4.28). See Prob. 10.11(b).

and S In Q. (10.2.11)

Example 5 Behavior of solutions to d*y/dx* = xy for large x. For the hyperairy equation of order
4, d*y/dx* = xy,n=4,&e= 1, and Q = x. The physical-optics approximation is

S0 S = 08 exp (w l" o d!] =cx¥% exp (w;x""],

where ¢ is a constant and @ = +1 or +i, which agrees with the leading behavior in (3.5.23).

Turning Points

Equations (10.2.10) and (10.2.11) show that the condition (10.2.2) for the validity
of the WKB series on an interval is violateg if Q(x) vanishes on that interval
Specifically, the asymptotic relation So(x)/e » S, (x) = [(1 — n)/2n] In Q(x) (e~ 0)
breaks down at a zero of Q because S, becomes singular. Points where Q vanishes
are called turning points.

The expression “turning point” comes from the Schrodinger equation which
describes a quantum mechanical particle in a potential ¥(x):

(‘—82:722—4— V[x}—E)y{x}:O.

V(x) is the potential energy of the particle and E is the total energy of the particle.
For this equation Q(x) = V(x) — E, so Q(x) vanishes at points where V(x) = E.
The classical orbit of a particle in the potential V(x) is confined to regions where
V(x) < E. The particle moves until it reaches a point where V = E and then it
stops, turns around, and moves off in the opposite direction.

The physical-optics approximation is clearly invalid at a turning point
because

e&'o.l’z+$; = Qu—n;.r:,. EXP(? i-" Ql,’n dt)

is infinite at such points. On the other hand, the theory of linear differential
equations asserts that if Q(x) is analytic, then the exact solutions of the differential
equation (10.2.9) are regular! We resolve this puzzle and use asymptotic matching
to construct approximate solutions of differential equations with turning points in
Sec. 10.4.

103 PATCHED ASYMPTOTIC APPROXIMATIONS: WKB
SOLUTION OF INHOMOGENEOUS LINEAR EQUATIONS

From the discussion of Sec. 10.1 one might conclude that WKB theory is useful
only for homogeneous linear equations; it would seem that unless a differential
equation is homogeneous, it would not be possible to divide off the exponential
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WKB series to obtain equations for Sy, Sy, S;, .... However, there is no real
difficulty with an inhomogeneous equation because one can solve the associated
homogeneous equations in terms of WKB approximations and then use the
method of variation of parameters (see Sec. 1.5) to generate the solution of the
full inhomogeneous equation. The only possible drawback with this procedure is
that imposing the boundary conditions can involve evaluating cumbersome
integrals. In this section we propose a simple and general method for solving
the inhomogeneous Schrodinger equation in terms of a Green’s function which
neatly incorporates the boundary conditions at an early stage of the problem.
(Green’s functions are discussed in Sec. 1.5.)

We will solve the general inhomogeneous Schrédinger equation of the form

ey" — Q(x)y(x) + R(x) =0, (10.3.1)

subject to the homogeneous boundary conditions y(+0c0)= 0. We will assume
that Q(x) > 0 for all x (so that the homogeneous differential equation has no
turning points) and that Q(x)>» x~2 as x — oo so that the physical-optics
approximation to the solution of the homogeneous equation is valid for all x. We
must also assume that the inhomogeneous term R(x) is such that a solution to
(10.3.1) which satisfies y(+ 0o) = 0 actually exists.

One way to analyze this problem is simply to take the limit ¢ — 0+ 'in (10.3. 1)
to obtain

y{x)~1§i_;’ e—=0+, (1032)

which is like the outer limit of boundary-layer theory. In fact, if R(x) and Q(x) are
smooth and there are no turning points, then (10.3.2)is valid everywhere. Thus, in
order that there exist a solution to (10.3.1) satisfying y(£ c0) = 0, it is necessary
that R(x) « Q(x) as x — + oo (see Prob. 10.12).

The outer behavior (10.3.2) breaks down at points of discontinuity of R(x)
and at turning points of Q(x). At such points, the solution y(x) to (103.1) is
continuous but R{x)/Q(x) is discontinuous. The WKB analysis given below yiclds
a uniformly valid approximation to y(x) even in the neighborhood of discontinu-
ities of R(x). Our WKB analysis can also be extended to obtain a uniform approx-
imation to y(x) when there are turning points (see Prob. 10.24).

Our approach here consists of solving the Green's function equation

1 0°G ! ' ! 4 33
¢ (x, X') = Q(x)G(x, x') = =d(x — x'),  G(+o0,x)=0,  (1033)

and then using the Green's function G(x, x') to construct the solution to (10.3.1):
y(x)= } G(x, x)R(x") dx". (10.3.4)

If we had the exact solution to (10.3.3), then (10.3.4) would constitute an exact
solution to (10.3.1) because it satisfies both the differential equation and the
boundary conditions. Lacking this, we propose to use the WKB physical-optics
approximation to G(x, x') in place of the exact Green’s function. The resulting
integral (10.3.4) is then asymptotic to y(x) as e —+0+.
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The WKB solution of (10.3.3) will require the patching of two WK B solutions
which are valid in their respective regions. Patching is a local procedure because it
is done at a single point x = x’. By contrast, asymptotic matching, which is used in
the next section to construct a solution to the one-turning-point problem, is a
global grocedure which is performed on an interval whose length becomes infinite
ase—0+.

Construction of the Green’s Function G(x, x')

To solve (10.3.3) we divide the x axis into two regions: region I, where x > x’, and
region II, where x < x". In each region the differential equation is homogeneous,
so the WKB physical-optics approximation may be used. In region I G— 0 as
x = 400, the WKB approximation to G(x, x') which incorporates this condition
is

0| -

Gi(x, x') = C[Q(x)]”"* exp I— | JVQlr) d!‘, x—=x, (103.5)
where C, is a constant and we have chosen the lower limit of integration to lie
at x'.

In region II G — 0 as x — —oo; thus,

Gulx, x') = Cu[Q(x)] ¥ exp [-é J Jow d:‘. x—x, (103.6)

where C,; is a second constant,

The constants C; and Cy, are determined by patching. There are two patching
conditions. First, at x = x’, the boundary of regions 1 and 1I, we require that
G(x, x') be continuous: lim,_.q, [Gi(x' + n, X"} — Gu(x’ — 5, x")] = 0. This condi-
tion implies that C; = Cy;.

The second condition is derived by integrating the differential equation
(10.3.3) from x' — n to x’ + n and letting n — 0+. We obtain

1
x=x'—n - ”_;2.

[Normally, the solution to a second-order differential equation has a continuous
ﬁrst derivative, but the delta function in (10.3.3) gives rise to a finite discontinuity
in the slope of G(x, x') at x = x’ (a cusp).] This condition implies that

. 0 ,
lim [5;: Gi(x, x')

=0+

a
T x Gufx, x')

x=x'+1n

l - 14
Ci=C= 2% [Q(‘ )] *

- Gy, x") and Gy(x, x') are now completely determined and may be combined
into a single expression which is a uniformly valid approximation to the solution
of (10.3.3) for all x:

Gunel ) = 110N xp |- C(1039)

RO

For all x the relative error in this approximation is of order &.
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Example 1 Comparison between exact and approximate Green's functions. For Q(x)=1+ x* the
uniform approximation to G(x, x')in (10.3.7) is astoundingly accurate. Equation (10.3.7) becomes

exp (= |x /51— x5+ 1|26 [ x + /% +1)""""m'"n (10.38)

G i
2ef(x? + 1)(x* + 1] x4 x4 1

wnitl®, X') =

In Figs. 10.4 and 10.5 we compare G, (x, 0) with the exact numerical solution for e = 1 and two
values of x’. Observe how small the error is, even when & is as large as 1.

Integrals of the Green’s Function

The uniform approximation in (10.3.7) to the Green’s function may be used to
evaluate integrals of the Green's function. For example, to calculate
A= {7, G(x, x') dx we use integration by parts to determine the leading behav-

WEKB approximation
to Green’s function

Exact Green's
function

-2.0 -1.0 0 1.0 2.0

X

Figure 10.4 Comparison of the exact solution to the Green's function equation, e28*G/dx*(x, x') = (1
+ x%)G(x, )= —d(x — x) [G(£ o, x')=0], with x'=0, £= 1, with the WKB physical-optics
approximation to G(x, x’) in (10.3.8). Observe that the error is greatest at x = 0, the point at which
the exponent in (10.3.8) is smallest. The true value of G(0, 0) is 0.443 11 ..., while the WKB formula
in (10.3.8) predicts that G(0, 0) = (2¢)" = 0.5. Thus, the WKB formula has a maximum error of
about 5 percent.
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ior of this integral. The contribution from region I is given by

a8 [ o o] -1 Va4
%) -4 J:n 0 -3;4:_xexp [—% J‘: m drl

+O0(e), &—0+.

1

20(x)

The contribution from region II is identical. Thus, we obtain the simple result

m

[ G x)dx=

1
ax_:j + 0[};}' e—0+. (1039}

This result also follows from (10.3.4) with R(x) = 1 since (10.3.2) implies that the
solution to y” = Q(x)y — 1 satisfies y ~ 1/Q(x) (= 0+).

0.6 1
05+
y
04+
03+
WKB approximation to
0.2+ Green’s function
Exact Green’s
function
| 1 1
-2.0 -1.0 0 1 2

X

Figure 10.5 Same as in Fig. 10.4 except that x' =1 instead of 0; ¢ is still 1. Again, the error is
greatest at x = 0. The WKB formula in (10.3.8) predicts that when ¢ = 1, G(1, 1) = }ﬁ = (.35355.
The true value of G(1, 1) is 0.349 13....
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then we obtain y(x) ~ |1 G, .i(x, x') dx' (e =0+ ). This is a nontrivial result whose accuracy we

Example 2 Comparison between exact and approximate integrals. If we choose @(x) =1+ x? " ]
examine numerically. If we take Q(x) = (1 + x?)%, then we have a uniform approximatiom to y(x)

and ¢ = 1 as we did in Example 1, we conclude from (10.3.9) that A = {2 G{x, x') dx = 1 when

x' = 0and A = 0.5 when x’ = 1. Numerical integration of the Green's function differential equa- for all x:

tion (see Figs. 10.4 and 10.5) gives the true values of A: 4 = 0.623 23 for x' = 0 and A = 0.46651 1 [ 1 dx' 1

for x' = 1. The errors are quite small considering the large size of & Yx)~——=| —=—exp I S e x - X3 - x| L e=04.  (103.11)
It is just as easy to evaluate integrals of powers of G, in (10.3.7). For example (see Prob. VI T L £

10.13), Figures 10.6 and 10.7 compare the WKB prediction in (10.3.11) with the exact solution to

the inhomogeneous Schrodinger equation

K )1 N )
} [Gumirlx, x)]* dx = @2e) " [eGx)] ™ + O ) e—0+.  (103.10) )
. N 20) — (1 + x2)P L x| =1
ey(x) = (1 + x*)y(x) + lo. =0 sEe)=0. (103.12)
To solve the inhomogeneous Schrodinger equation (10.3.1), one need only apply these same ' [x] >
integration methods to evaluate the integral in (10.3.4). At points of continuity of R(x), asymp- In these figures, we also plot the outer approximation R(x)/Q(x). Observe that this outer approxi-
totic analysis of (10.3.4) as & =0+ yields (10.3.2) (see Prob. 10.16). mation is not uniformly valid in the neighborhood of the discontinuities of R(x) at x = +1.

A uniform apProximution to y(x) can also be derived using boundary-layer theory. In this
case the outer solution is given by R(x)/Q(x) and the inner approximation is valid at discontinu-

Example 3 Uniform approximation to the Schrodinger equation with discontinuous inhomogeneity.
ities of R(x). (See Prob. 10.16.)

If we choose R(x)in (10.3.1) to be the step lunction

1 <1, i imati 5
R(x)= 1" |x| = Example 4 Uniform approximation to the Schrodinger equation with singular inhomogeneizy. 1f we
0, |x| =1, choose R(x) to be the singular function
Rpg = [ X Ikl <L,
[ o, x| =z 1,
Outer solution R (x)/Q(x)
WKB approximation to y(x)
09+ " .
y Exact solution y(x) 1
0.8 0.9
0.7 I g I
il 0.8
L . | Quter solution R(x)/Q(x)
- = 0.1
0.6 £ 0.7
B i £=1.0
0.5 0.6
0.4 0.5
0.3k WKB approximation to y
i Outer solution 041 pproximation t0.3(x)
0.2k 0.3 : Exact solution yp(x)
0.1 0.2
= o
[T N A T T T T T SN TN T T T S T L PR T
0 0.5 1.0 IS 0.1
x B
Figure 10.6 A comparison of the exact solution to (10.3.12) for £=0.1 with the leading-order 0 0.5 1.0 1.5
WKB approximation in (10.3.11). Also plotted is the outer solution R(x)/Q(x), which cuts off .

abruptly at x = 1. Observe that the WKB approximation is uniform and is especially good near the

discontinuity in R(x) at x = 1, where it is indistinguishable from the exact solution. Figure 10.7 Same as in Fig. 10.6 except that e = 1.
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1
09+
0.8

0.7+ Outer solution R(x)/Q(x) ———*

0.6

WEKB approximation to pix)
0.5

0.4} .
Exact solution

yix)

PR S N T S NN SN AN VN T WO T T S T A T S | Ll

0 0.5 1.0 1.5

Figure 10.8 Same as in Fig 10.6 with ¢ = 0.1 except that R(x) is the singular function (1 — x*)" "2
(x < 1). The outer solution R(x)/Q(x) becomes singular at x = 1, but the WKB approximation to
y(x) in (10.3.13) is accurate for all values of x.

and Q(x) = (1 + x?)? as in Example 3, then a uniform approximation to y{x) for all x is given by
1 ! dx'

Yx) ~ e J ——

2c,.-"x’+l 1 4/1 -x'*

In Figs. 10.8 and 10.9 this WKB prediction is compared with the exact solution y(x) to (10.3.1}

1
:xp[—— Ix’,f'3+x—x'3,|'3—x'| B e—=04. (10.3.13)
£

104 MATCHED ASYMPTOTIC APPROXIMATIONS: SOLUTION
OF THE ONE-TURNING-POINT PROBLEM

We saw in Sec. 10.2 that the WK B exponential approximation for the Schrédinger
equation is not valid in the neighborhood of a turning point. In fact, the physical-
optics approximation in (10.1.13) is singular at a turning point. Nevertheless, we
will see that there is a general procedure, which is based on the method of matched
asymptotic expansions, for constructing a global approximation to the solution of
a differential equation having turning points. The approach is very similar to that
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!
09
081
¥ [ £=1.0
0.7F
0.6
0.5 )
i o Outer solution R(x)/Q(x)
045
03k |~ WKB approximation to y(x)
02+ |~ Exactsolution y(x)
R T T T T

0 0.5 1.0 1.5

X

Figure 10.9 Same as in Fig 10.8 except that & = 1. Even for this large value of &, the leading-order
WEKB approximation in (10.3.13) is a good estimate of y(x}

used in boundary-layer theory. It consists of joining together various WKB
approximations which hold in their respective regions of validity.

In this section we begin rather modestly by considering a differential equation
which has just one turning point. Specifically, we will solve the equation

2y =0y, y(+®)=0, (104.1)

where Q(x) is a continuous function which passes through zero just once. For
simplicity, we take the turning point to lie at the origin: Q(0) = 0.

The Simple One-Turning-Point Problem

We begin by analyzing in detail the one-turning-point problem in which Q(x) has
a simple (first-order) zero: Q(x) ~ ax (x —0). For definiteness, we assume that
Q(x) has positive slope at x = 0 (a > 0) and that Q(x)is positive when x is positive
and negative when x is negative. We also assume that Q(x) » x"?asx— too.
Q(x) = sinh x and x + x? satisfy these criteria. In Probs. 10.26 and 10.29 we
generalize to the case in which Q(x) has a zero of order a: Q(x) ~ ax* (x = 0).
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Our analysis of the simple-zero one-turning-point problem proceeds as fol-
lows. We divide the x axis into three regions: region 1 with x > 0 and x » &*3,
region II with |x| <« 1, and region III with x < 0 and (—x) > &*?. In regions I
and 111 the physical-optics approximation in (10.1.13) is uniformly valid. The
restriction that Q(x) > x~2 as | x| — oo ensures that the physical-optics approxi-
mation is valid all the way out to + oo, where we impose the boundary condition.
In region II the WKB approximation is not valid because there is a turning point
at x = 0, but we can solve the approximate differential equation

g?y” = axy, (10.4.2)

valid in the neighborhood of x =0, in terms of Airy functions. We show that
regions [ and II and regions II and III have an overlap in which both the WKB
and Airy function approximations are valid. This enables us to match together
asymptotically the solutions in the various regions. From this matching we obtain
three formulas which together constitute a global approximation to the solution
of (10.4.1). We then combine these three formulas into a single expression which is
a uniformly valid approximation to y(x) for all x. The global approximations to
y(x) are determined only up to an overall multiplicative constant because we
impose only the single boundary condition y(+ o) = 0. Therefore, we consider
various methods for normalizing y(x).

The calculation that we have just outlined begins with an analysis of the
equation in region I. The physical-optics approximation to y(x) in this region has
the form

wlx) = C[Q(x)]V* exp l—% [: \/E[I_) dr]. (10.4.3)

The boundary condition y,(+ co) = 0has been used to eliminate the exponentially
growing physical-optics solution and is explicitly satisfied by y(x) in (10.4.3). We
have arbitrarily chosen the lower limit of integration in (10.4.3) to lie at the
turning point x = 0; this choice is not necessary, but it simplifies expressions
appearing later in our analysis.

1t is essential to determine the region of validity of the approximation (10.4.3).
The two criteria for the validity of physical optics that we derived in Sec. 10.2 are
So/e> S, »eS; (e—0+) and &5, « 1 (¢ — 0+). Because Q(x) is nonzero for
x # 0and Q(x)>» x 2 as | x| — oo, we are assured that for x bounded away from
the origin the difference between the exact solution y(x) of (10.4.1) and y(x) is of
order ¢ as & — 0+. How small may x be before the physical-optics approximation
(x) breaks down? When x is small, Q(x) ~ ax s0 So(x) ~ +3aY2x¥% (x > 0+),
S,(x)~ =4 Inx (x=0+), Sy(x) ~ +35a~ V2x™¥? (x » 0+). Thus, the criteria

for validity of the WKB physical-optics approximation are satisfied if
x»e¥3, &0+, (10.4.4)

This relation defines the lower boundary of region 1.
Next we turn to the analysis of the equation in region I1. To solve the approxi-
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mate differential equation (10.4.2), we make the substitution

t=¢ " 3x, (104.5)
In terms of t, the differential equation for yy, is d?yy /dt* = tyy, which we recognize
as thle Airy equation. The general solution of this equation is a linear combination
of Airy functions:

yu(x) = D Ai (e”*%a'3x) + E Bi (¢~ *3a'x), (10.4.6)

where D anc_l E are constants to be determined by asymptotic matching with y(x).
The approximation yy(x) is valid so long as

x«l, e-0+, (104.7)

because it is only when x is small that we may replace Q(x) by ax and thereby
obtain (10.4.2) from (18.4.1). The relation in (10.4.7) defines the upper boundary of
region IL

Combining (10.4.4) and (10.4.7), we observe that y;(x) in (10.4.3) and yy(x) in
(10.4.6) have a common region of validity; namely, ¢ « x « 1 (= 0+ ). Inside
th]s overlap region y(x) and yy(x) are both approximate solutions to the same
dlnﬂ'eremial equation and therefore they must match asymptotically. However,
since y; and yy bear so little resemblance to each other, more analysis is required
to demonstrate that they actually match. We must further approximate y,(x) and
yu(x) in the overlap region.

First, we consider y(x). In the overlap region x is small so Q(x) is approxi-
mately ax. Therefore, [Q(x)] ¥4 ~a~Y4x™* (x > 0+) and

J‘ JOW) dt ~ 3a*x2, x>0+,
0

I-Ience, .VI[X) ~ Ca—l.fdx— l.'4e—2.|l.r1x3.-x,'31, x—0+. (1048)

What is the precise region of validity of (10.4.8)? We already know that the
WKB approximation is not valid unless x > ¢** (¢ » 0+ ). However, the upper
edge of the region depends on the function Q(x). Suppose, for example, that
Q(x) — ax ~ bx?* (x = 0). Then, a careful estimation gives

[ Vo de~ [ Jat+be dt
0
.E — bt
~ t{1+—]d
[ Va (_ +2“) ¢
2 1/2..3/2 b 22
3a X +5—x . x—=0+.

a

To Dbtasil;l (10.4.8) it was necessary to assume that x is sufficiently small so that
exp (bx*2/5e./a) ~ 1 (¢ 0+). Hence we arrive at the condition that x « g’
(e = 0+). Thus, (10.4.8) is valid in the restricted region 2 « x « &** (e —0+).
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Next we consider yy(x). In the overlap region we approximate the Airy func-
tions by their leading asymptotic behaviors for large positive argument. The
appropriate formulas are

. 1 .
Ai (1) ~ "/ (V423 t s o0,
1
Bi (f) ~ —= ™14, t— o0,
Jr

These approximations may be used if the arguments of the Airy functions in
(10.4.6) are large. Thus,

1 1 2530
y“[x:‘ ~ :Ea- 12,16, — 14 (i De—z-:lﬂx!ri.rh + Eez.m;l-h’ae . (10'4_9)

This result is valid if two criteria are satisfied. First, we require that x « 1 as
¢ — 0+, so that the Airy equation (10.4.2)is a good approximation to the differen-
tial equation (10.4.1). Second, the use of the asymptotic approximations to the
Airy functions requires that t = &~ *3a'*x be large or equivalently that x > £?3 as
¢ — 0+. Thus, the region of validity of (104.9) is £ « x « 1 (= 0+)

Now observe two things. First, unlike (10.4.3) and (10.4.6), (10.4.8) and
(10.4.9) have the same functional form and can therefore be matched. Second,
(10.4.8) and (10.4.9) have a common region of validity over which the matching
can take place:

g2 « x «e¥? e—0+. (10.4.10)

£l

Requiring that (10.4.8) and (10.4.9) match on the overlap region (10.4.10) deter-
mines the constants D and E:
D = 2./n(ac)"°C, (104.11a)

E=0. (10.4.11b)

You may recall that it was emphasized in Chaps. 7 and 9 that asymptotic
matching must be performed throughout a region whose extent becomes infinite
as the perturbation parameter & — 0. At first sight the overlap region (10.4. 10)
appears to violate this principle. However, the matching variable is not x but
rather ¢ as given by (10.4.5). In this variable the matching regionis 1 « 1« 413
(¢ — 0+ ), which does indeed become infinite as ¢ — 0+.

The problem is now half solved. We have completed the asymptotic match
between regions I and 1I. Next we must analyze region III and match to the
solution just found in region IL

The physical-optics approximation in region 111 is a linear combination of
two rapidly oscillating WKB expressions:

yu(x) = F[=Q(x)]”"* exp t Jj V=20 d:l
+G[-Q(x)]” " exp [—-; JO J=0() dr].
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We will shortly verify that in order for this expression to match to y,(x) in the
overlap of regions II and I1I, the constants F and G must be chosen so that

.Pm(x} = 2C[-—Q(x}]_ 1% sin l1 [0 m dt + ;

£

. (104.12)

The result in (10.4.12) is established by comparing the asymptotic appr oxima-
tions to yw(x) and to yy(x) in the overlap of regions II and III which is
&3 « (—x) «&*3 (¢ = 0+). In this overlap region we may approximate yy(x)in
(10.4.12) by

2 n
ICa- M4 —x)" V4 sin | = @' (—x)P? + =
(=) 380 (=x) +4

Also, using the formula for the asymptotic behavior of Ai (¢) for large negative
argument,

Ai(t)= —ﬁ{q)'”‘ sin (1), (1) ~ i (=) + ; t— — oo,

we may approximate y,(x) in (10.4.6) with E = 0 by
_ _ , _ 12 n
D~ Vg V1216( _ 14 U2 )2 L T
n~%a e'$(—x) sin |3£ al*(—x)"* + |

The approximations we have just found for yy(x) and yu(x) in the overlap region
match exactly because D and C are related by (10.4.11a). This completes the
analysis of regions II and IIL

In summary, we have found approximations to y(x) in each of regions I, II,
and III. These approximations are:

1) = TN exp [ 1 V@ ]
x>0,x»e¥ e=04;  (104.130)

yulx) = 2/n(ae)"VoC Ai (e"*%a'x), |x| < 1, 6—0+; (10.4.13b)

yu(x) = 2C[= Q)] sin E Lo \/T[t} dt + El,

x <0, (—x)» e, e—=0+. (104.13c)

The first and third of these formulas are sometimes called connection formulas
because they express the connection between the oscillatory and the ex ponentially
decreasing behavior of y(x) on opposite sides of the turning point. The constant C
remains undetermined because we have specified only the one boundary condition
y(+ c0) = 0. A second boundary condition is needed to determine C. For example,
if we require that y(0) = 1, then since Ai (0)=3"%*/T(3) = 03550280539, we
have

C = Hae)"°r(F)3*n~ 12 (104.14)
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Observe the global nature of the WKB approximation; we have specified the
boundary condition at x =0 and at x = o0 and we can predict the value of
¥(—27), say, correct to order &.

Uniform Asymptotic Approximation

In 1935 Langer made the amazing observation that all three formulas in (10.4.13)
may be replaced by a single formula which is a uniformly valid approximation to
y(x) for all x:

ast) = 2/7C (52 ) L i (55

where S, = [§ /Q(¢) dr. This result is not at all obvious. The best way to explain
itis simply to verify it in all three regions. [For a derivation of the Langer formula
directly from the differential equation (10.4.1) see Prob. 10.18.]

First, we consider region I, where x > &¥3 Throughout this region
35,(x)/2e > 1, so we may approximate Ai [(3S,/2¢)*?] by its leading asymptotic

behavior:
2/3 -1/6 -So{x]f’c
Ai ‘(ﬁ) J ~ (38 ) x » g,

2e 2e 2: ;'1[ ’

If we substitute this expression into (10.4.15), it reduces to the first formula in
(10.4.13)

In region II, where |x| « 1, the integral So(x) may be evaluated approxi-
mately by using the first term in the Taylor series for Q(t):

TEA i (e-23g1
Ai l(ﬂso) ] ~ Ai (e x),

. (104.15)

1/6
(2—150) [Q(x)]"Y* ~ (ac)~ "8,  |x| «1,e—>0+.

Hence (10.4.15) reduces exactly to the second formula of (10.4.13).
In region III, where (—x)> &3, one must be very careful about + and —
signs (see Prob. 10.19). Now,

SD(X} - j‘: m dt = e¥ii2 J;o —Q(l) dt.

Thus, S3/3 is large and negative, and (10.4.15) may be simplified by using the
asymptotic behavior of Ai for negative argument:

sls) |-Gl e

.1 n
x sin [—E- L —Q(t) de 3|

1/6

e—=0+.
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Also, Q— s _ {—Q}- 1I4e—m4

3 16
(Z SD) — |t.f4 [ [ "I"'Q{f d[]
Thus, (10.4.15) reduces exactly to the third formula of (10.4.13).

Example 1 Numerical comparison between exact and one-turning-point WK B solutions_ In Figs.
10.10 to 10.13 we compare the exact and uniform one-turning-point solutions in (104.15) to
&'y"(x) = sinh x(cosh x)*p(x) [¥(0) = 1, y(+ o) = 0] for £ = 0.2, 0.3, 0.5, and 1. Note that for this
choice of Q(x), a = 1 and [ ./Q(t) dr = }(sinh x)**. The agreement between the exact and the
approximate solution is extremely impressive, even when ¢ is not small

Directional Character of the Connection Formula

There is a subtle feature of the solution (10.4.13) to the one-turning-point prob-
lem. You will recall that in our analysis of this problem we started with the

Exact solution

Uniform WKB approximation

-1.0+4+

-0+

Figuore 10.10 A comparison of the exact solution to &y"(x)= sinh x(cosh x)*y(x) [¥(0)=1,
y(+ )= 0], with the approximate solution from a one-turning-point WKB analysis. The WKB
approximate formulas are given in (10.4.14) and (10.4.15)
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20T

Exact solution

WKB approximation

-20L

Figure 10.11 Same as in Fig. 10.10 except that & = 0.3.

boundary condition y — 0 as x — + co in region I and deduced the structure of the
solution in regions Il and III in that order. It is remarkable that the sequence in
which this asymptotic analysis is carried out cannot be reversed. To wit, suppose it
is given that as x —» —co in region III, the solution to £?y” = Q(x)y behaves as
2C[—Q(x)]” Y sin [§2 / —O(t) dt/e + 4n]. One is tempted to conclude that the
behavior of y(x) in region [ is necessarily exponentially decaying:
ClQ(x)]~'* exp [—J5 \/Q(r) dt/e]. But this inference is wrong because the
asymptotic matching through the turning-point region is only valid to leading
order in &. We may only conclude that the coefficient of the exponentially growing
solution in region I vanishes to leading order in e. We cannot be sure that
the exponentially growing solution in region I is really absent unless the boundary
condition y(+c0) = 0 is explicitly imposed.

Apparently, the connection formula for the one-turning-point problem is di-
rectional in character. The analysis always proceeds from the region where the
solution is exponentially decaying through the turning point and into the oscilla-
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200

Exact solution

WEKB approximation

-1.0+

_:}“0 —

Figure 10.12 Same as in Fig. 10.10 except that & = 0.5.

tory region. For this reason the descriptive notation

in region III

2[-Q(x)) "' sin E j.o v () d +i:rr.
* (10.4.16)

in region I

- (] exp |- [ VoD

is often used to denote the connection formula.

Normalization of the One-Turning-Point Solution

The one-turning-point solution (10.4.13) has an arbitrary multiplicative constant
C because the Schrodinger equation (104.1) and the boundary condition
¥(+4 c0) = 0 are homogeneous. In Example 1 we showed how to determine C by
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2.0+
Exact solution

WKB approximation

-1.0

ol

Figure 10.13 Same as in Fig. 10.10 except that £ = 1.0. Even for this large value of & the agreement
between the approximate and exact solutions is impressive.

imposing the additional inhomogeneous boundary condition y(0) = 1. Another
way to determine C is to require that

[ Y ) dx=1 (104.17)
or that j'qo V()P dx = 1. (104.18)

In contrast to the boundary condition y(0) = 1 which is imposed at one point, the
normalization conditions (10.4.17) and (10.4.18) are global in character. The
methods we shall use to evaluate these integrals are especially important because
they are a prototype of the techniques for evaluating integrals of functions approx-
imated by matched asymptotic formulas.

To evaluate the integral in (10.4.17), we introduce two arbitrary points A and
B where A lies in the overlap of regions II and III and B lies in the overlap of
regions [ and II. Next we approximate the integral in (10.4.17) as the sum of three
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integrals:
P 4 B ©

[ _vdx~J- ymdx+J y“dx+J ndx,  e-=0+, (104.19)

tem - A B
where yy, yu, ym are given in (10.4.13). Since the points A and B are arbitrary and
do not appear in the original integral in (10.4.17), the final answer must be com-
pletely independent of the particular choice of A and B. However, the approxima-
tions (10.4.13) are only leading-order approximations, so we expect that 4 and B
will disappear from (10.4.19) only to leading order in & The cancellation of 4 and
B in the final result is a nontrivial test of the correctness of the asymptotic
approximations y,, yy, and yy,.
We evaluate |7 y, dx using integration by parts:

dx

[“nae=c | ow) e H [ Ve

—Ce I: (o))" Smi exp |—§ |0 Vo) drl dx

I

I

+Ce[Q(B)] > exp {—%_[B\/Q(t}dtj +O0(?),  e-0+,

~ Ce(aB)™¥* cxp(-%? Bm), e=0+, (10.4.20)

where we have retained only the boundary term after integrating by parts because
a second integration by parts shows that the remaining integral is O(e?). The last
step in the calculation, where we have replaced Q by the first term in its Taylor
series, is valid because B lies in the overlap region (10.4.9).

We evaluate (1 yy dx similarly. The result is

A
; 2
[ Ym dx ~ 2Ce(—aA)™¥* cos |_;£_E(_A}m + % -

T

, =0+,

(10.4.21)

provided, of course, that the integral converges at — co. The integral converges if
Q(x)—+ —o0 as x » — 0.

Finally, we evaluate [§ yy, dx by expressing it as the sum of three integrals:
14 yudx =[®, yydx — ]ngn yu dx — [§ yu dx. The first of the integrals may be
done exactly using the identity

L

[ Ai@a=1 (104.22)

(See Prob. 10.20 for a derivation of this identity.) The second and third integrals
may be evaluated by substituting the asymptotic behaviors of the Airy function for
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large negative and large positive arguments and then using integration by parts.
The final result is (see Prob. 10.21)

J' yy dx '---2(:\/j — 2Ce(—ad)™¥* wsl \/_( AP+ 1,:

— Ce(aB)™ ¥4 exp(—% B*? ) e—0+.  (104.23)

We combine the results in (10.4.20) and (10.4.21) and (10.4.23) and are pleased
to find that all reference to A and B cancels to leading order &:

[ ydx~2c #%, £—0+. (10.4.24)

—m

Example 2 Numerical verification of (10.4.24). Suppose that we use physical optics to solve the
one-turning-point problem

=(x+x"y, pO)=1 y+x0)=0. (10.4.25)
For this choice of Q(x), a = 1. Equation (10.4.14) implies that the leading-order solution is given
by (10.4.13) with C = L"*T($)3%?x~ V2. Thus (10.4.24) implies that

J’ ydx ~ Ezurﬁplfll g— 0+
- (10.4.26)
= 2816679,  £—0+.

We have solved (10.4.25) numerically and computed |, y dx. The results given in Table
10.2 verify the accuracy of this WKB analysis.

To evaluate the integral in (10,4.18], we again introduce two arbitrary points
A and B in the overlap regions and express the integral as [T,y dx~
4 o v dx + [ yh dx + 3 y# dx (€ - 0+). Weevaluate |5 yi dx as before using
integration by parts. The result is

o 2
f yfdx~i; p( 4f3”=) £—0+. (10.4.27)
B

To evaluate % yf dx, we use the identity sin* 6 = } — } cos (26) and again
approximate the resulting integrals using integration by parts (see Prob. 10.22):

[ 75 R S ENCE aye],

e—=0+.  (104.28)

Finally, we evaluate [2 yZ dx using a nice trick. Ai (¢) satisfies the differential
equation Ai” (t) =t Ai (t), so

& A @F - 147 OF) = [4i OF.
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Table 10.2 Comparison between the exact
value of [®_ y(x)dx, where y(x) satisfies
ey’ = (x +x’)y [¥0)=1, y(+)=0] and
the physical-optics approximation to this inte-
gral

J' y(x)dx ~ e2?r@3)3*3,  e-0+,

as given in (10.4.26)

Observe that as ¢ gets smaller, the accuracy of the WKB
approximation increases

Exact value of  WKB approximation to

£ J.m yx) dx Jﬂ yix) dx

0.2 0.9751 0.9633
0.1 0.6136 0.6068
0.05 0.3844 0.3823
0.02 0.2079 0.2075
0.01 0.1308 0.1307
0,005  0.0823 0.0824
0.002 0.0447 0.0447

Therefore, since y,(x) is a constant multiple of Ai (r) with ¢ given by (10.4.5), the
integral of [yy(x)]* can be evaluated in closed form in terms of Airy functions:

¢ = Be - 23gld

Ja [yu(x))? dx = 4nC?e'Pa~2{[Ai (1)) - [AP" ()]} . (10429)

t=Ae=23a1/3

Naturally, we wish to approximate this expression by replacing Ai (t) and Al’ (r)
by their asymptotic expressions. However, we are surprised to find that if we use
only the leading asymptotic behaviors of Ai (t) and Ai’ (t), then we obtain a
vanishing result at the upper endpoint! We have emphasized repeatedly that an
asymptotic calculation is wrong if the result is zero. Therefore, we must use a
higher-order asymptotic approximation to Ai (t) and Ai’ (t). The appropriate
formulas are

=1/4,=2032/3

. 1 5
Ai [t}n«m: e (I—W), t— o0,

1
Al (t)= — t”“e'z"“”(l + t— 0.
(®) NG

7
4&3;’2 ‘
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We also use the higher-order asymptotic expansions of Ai (t) and Ai’ (t) at the
lower endpoint:

: 1 -4 | o 23;: E__ 23-‘2 E 5 -
Al{-—t)ﬂvﬁt Sm(j’ +7) —cos 3073 e | £ — a0,

2 7
Al (-1) ~ —-\};t”“ [cos (%rm +‘~’:) — sin (ir’” +E) ——-’ £ — co.

a) a8

If these formulas are used to approximate the expression in (10.4.29), the result is
B 4c? Cle 4 ,
[ putor? dx~7=\/— — o cos [ﬂ\/a {—A)“]
A
( 4/a Bm] e-0+.  (10430)
ZaB

Combining the results (10.4.27), (10.4.28), (10.4.30) gives the final answer

I” beop ax~act | 2
o Lo /=o'

Once again, the answer is independent of A and B.

£—0+. (10.4.31)

Table 10.3 Comparison between the exact
value of [ [y(x)]* dx, where y(x) satisfies
ey"=(x +x*)y [y(0)=1, y(+00)=0] and
the physical-optics approximation to this inte-
gral

"m V()] dx ~ 2! P[TE)ME)23% 32

(e—0+) as given in (10.4.32)

As ¢ decreases, the accuracy of the WKB approximation
increases

Exact value of WKB approximation to

. L
¢ | DPdx [ [ ax
02 2.9085 2.7382
0.1 22308 2.1733
0.05 1.7437 1.7249
0.02 1.2751 1.2710
0.01 1.0101 1.0088
0.005 0.8011 0.8006
0.002 0.5900 0.5899

0
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Example 3 Numerical verification of (10.4.31). Consider once again the differential equation in
(10.4.25). For this equation, Q[x)= x + x*. Thus,

‘»J_Q(tl I()l

Therefore, using C as determined in Example 2,
@
[ D) dx ~ deP[FENE*P a2, =04, (10.4.32)

We examine the accuracy of this formula in Table 10.3 by comparing it with the integral of the
numerical solution to (10.4.25).

10.5 TWO-TURNING-POINT PROBLEMS: EIGENVALUE
CONDITION

In this section we show how to use the physical-optics approximation to obtain an
approximate solution to the homogeneous boundary-value problem

ey =0y, y(xw)=0, (105.1)

where Q(x) has two simple turning points at x = 4 and x = B with 4 < B. We
also assume that @ >0 if x> B or x < A4, that Q <0 if A <x < B, and that
Q(x)» x~? as |x| — oo. For most functions Q(x) satisfying these conditions the
only solution to (10.5.1) is y(x) = 0. This is because the solution to (10.5.1) which
decays exponentially as x — + oo is, in general, a mixture of growing and decaying
solutions as x - —oo. We will derive an approximate constraint which must be
satisfied by Q(x) for the problem (10.5.1) to have nontrivial solutions. To leading
order in ¢ this constraint is

l'smd[= n+i)n+ o),  e—0+ (1052)
) 2

£

where n =0, 1, 2, ... is a nonnegative integer.

The constraint in (10.5.2) is useful if the function Q depends on a parameter E,
which we call an eigenvalue. Then (10.5.2) determines the approximate value of E
correct to terms of order &.

The derivation of (10.5.2) is done by asymptotically matching two one-
turning-point solutions: the first one-turning-point solution is valid from + oo
through the turning point at B and down to near the turning point at A; the
second is valid from —oo through the turning point at A and up to near the
turning point at B. Since these one-turning point solutions overlap in the region
between the turning points at A and B, we must require that they match asymptot-
ically. This matching condition translates into the constraint on Q(x)in (10.5.2)

The one-turning-point solution that decays like

[ Vel

Ci[Q()]™ " exp
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as x — + o0 behaves like

2C,[-Q(x)]"V* sin

12 1
EL V=00 dt +3n

in the region between A and B [so long as the distance between x and 4 or x and B
is much greater than £ (see Sec. 10.4)]. This is merely a restatement of the
connection formula (10.4.16) when the turning point lies at x = B instead of at
x=0.

The one-turning-point solution that decays like

o) exp | -1 [ Vo a|

as x -+ — oo behaves like

(1053)

2C,[-Q(x)]~"* sin % Jx v —0()dr + %rz (10.5.4)

in the region between A and B. This result is derived in Prob. 10.30.

In order that the two physical-optics solutions in (10.5.3) and (10.5.4) match
in the region between 4 and B, we must require that they have the same functional
form. Both solutions already have identical factors of [—Q(x)] ™ "/*. However, the
arguments of the sine functions are not identical. To achieve the match, we rewrite
(10.5.3) as

~2C,[~Q(x)]¥* sin

Ve as - | vema+]

In order that this expression be functionally identical to that in (10.5.4), it is
necessary that the expression in curly brackets be an integral multiple of m.
Moreover, since the expression in curly brackets is positive, it follows that we
must require (1/¢) [§ /—Q(t) dt = in, in, 3x, ..., which is just (10.5.2). To com-
plete the match of (10.5.3) and (10.5.4), we must choose C, = (—=1)'C, where n is
defined in (10.5.2). This completes the derivation of (10.5.2).

The above analysis has neglected terms of order ¢, namely, the higher terms in
the WKB series (£S;, £2S5,...). Consequently, the constraint (10.5.2) is only
accurate to terms of order &. In Sec. 10.7 we will derive a more accurate constraint
that is valid to all orders in powers of ¢ by taking into account the presence of
higher-order terms in the WKB series.

Linear Eigenvalue Problems

We now examine a special class of eigenvalue problems in which the eigenvalue E
appears linearly: Q(x) = V(x) — E. In the study of quantum mechanics, if ¥(x)
rises monotonically as x — + oo, the differential equation

@y’ =[V(x) - Ep(x)  y(xo)=0, (10.55)
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Vix), £
Vix)
N £ /
s
| i
;, :
. - x
x=4 x=B
Tuming point Tuming point

Figure 10.14 Schematic plot of the function ¥(x) in {10.5.5). Turning points occur when ¥V (x) = E.
In classical mechanics il we interpret this configuration to represent a particle of energy E in a
potential ¥(x), then the particle is confined to the region between the turning points at 4 and B
where the total energy E is greater than or equal to the potential energy ¥(x). In classical mechanics
the energy of a particle in a potential well is arbitrary so long as E = ¥,,,. In quantum mechanics
E can only have special discrete values which are the eigenvalues of {10.5.5) The energy of such a
particle is said to be quantized.

describes a particle of energy E confined to a potential well V(x) (see Fig. 10.14).
By (10.5.2) the eigenvalue E of (10.5.5) must satisfy

VE = V(x)dx = (n+%)z+0[£], e—0, (10.5.6)

where the turning points 4 and B are the two solutions to the equation
V(ix)—E=0.

We will see that if ¥(x)— oo as x — + co, then there are an infinite number of
solutions E, to (10.5.6) and that E, — o0 as n — co. In this case (10.5.6) becomes
asymptotically exact as n — co for any fixed value of ¢ and we set ¢ = 1 as we did in
our discussion of the eigenvalue problem in (10.1.27). The accuracy of the WKB
approximation increases as n — oo because, except at the turning points, | §,| =
[I¥ /V(t) — E dt| increases as E increases. Thus, the conditions for the validity
of WKB,

1
I

. B
“A

-:;Sa »S,»&S, and 1> eS,, (10.5.7)

are satisfied either as ¢ — 0 with E fixed or as E — oo with ¢ fixed (see Prob. 10.31).

Example 1 Eigenvalues for y* = (|x| — E)y [v(+ ) = 0]. For this equation the solutions of
Wix)—E=0 are A= —E and B=E Thus, the WKB eigenvalue condition becomes
fe VE=[x] dx~ (n+4)x (n— ) But £, JE — [x| dx = $E¥2 Thus, for large n,

In 1 23
~ = - - a0, 10.5.8
E, [4 ‘n + 2]] N n—co { )
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This result may be reproduced by solving the differential equation exactly. When x > 0,
|x| = x and the differential equation becomes y” = (x — E)y. The exact solution to this equation
is a linear combination Ai (x — E) and Bi (x — E)}. However, only Ai (x — E) vamishes as
x = 4 . Thus,

yix)=cAi(x—E), x=0, (10.5.9)
where ¢ is a constant.
When x <0, |x| = —x and the only solution to the dilferential equation y" = (—x — E)y
which vanishes as x - —0 is
y(x)=4d Ai (-x - E), x<0, (10.5.10)

where d is a constant.

The two solutions (10.5.9) and (10.5.10) must be patched at x = 0. Demanding that y(x)and
y(x) be continuous at x = 0 requires that ¢ Ai (—E)=4d Al (—E) and that ¢ Ai' (-E)=
—d Ai"' (—E). Thus, if ¢ = —d # 0 then

Ai(-E)=0 (10.5.11)
and if ¢ = d # 0 then
Al (-E)=0. (10.5.12)

The solutions of the two transcendental equations (10.5.11) and (10.5.12) comprise the
complete set of eigenvalues for the differential equation. When E is large, these solutions had
better agree with the WKB prediction in (10.5.8)! To check this, we replace Ai (- E) and
Ai' (= E) by their leading asymptotic expansions for large negative argument:

1 2
Ai (~E)~—=E7W sin(—Em+E). E- oo,
JE 3 4

has zeros whenever

2
SEt s lakn k=123 (105.13)
3 4
1 2 n
Sy - 14 Spymr g C
and AV (-B)~ - E cos(3£ +4)
has zeros whenever
2 4 % ( l)
- —=|k+=<|n k=012 ... 10.5.14
JE+ 3 ks ( )

Combining (10.5.13) and (10.5.14) into a single formula gives

2 . M (rr 1

35 +j4— §+§)n' n=012...,

which is equivalent to the WKB result in (10.5.8) and which is also valid when » is a large positive
integer.

Example 2 Eigenvalues of the parabolic cylinder equation. We have seen in Example 9 of Sec. 3.8
that the eigenvalues of (—d%/dx® + x*/4 — E)y(x)=0 [y{£00)=0] are exactly E, =n +1
(n=10.1,2....). How well does WKB reproduce this result?
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The turning points lie at A = —2,/E and B = 2,/E. Thus, the WKB eigenvalue condition
reads

J1JE
| VE-Ildx~n+4n, n-oo.

T-aJE

Upon substituting x = 2,/E t the above integral becomes 2E [!, dt,/1 — " = En.

Thus, the WKB prediction is E, ~ n + 4 (n - o), which is not only valid as n —+ <o but is
exact for all n.

It is accidental that the leading-order (physical-optics) WKB result is exact. Ind eed, the
physical-optics approximation to the nth eigenfunction y,(x) is only approximate. The physical-
optics approximation to the eigenvalues is exact because the corrections to E, that result from a
higher-order WKB treatment of the eigenvalue problem all happen to vanish (see Example 1 of
Sec. 10.7).

Example 3 Eigenvalues for y" = (x* — E)y. The turning points areat A = —E"# and B = E'*,
Thus, [¥5. E — x* dx ~ (n + $)n (n — 20) becomes
[SF{EXH +iN/x
E, ~

43

. m—w (105.15)

(see Prob. 10.32)

In Table 104 we compare the exact eigenvalues with the WKB prediction for the
eigenvalues in (10.5.15). Observe that as n increases the accuracy of the WKB prediction increases
dramatically.

In Figs. 10.15 to 10.17 we compare the physical-optics approximation to y(x) with the
solution to the differential equation obtained by computer. Again, the accuracy increases very
rapidly with n.

Table 10.4 Comparison of exact eigenvalues
E, for y" = (x* — E)y [y(+00)=0] and the
WKB prediction for E, in (105.15):
E,~ BT@)(n + $/m/TE* (1 — o)

Observe that the relative error [ % relative error = 100

(WKB E, — exact E,)/(exact E,)] decreases rapidly as n
increases. [Note that I'(3)/T(}) =0.33799]

n Exact E, WKBE,  Relative error, %

] 1.060 0.567 —18.00
2 7.456 7414 ~0.56
4 16.262 16.234 =017
6 26,528 26.506 -0.08
8 37923 37.904 ~0.05
10 50.256 50.240 -003
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Exact eigenfunction y(x)

WKB eigenfunction

1 | |
-4 0 4

Figure 10.15 Comparison between the exact eigenfunction of y* = (x* = E)y [y(+ )= 0], with the
lowest eigenvalue Eq(n = 0) and the corresponding uniform physical-optics (WKB) approximation
(10.4.15) with the WKB approximation (10.5.15) to E.. Both eigenfunctions are normalized by
y(0) = 1. The WKB approximation is given by (10.4.15) with Q(x)=x*—E, for x >0 and by
yix) = y(—x)for x < 0.

10.6 TUNNELING

Tunneling is the remarkable quantum-mechanical phenomenon by which a par-
ticle passes through a potential barrier that classical mechanics predicts is impene-
trable. In this section we use WKB theory to make a quantitative study of
tunneling. We begin by introducing the notion of a wave.

Right-Moving and Left-Moving Waves
The phenomenon of tunneling implicitly involves motion. Thus, to describe tun-
neling we must begin with the time-dependent Schrodinger wave equation

%%u’:(x, t)= [—5232— + V()| Y(x, £) (10.6.1)

x?
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15T
.P
: } : + : '. : —
-4 0 a
X
—_ ]_s -

Figure 10.16 Same as Figure 10.15 except for the third lowest cigenvalue E,(n=2)of y" = (x* = E)y.
The exact eigenfunction and the physical-optics approximation to it are not distinguishable on the
scale of the plot. See Fig. 10.17 for a plot of the error ywxs — Yesaat-

¥(x, t) s called a wave function. Let us assume that the time dependence of Y(x, t)
is purely oscillatory:

Wix, 1) = y(x)e" (1062)
Substituting (10.6.2) into (10.6.1) gives the ordinary differential equation
e?y" = [V(x) — E]y(x), (10.63)

which we have already examined using the WKB approximation.
In regions where E > ¥(x) (classically allowed regions), WKB solutions to
(10.6.3) are oscillatory:

ywkal(x) = C:[E — V(x)]""* exp if; r E—-V(t) dt]. (10.6.4)



526 GLOBAL ANALYSIS

0.01

P

Ywke ~ Yexacr

—0.03+

Figure 10.17 A plot of the error ywka — Vesae 10 the uniform physical-optics (WK B) approximation
to the third lowest eigenfunction (n = 2) of y* = (x* = E)y. Both y.,. and ywxs are normalized by
Yernal0) = ywxa(0) = 1. See Fig. 10.16.

Even though the WKB approximation in (10.6.4) is time independent, we will refer
to solutions having positive (negative) phase as left-moving (right-moving) waves.
This is because the wave function

Ywks(x, t) = C4[E — V(x)]™Y* exp i[Et + (1/e) [* JE — V(t) dr]

represents a wave which moves to the left (right) as r increases.

An Exactly Soluble Model of Tunneling

To illustrate the phenomenon of tunneling, we make a very simple choice for the
potential V: ¥(x) = d(x). Classically, this delta function potential confers an im-
pulse to a particle which arrives at x = 0. If E < (4¢2)7", a classical particle
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traveling toward x =0 always bounces back (reverses its direction) when it
reaches x = 0. This is called reflection. If E > (46?)™', a classical particle always
continues on when it reaches x = 0. This is called transmission (see Prob. 10.39).

In quantum mechanics there are well-defined probabilities T and R that a
particle will undergo transmission or reflection. We now compute these probabili-
ties exactly. To solve

e’y" = [6(x) — E]y
we consider two regions. When x <0, we have ¢’y” + Ey = 0, whose general
solution is
y(x) = a exp (—ix /E/e) + b exp (+1’xﬁf&:), x <0.
When x > 0, we have the same differential equation whose general solution is now
y(x)=cexp (-—Ix\/Efz:) +d exp (+ix\/E,r’s), x> 0.

To observe tunneling we must choose the boundary conditions properly; we
aim a monoenergetic incident beam of particles toward x = 0 from the left. We
represent this incident beam as a right-moving wave of unit amplitude:
exp (—ix\/f;’e}. There will then be a reflected (left-moving) wave for x < 0 of
amplitude b, b exp (+1’xﬁf‘s , and a transmitted (right-moving) wave for x > 0
of amplitude c, ¢ exp (—ix./E/e). There is no left-moving wave for x > 0.

We must patch the two solutions

y(x) = exp (~ix/Efe) + bexp (+ix/Efe), x<0, (106.5)
¥(x) = cexp [—ixﬁfs}, x>0, (10.6.6)
at x = 0. We require that:

1. y(x) be continuous at x = 0 and
2. lim, o, £2[y(n) = y'(—m] = y(0)

Why? (See Sec. 10.3.)
From these two conditions we obtain (see Prob. 10.38)

_%JEi-1 _2%/E@/E+i) (1067)
T O4’E+1 T &E+1 o

We define R = |b|? as the reflection coefficient and T = |c|* as the transmission
coefficient. R is the probability that an incident particle of energy E will be
reflected and T is the probability that the incident particle will be transmitted. We
compute that

R=1/42E + 1), T =4¢*E/(4c’E + 1).

Observe that T + R = 1; thus, the total probability that a particle will be reflected
or transmitted is 1. Note also that R = 0 and T = 1 when E = co and that T=10
and R = 1 when E = 0. These are the only values of E for which the classical and
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quantum-mechanical predictions agree. Classically, R=1 and T=0 for
E<(4?*) ' and R=0and T =1 for E > (46?)"". Thus, quantum mechanics
predicts that there is a nonzero probability that a particle will penetrate (tunnel
through) a potential barrier, even il its energy is smaller than the minimum energy
required by classical mechanics for transmission. [What happens classically and
what happens quantum mechanically when E = (4¢%)7'7]

WKB Description of Tunneling through Potential Barriers

Now let us take V(x)in (10.6.3) to be any continuous function which vanishes as
x — * o0 and which rises monotonically to its maximum V,,, (Ve > E) at x = x,
as x approaches x, from either the left or the right side of x,. For this potential
barrier ¥(x) there are two turning points x = 4 and x = B, 4 < B, at which
V(x) = E. Thus, there are two classically allowed regions x < A and x > B in
which oscillatory solutions occur and a classically forbidden region 4 < x < Bin
which there are exponentially growing and decaying solutions.

‘We will also make the technical assumption that as x —+ + o0, V(x) — 0 faster
than 1/x. We then have

[fa/E=V = VE[ ar+ [ al/E=VD) - )
~x\/E+I, X = 400,

where [ = [3 dt[./E — V(1) — JE] — B/E exists and the corrections to this
asymptotic relation vanish as x —+ + oo (see Prob. 10.40).
Similarly, we have

LA
J dtJE-V(t)~ -x/E+J, x- -0,

where J = AJE + [* di[/E - V(1) — \/E] also exists and the corrections to
this asymptotic relation also vanish as x -+ — 0o. Consequently, as x — + oo, the
WKB approximations to y(x) in the classically allowed regions x > Band x < 4
approach plane waves as x — + o0 and x - —co:

i:j d:\/E-—V{r)]

~C,E Ye* W exp (+ix/EE), x- +oo,  (10.6.8)

Ywxs(x) = D.[E — V(x)]” Y%exp [i‘i JA dt /JE — V(I}]
~ D E"Ve*Ultexp (Fix/Efe), x——cw0.  (10.69)

Vuxa(x) = C[E — V(x)] P exp

As in the exactly soluble model of tunneling that we discussed above, we must
choose an appropriate set of boundary conditions to describe tunneling. We
postulate a unit incident right-moving plane wave at x = — oo. This gives rise to a
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right-moving transmitted plane wave at x = + co and a left-moving reflected wave

at x = —oo. We formulate these boundary conditions as asymptotic relations:
y(x) ~ exp (—ix /Efe) + b exp (+ix/Efe), x— —o0,  (106.10)
y(x) ~ ¢ exp (—ix/Efe), x—+00.  (106.11)

The relations in (10.6.10) and (10.6.11) are the asymptotic generalizations of the
exact equations in (10.6.5) and (10.6.6). The objective is to compute the constants
b and ¢ using WKB theory.

The WKB calculation requires the solution of a new kind of one-turning-
point problem which reads as follows. Let Q(0)=0, Q(x)>0 if x <0 and
Q(x) <0 if x>0, Q(x) ~ax, a<0 (x—0). If the WKB approximation to the

solution of
e?y"(x) = Q(x)y (10.6.12)

has negative phase for positive x,

ywka(x) = [-Q(x)]~"* exp [—E J: Vv —=0() drl, (106.13)

£

how does y(x) behave for negative x? ‘
To solve this problem, we first allow x in (10.6.13) to approach the turning

point at x = 0 and obtain
Ywks(x) ~ (—ax)”"* exp ( —2'——‘“3;“ x*? ) x—=0+. (106.14)

We know that near x = 0 the differential equation (10.6.12) may be approximated
by
yur= —ty, I=8'2"3[-ﬂ]“3x,

whose solution is
y(t) = a Ai (—t) + B Bi (—1). (10.6.15)

When t is large and positive, we can replace Ai (—t) and Bi (—t) in (10.6.15) by
their asymptotic expansions

Ai{—t)--ﬁt‘”“ sin (;rm +§), t— 400,

2
Bi (—1) ~ ﬁr'”‘ cos (5:”1 +g) t— +0c0.

By comparing the resulting expression with that in (10.6.14), we determine cc and
to leading order in the WKB approximation:

p= ﬁ{‘m]_ ”:e‘ " (10.6.16)
a=./n(—ea)” Ve i,

The problem is now half solved.
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Next, we allow t in (10.6.15) to be large and negative. The expansion of
Ai (—1) is negligible compared with the expansion of Bi (—t) because it is expo-
nentially small (subdominant). Using (10.6.16) and the expansion

Bi (_5},.,Lj_(_t)-u-tezc—nsrzu, t— —o0,
NE.
we determine that for negative x the WKB approximation to y(x) is given by
. 1 0
%‘: - [ de/Q0) d:‘, (10.6.17)

This completes the solution to the one-turning-point problem. Using the notation
in (10.4.16) we summarize our result as a connection formula:

in 1 ./°
74'+E-| dt/0(1) dt

_z JO -0(1) d;}, x>0

ywra(x) = [Q(x)]~V* exp

s x<0

[Q(x)]""* exp

(10.6.18)
[~ Q)] exp

Now we return to the solution of the two-turning-point tunneling problem for
the potential ¥(x). When x > B, the WKB approximation to the solution y(x) of
(10.6.3) which satisfies the boundary condition in (10.6.3) is [see (10.6.8)]

E - V(x) expl_z[’\/g_—y(t}df]_ (10.6.19)
B

E

By the connection formula in (10.6.18), this expression asymptotically matches to
. V —-E|- /4 i 1 B
yWKB(x} = ce'”" l%] e"‘l“ exp [E l d[“-' V(I) - E], {1')‘620}

which is valid when 4 < x < B.
The expression in (10.6.20) may be rewritten as

ywia(x) = ce'" exp E .[B d/Vie)— E+ ‘ﬂ
%llw exp l—% [ dt/V(0) —_El,

which decays exponentially as x increases toward B. We connect to the oscillatory
solution which is valid for x < A using the connection formula in (10.4.16) and
obtain the WKB approximation

ponate) = e xp |1 [ a7 =2 | [E= )

x :axp li _|'A dtJE = V()| +iexp l-l _)'A dt JE - V(c)]}, (10.6.21)

which is valid when x < A.

-1/4

waB(x) = ce'l’ l

x
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Finally, we let x - — co. Recall that in this limit ¥(x) - 0 faster than 1/x, so
(10.6.21) becomes [see (10.6.9)]

ywxn(x) ~ Ceuf' exp ‘% Jlsdf\.r V(f) - E}

x [¢7 exp (—is/E x/e) + ie~ " exp (iy/E x/e)],
x——co.  (10.622)

Comparing this formula with that in (10.6.8) gives expressions for the constants b
and c:

fa— 2idle
b=ie 2

LB
c=exp [—% ' dt./V(t) - El gTid+ e,
sy

Thus, the reflection coefficient is
R=|bP~1, e—0+, (10.6.23)

and the transmission coefficient is

8
T=|c|*~exp I—%[ dr,/V(t)— E|,
A

We observe that only an exponentially small portion of the incident wave is
transmitted (tunnels through the potential barrier). Notice that the leading-order
WKB prediction for R and T in (10.6.23) and (10.6.24) appears to violate the
constraint that R + T = 1, which is always exactly satisfied. Indeed, R is not 1, but
differs from 1 by an exponentially small (subdominant) quantity. However, the
principles of asymptotics require that we always disregard subdominant correc-
tions. (Of course, we do not replace T by 0 because it is not small compared with
0!)

e=0+.  (10.624)

Scattering off the Peak of a Potential Barrier

The reflection and transmission coefficients in (10.6.23) and (10.6.24) are good
asymptotic approximations only if E < V,,,,. What happens when E = V,,,.? To
answer this question, we consider the simple model problem for which
V(x)=e ** E=1.Now V,,,=E= 1.

A classical particle of energy E = 1 moving under the influence of this poten-
tial slows down as it approaches the origin. Classically, we cannot define a
reflection or transmission coefficient because the particle never actually reaches
the origin! The quantum-mechanical result is much more interesting, as we will
now see.

The differential equation

(—52 d— e l)y{x) =0 (10.6.25)
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is quite different from that in (10.6.3) where V, ., > E because here there is just one
real turning point which lies at x = 0.

To solve this equation using asymptotic matching, we divide the x axis into
three regions: region I, in which x > 0; region II, the immediate neighborhood of
x = 0; and region III, in which x < 0. For a precise asymptotic determination of
the boundaries of these regions in terms of the small parameter &, see Prob. 10.41.

We begin our analysis in region II. Since |x| is small there, we may replace
e % — 1 by —x?/4, the first term in its Taylor expansion. We thereby replace
(10.6.25) by the simpler differential equation

2
(-cz EdP' - x*/4] yulx) = 0. (10.6.26)

Note that x = 0 is a second-order turning point.

The differential equation (10.6.26) is closely related to the parabolic cylinder
equation (—d?/dt* + $1 — v — })z(t) = 0, whose general solution is z(t)=
aD,(t) + BD,(—1t) when v# 0, 1, 2, ... (see Example 8 of Sec. 3.8). The general
solution to (10.6.26) is

ylx) = aD_yle™™*x/\/6) + BD_yp(—e ™ x//2).  (10.627)

Now we examine the behavior of y(x)in (10.6.27) as x,r’\/;: — +00. We use the
formulas for the asymptotic behavior of D (t) as |t| — co in the complex plane
[see (3.8.22) and (3.8.24)]:

3
D(t) ~ te™"4, t—o0; |arg t| «c?n,
NP 2 n 5n
Dt ~ o4 inv.—v=1_12/d4 — - —_.
(t) ~ t'e —F(—v)e t &ils, t oo,4<argr< 2
Note that arg (¢7"™*¢ ™ Y2x) = —n/4 and arg (— e~ "™*¢™ V/2x) = 3n/4 when x > 0.

Thus,
)J,l[x) ~ gl ”2[(ae""'° + B‘,—:ws)emm + ﬁﬁ eenase—mm]‘
x/Je—> +o0.  (10.6.28)
A similar expansion exists when x is large and negative:
yulx) ~ €44(—x) " 2[(ae ™M 4 BBl 4 g [T s i)
x/Je—» -0,  (10.629)

Now we return to the differential equation (10.6.25) and examine it in region |
where x > 0 and in region III where x < 0. In region 1 the WKB solution to
(10.6.25) is

yi=A(l — g™x¥4)" 14 exp(-—i[ dt. /1 —e” ! ), (10.6.30)
0
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where we have included only a negative phase solution to represent only a right-
going transmitted wave for positive x. Note that

yi~ Ae MeeTie x4 4o,
where = [ dt(/T—e ™ —1). We therefore jmpose the outgoing wave
boundary condition at + oo in (10.6.11) by requiring that
c=Ae ", (10.6.31)
Next we examine (10.6.30) as x - 0+. When x — 0, we have 1 — e~ /% ~
x%/4. Thus, performing the integral in (10.6.30) we have
Y~ A{E},‘x)lﬂe‘iﬂm:‘ X —=0+.

This expression must match asymptotically with that in (10.6.28). Thus, we require
that

e'*Be™8 = 4,  ad¥® + BB = (10.6.32)
Finally, we write down the WKB solution to (10.6.25) in region I1I:
ym= (1 — e ¥4~ 1s
;0 P
x IB exp(i | dt/1—¢" [) +C exp(—i | de/1=e" '4)', (10.6.33)

If we allow x —+ —co, we have yy ~ Be''"e ™™ + Ce™""*¢’**, We impose the
boundary condition in (10.6.10) by requiring that

Bélt =1, Ce M=), (10.6.34)
Next we match yy; to yy. In the limit x — 0—, we have
Y~ (—2/x)V2(Be™/* & Ce™™=%) x5 0—.
Comparing this expression with that in (10.6.29) gives
B2 = eY4(ae "8 4 BeB),  C=ae¥%V.  (10.635)

Now, we combine the algebraic equations in (10.6.31), (10.6.32), (10.6.34), and
(10.6.35). We obtain the following expressions for b and c:

b= i e c= : e
Vit V2
Hence, the reflection and transmission coefficients are R= |b|* =% and
T = ¢* = }. We obtain the elegant result that half of the incident wave is reflected
and half is transmitted!
In Probs. 10.43 to 10.46 we examine other aspects of the phenomenon of
tunneling.

= 2ilje =2ilje
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10.7 BRIEF DISCUSSION OF HIGHER-ORDER WKB
APPROXIMATIONS

In this section we show how to perform a WKB approximation beyond the
leading-order approximation of physical optics. We begin by constructing a
higher-order solution to the one-turning-point problem discussed in Sec. 10.4.
Then we use this result to obtain an eigenvalue condition which is a higher-order
version of (10.5.6).

Second-Order Solution to the One-Turning-Point Problem
We follow closely the notation of Sec. 10.4. We are given the differential equation
e2y'(x)= Q(x)y(x),  y(+e)=0, (10.7.1)

where Q(0) = 0, @(x) > 0 for x > 0, and Q(x) < 0 for x < 0. We assume, as we did
in Sec. 10.4, that Q(x) » x~? as | x| = oo, so that the WK B approximation is valid
for all x away from the turning point at x = 0. We also assume that

Q(x) = ax + bx* + O(x*), x—0. (10.7.2)

First, we examine region I (x > 0), in which the WKB approximation is valid.
For a second-order calculation we must retain one term beyond the physical-
optics approximation:

J(x) = CeSoresivess, (10.7.3a)

where Solx)= - /00 d, (10.7.3b)
“0

Si(x) = -—%ln o(x), (10.7.3¢)

and, integrating (10.1.4) for S;(x) once by parts, we obtain

5 Q) _(f Q0
S0 = =38 0700 -[, a0V (10.7.3d)
Observe that in the expression for S,(x) we have integrated from the turning point
at x = 0. However, in the expression for S,(x) we must integrate from x> 0 to x
because the integral is divergent at x = 0. We will treat u as a small fixed positive
number like &2, for example.

Next, we consider region II, the turning-point region. When |x | is small, then
we may replace Q(x) in (10.7.1) by the first two terms in its Taylor expansion and
obtain

2yi(x) = (ax + bx*)yn(x), (10.7.4)

where yy(x), as in Sec. 10.4, stands for the approximation to y(x) in the turning-
point region.
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It is clear that by making a linear transformation of the form x = at + f the
constants « and B can be chosen so that (10.7.4) becomes a parabolic cylinder
equation. However, this trick is worthless for a third-order WKB calculation.
(Why?) We prefer to use a more general approach which is equally useful in all
orders. We substitute x = £2/°a~ "¢, as in (10.4.5). This converts (10.7.4) to an
approximate Airy equation

PV _ (4 2P0 pet) (10.7.5)
TS =(t+¢&""a Yu, -l
which has a small correction of order 2. We can represent the approximate
solution to this equation in terms of an Airy function whose argument also has
small corrections of order £2/*:

y(t) ~ D(1 + oy 33 + o e*30 + )
x Ai (t+ Bre¥3 + Bpe*Pr* +--7),  e—0+.  (10.7.6)

Substituting (10.7.6) into (10.7.5) determines the values of the constants ay, a0, ...,
B., Bs. -... But this is a second-order calculation, so we retain only the a; and 8,
terms:

yulx)~D (1 - z—j) Ai [a”’c'm (x + bs—::) ] (10.7.7)

If we were doing a third-order calculation, we would replace Q(x) by
ax + bx? + ex® and then compute and retain the a,, a,, B,, and f, terms in
(10.7.6).

Now we must demonstrate that y(x) and yy(x) match in the overlap of
regions I and II and in doing so we must find the relation between the constants C
and D. To perform the asymptotic match, we replace both y(x) in (10.7.3a) and
yu(x) in (10.7.7) by simpler functions.

First, we examine y(x) for small x. We make the following approximations:

, b
Q—lad(x)ﬂ_‘x-nda—lm(l_4_;), x =0+,

) Q(c}d:~-g ax’?+ b x*2, x—0+,
0 3 5/a

5 Q) 5 -32

X

= =~ > x—=0+,
48 Q**(x) 48\,:'4:

L o) Va2, -
1k ~—pa~¥ U2 _ 12 —0+.
48 _[u Q3rz(£)d1 2 a (u X ) X
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Substituting these formulas into y, in (10.7.3) gives

Wix)~ Ca™V4x~ ‘-‘4(1 - ?:‘_‘_)
4a
2 e b cuasn _ % - bea™ 3
XCKD( 3£a X 5£a X 4—8.:( X __.m).
x,e=0+.  (10.78)

Here we are not bothering to specify the precise size of the matching region (see
Prob. 10.47). We have discarded a term of the form ex ™ /% in (10.7.8) because it is
small in the limit £ — 0+ ; it must be included, however, in a third-order match,

Finally, we approximate yy(x) in (10.7.7) by expanding the Airy function for
large positive argument. We take two terms in the expansion of Ai (t):

. 1 ,
Al {[)"'mf_”ai’_zljzm(l -5"’5{-”2). t— +0o0.

Thus, (10.7.7) gives

Yulx) ~ D(l - iz) i.;l/”l;sa— 12y - 1;4(1 _ :_Ea—mx—m)
Fi 9
2 12,32 b -1/2,.5/2
"EXP(—EQ".W — 54 ) x,e-0+. (10.79)

Observe that (10.7.8) and (10.7.9) match perfectly! What is more, we obtain the
condition

C= b a'/%e!® ex (bsa""’) (10.7.10)
2/ du) -

The one-turning-point problem is now half done.
The next step is to write down the oscillatory WKB solution in region I1I and
match it to yy(x). In Prob. 10.48 you are asked to verify that

Ymlx) = % eV0aVo[— Q(x)] "

U e SQE) e Q) b xl
><sm|€ L v —Qlr)dt 48[—Q{x]]’”+ﬁﬂ|, [-Q[r]]md[ 12ﬁ+4l‘
(10.7.11)

Equations (10.7.3), (10.7.7), and (10.7.11) constitute a complete second-order solu-
tion to the one-turning-point problem.
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Second-Order Solution to the Two-Turning-Point Eigenvalue Problem

If we follow Sec. 10.5 and combine two second-order one-turning-point solu tions,
we obtain the second-order generalization of (10.5.2) (see Prob. 10.49):
AT Q) byeay? _ bgeag "

_[A v —0()de + a3 _IH“ [=o)" t 12\/; 12\{/;

™| -

- (n + %)n +0(), e—-0+, (107.12)

where a,,, b, and ag, by are the expansion coefficients of Q(x) in the neighborhood
of A and B. If after evaluating the integrals in (10.7.2) one allows utotend to 0+,
one obtains a finite answer independent of u (see Probs. 10.50 and 10.51)

If Q(x) is an analytic function of x, then (10.7.12) can be replaced by a much
simpler contour integral

%i léS},(:}+aS;(:)|d:= (n+%)n+0(sz). e—=0+, (10.7.13)

where the contour C encircles the two turning points, which are connected by a
branch cut on the real-z axis, and S, and S, are given in (10.7.3). Although S’(z)is
infinite at the two turning points, the integral in (10.7.13) is finite because the
contour encircles the turning points without passing through them.

Complete Perturbative Solution to the Two-Turning-Point Eigenvalue
Problem

Dunham discovered a lovely generalization of (10.7.13) to all orders in perturba-
tion theory:

il} 4> l Y eSifz)dz~nmm, e 0+, (10.7.14)
cEx=o

Let us see how this formula reduces to (10.7.13). Recall that
1d
$i(2)= —3 In [QC))
Thus,

%!}S;{Z] dz = -éln Q{;) = _%(4;“-) - _%‘

evaluated once
around the contour €

Note that evaluating Q(z) once around the contour C gives 4ni because the
contour encircles the two simple zeros of Q(z) at the turning points 4 and B. This
accounts for the n/2 in (10.7.13).
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It is a fact that (see Prob. 10.52) 4, +.(2) (k= 1,2, 3, ...) is a total derivative.
For example [see (10.1.15)],

s L[SQEE _ o)

dz|64[Q(z)]°  16[Q(z))*

This becomes a single-valued function once the turning points are joined by a

bl’&l:l(:h cut. Therefore, evaluating this expression once around the closed contour
C gives 0. This allows us to simplify (10.7.14) to

Ll & ag 1
ﬁiikga" Szx(z)d2=(ﬂ+i)‘.lt, e—0+.

Observe that only even orders in WKB perturbation theory contribute to a calcu-
lation of the eigenvalues.

(10.7.15)

Example 1 Eigenvalues of the parabolic cylinder equation. In Example 2 of Sec. 10.5 we found
that the eigenvalues E of the parabolic cylinder equation (—d/dx® + x*/4 — E)y(x) =10
[¥(+o0) = 0] are given exactly by leading-order WKB: E =n + 4 (n =0, 1,2, ...). The explana-
tion for this surprising result is simply that all terms in (10.7.15) after the first happen to vanish
upon explicit calculation (see Prob. 10.53)

Example 2 Eigenvalues for y" = (x* — E)y. After much effort we have managed to evaluate the
integrals and thus to calculate the first seven terms in the WKB series in (10.7.15). The series takes
the form of a power series in inverse fractional powers of E:

i 1
EY Y Ay ET™ (n + 5)«, n-s oo, (10.7.16)

LEL]

where we have set ¢ = | and

1
Ay = iﬂﬁ = 1.748,

PR VR o108,

4 R

n o~
Ay =—— R/1 003756,

3.2

1161 r
A= s g FOIE0,

5-13-17- 353
Ay = _7_721,:1\/} = —0.5574,

1-11-19-23- 1,009 /=
[P . S Y
1 TT5H & T S0,

51729 - 49,707,277
Ay = ——————— "R [n = 7254,

31122

in which R = [()/T'(3) = 2.958675 119 188 638 892310821 4.
We have not been able to discover a simple formula for the terms in this series, but the series
certainly looks like a typical asymptotic series. Like the Stirling series for the gamma function,

m
(E)

(E)
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Table 10.5 Comparison of the exact eigenvalues of the x* potential with the 0, 2,4,
6, 8, 10, and 12th-order WKB predictions from (10.7.16)

Observe how rapidly the maximal accuracy increases as E, increases

Eplexact) = 1.060 362 090 484 182 899 65

(WKB), 087
(WKB), 0.98 (1 part in 10)
(WKB), 0.95
(WKB), 0.78
(WKB)y 113
(WKB),, 1.40
(WKB),, 1.64

E,(exact) = 7.455 697 937 986 738 392 16

(WKB), 74140
(WKB), 7.455 8 (1 part in 10°)

Eg(exact) = 26.528 471 183 682 518 191 81

(WKB), 26.506 335 511
(WKB), 26528 512 552
(WKB), 26528 471 873
(WKB), 26528 471 147
(WKB), 26528471179
(WKB), 26.528 471 182 (7 parts in 10'")
(WKB),, 26.528 471 181

Eglexact) = 37.923 001 027 033 985 146 52

(WKB), 37.904 471 845 068
(WKB), 37.923 021 140 528

(WKB), 74553
(WKB), 74552
(WKB), 74552
(WKB),, 7.455 2
(WKB),, 74552

E,(exact) = 16.261 826 018 850 225 937 89

(WKB), 37.923 001 229 358
(WKB), 37.923 001 021 414
(WKB), 37.923 001 026 832
(WKB),, 37.923 001 027 043 (7 parts in 10'%)
(WKB),, 37.923 001 027 030

E,olexact) = 50.256 254 516 682 919 039 74

(WKB), 162336147 (WKB), 50240 152319 172 36
(WKB), 162619367 (WKB), 50.256 265 932 002 07
(WKB), 16.261 828 6 (S parts in 10%) (WKB), 50.256 254 592 948 49
(WKB), 162618245 (WKB), 50256 254 515 324 64
(WKB), 162618249 (WKB), 50.256 254 516 650 43

(WKB),, 16.261 825 0
(WKB),, 16261 825 0

(WKB),, 50.256 254 516 684 34
(WKB),, 50.256 254 516 682 99 (1 part in 10')

the coefficients get smaller for a while but eventually appear to grow without bound. We would
therefore expect that, for any given value of n, successive approximations to the nth eigenvalue E,,
obtained by solving (10.7.16) with the series truncated after more and more terms, should im-
prove to some maximal accuracy and then become worse. Moreover, since E, increases with n,
more terms in the series should be required to reach maximal accuracy as n increases and the
accuracy should also increase with n. This is precisely what happens (see Table 10.5) The rate at
which the accuracy increases is particularly impressive. The error of the most accurate WKB
approximations are indicated in parentheses. '

PROBLEMS FOR CHAPTER 10

Section 10.1

10.1 Derive equations (10.1.14), (10.1.15), (10.1.16), and (10.1.17)

102 Show that, for the Schrodinger equation e2y” = Q(x)y, if §, = 0 then 5, = 0 for n = 2. Deduce
that the most general function Q(x) for which the equation &'y” = Q(x)y has the physical-optics
approximation as its exact solution is Q(x) = (¢, x + ¢;) -

10.3 Estimate how small £ must be for the approximation in (10.1.9) to be accurate to a relative error
of < 1 percent when x = 1
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104 Using the asymptotic methods of Chap. 6, evaluate the integral [§ [y(x)]" dx to leading order in
powers of &, where y(x) is given in (10.1.19).

10.5 Use WKB theory to obtain the solution to ey” + a(x)y’ + b(x)y = 0[a(x) > 0, y(0) = A, y(1) = B)
correct to order &

10.6 Use second-order WKB theory to derive a formula which is more accurate than (10.3.31) for the
nth eigenvalue of the Sturm-Liouville problem in (10.1.27). Let Q(x) = (x + n)* and compare your
formula with the values of E, in Table 10.1.

10.7. (a) Show that the eigenvalues of (10.1.27) are nondegenerate. That is, show that all eigenfunc-
tions having the same eigenvalue E are proportional to each other.

(h) Show that distinct eigenfunctions are orthogonal in the sense that the integral
f3 Qx)yu(x)ya(x) =0 when n # m.

(¢) The Sturm-Liouville eigenfunctions y,(x) for the boundary-value problem (10.1.27) form a
complete orthonormal set and may therefore be used to expand functions on the interval (0, n) into
Fourier series. The Fourier expansion of the function f(x) has the form 5_}’:0 a, ¥,(x). Show that the
Fourier coefficients are given by a, = [§ dx f(x)y,(x)Q(x).

(d) Let f(x) be continuous and f(0) # 0. Find the leading behavior of a, as n — oo from (10.1.33).
Is the resulting series differentiable?

Section 102

10.8 Consider the equations £2y"(x) = (sin x)y, £2y"(x) = (sin x*)y, &®y"(x)=[1 + (sin x)*]y. For
which fixed values of x is the WK B physical-optics approximation a good approximation to y(x) as
& -+ 0. Is WKB accurate as x — co.

10.9 For the following equations estimate how small £ must be for exp [(1/e)84(x) + §,(x) + 5;(x)]to
be accurate to a relative error of less than 0.1 percent for all x = 0: £*y” = Q(x)y; (a) Q(x) = cosh x, (b)
Q) =1+ () Qx) =1 + x*.

10.10 (a) Verily that (10.2.8) reproduces the asymptotic formulas in (10.2.6).

(b) Show that the leading behavior of solutions to ey” = x*(In x)’y as x — + 0 is given by
(10.2.6) with (In x)~** and (In x)~%'® replaced by (In x)~"**** and (In x)~"2~%%, respectively. Use
these results to demonstrate that physical optics is valid as & — 0 with x > 0 fixed, but that the
higher-order approximation (10.2.8) must be used to find the leading behavior of y(x) as x — +c0 with
&> 0 fixed.

10.11 (a) Derive the physical-optics approxi to the sol
and S,(x) are given correctly by (10.2.10) and (10.2.11).

{b) Show that if @(x) is sufficiently smooth and that |x"@(x)| — o as x —+ + o, then physical
optics gives the correct leading behavior of solutions to (10.2.9) as x —+ + oo with & fixed. This justifies
the result stated after (3.4.28)

of £"y'™ = Q(x)y. Show that §,(x)

Section 103

10.12 Show that for (10.3.1) to have a solution y(x) for which y(+ oo} = 0 it is necessary that R(x) «
Q(x) as x - t oo

10.13 Verify (10.3.9) and (10.3.10)

10.14 Solve the Green's function equation &* *G/dx* — Q(x)G = —d(x — x') to one order beyond
physical optics. That is, include S,, §,, and S, in the WKB series. Evaluate [® o Glx, x') dx and
{2 [Glx, x')]* dx correct to order &.

10.15 Prove that [©, [G,udx, x))*(x — x')* dx' = [Q(x)]*/54 + O(e) (e = 0+ ), where G, is given in
(10.3.7).

10.16 Show how to use the notions of boundary-layer theory to derive the approximate solution
(10.3.11) to the Schrodinger equation (10.3.12). Show that boundary layers (localized regions of rapid
change) occur at x = % 1. Find the thickness of the boundary layers. Match inner and outer solutions
to derive (10.3.11)
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10.17 Consider the fourth-order Green's function equation e*d*y/dx* + Q(x)y = é(x) [@(x) >0,
y(+ ) = 0]. Use physical optics to derive a uniform asymptotic approximation to y(x) for all x. What
is y(0)? Evaluate = y(x) dx.

Section 104
10.18 Deduce Langer's uniform approximation (10.4.15) to the solution of the Schrédinger equation
g?y" = @(x)y directly from the differential equation.

Clue: First introduce a new dependent variable which is some function f(x) times the old
dependent variable y(x). Then show that f(x) may be chosen such that for all x there is a new
independent variable for which the equation may be approximated by the Airy equation.

10.19 Prove that Langer’s formula in (10.4.15) reduces to (10.4.13¢) in region 111

1020 From the integral representation for Ai (x)in Prob. 6.75 prove (10.4.22). Specifically, sh.ow that
fo Al (x)dx =4 [, Ai (x)dx =4

10.21 Verify (10.4.23).

10.22 Venly (10.4.28).

10.23 Solve £2y"(x) = Q(x)y(x), where Q(x) is even, Q(x) vanishes just once at x = 0, and Qfx) ~a|x|
near x = 0 (a > 0). Find that solution y which vanishes as x — oo.

10.24 Solve the one-turning-point Green's function equation y”(x) = Q(x)y(x) = —d(x — x’), where
Q(x) has a simple zero at x =0, @(x)>0if x>0, Q(x)} <0 il x < 0, and Q(x) ~ ax(x — 0} y(x)is
required to satisly y(oo) = 0 and y(0) = 1. Compute y(x') and |7, y{x) dx.

10.25 Use WKB theory to approximate the Bessel function J,(x) for v, x > 0.

Clue: The Béssel equation is y” + y'/x + (1 — v}/x?)y = 0. Let x = &, remember that J ,(0) =0

when v > 0, and use Langer's formula (10.4.15).
10.26 (a) Consider the one-turning-point problem &'y"(x) = Q(x)y(x), where Q(x) vanishes just once
at x = 0and Q(x) ~ a’x* as x —» 0, a > 0. Find a complete physical optics WKB approximation to y(x)
for that solution which approaches 0 as x — +co and is normalized by y(0) = 1. Note: Your answer
should consist of three formulas valid in each of three regions. Combine your three formulas, i la
Langer, to obtain a single formula which is a uniformly valid approximation to ylx)for =0 < x < 0.

Clue: The final answer is

4aS(x)
' Q(x)

14
VuoielX) = r(;) D_ .;:[15""’3”’(!)].

where S(x) = 3 /Q(¢) dt.

(b) Show that to leading order in powers of ¢, fg’ x[y(x)]" dx ~ [TEYT)) 200 (e~ 0+)
1027 Suppose we attempt to derive the one-turning-point connection formula using WKB in the
complex plane. Let @(0) = 0 and write down the WKB approximation

yuxa(2) = C1Q()) " exp [—: [ Ve a

which is valid when z is real and positive, Then analytically continue this expression to negative z along
a path which does not pass through z = 0 and which goes around the turning point at z =0 in a
counterclockwise sense in the upper half plane. We fail to derive (10.4.16). Next take a path which goes
around the turning point in a clockwise sense in the lower half plane. Again we fail to derive (10.4.16).
Explain the breakdown of these analytic continuations of the WKB solution in terms of the Stokes
phenomenon.

1028 Use WKB analysis to show that uniform leading-order approximations to the
differential equations of Prob. 9.33 as ¢ = 0+ are

(@) Vumirolx) = 24(x + 1) + (B — 3A)el®= 3%,

- B — 14
(5) Yumirolx) = 3A4 93_83._,(6:-3}:11&; +

15 of the

3B-4 o~ (Bx+ 316}

(1-x)+
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Explain why there is a boundary layer only at x = 4 in (a) while there are boundary layers near both
x = —%and x = §in (b). Observe that the approximations y,.i; o(x) ard not exponentially small when
|x] <1 even though these differential equations correspond to case IV of Sec. 9.6. Higher-order
corrections do not force the solution to be exponentially small within |x| <}

Clue: Observe that the outer solutions 1 + x and | — x to the problems are also exact solutions
to the differential equations. You need only find a linearly independent solution which must grow
exponentially fast away from the internal layer at x = 0.

10.29 Derive the connection formula for a turning point which is a (2n + 1}-old zero, going from a
classically forbidden to a classically allowed region. Assume that y(x)— 0 as x — oo in the classically
forbidden region.

Section 10.5

10.30 Derive (10.5.4)

10.31 Show that the eigenvalue condition in (10.5.6) is a valid asymptotic relation as ¢ —+ 0+ with E
fixed or as E — + oo with ¢ fixed.

1032 Verify (10.5.15).
10.33 Show that the physical-optics approximation to the eigenvalues E of the equation
—y + (P —Ely=0[y(+t0)=0],withK=1,2234,...is

£ ](ﬂ + Ji}ﬁ e+ lflqn‘l’_]lz"'"*”

SR R V7 ) R B
10.34 Show that the WKB physical-optics formula for the eigenvalues of the equation —g?y”
+ [V(x) = Ely = 0 [y(0) = 0, y(+ o) = 0], where ¥(0) = 0, ¥{+o0) = + 00, V(x) rises monotonically
as x increases from O.is (1/¢) 5 /E — V(x)dx = (n — {)n + Ofe) (= » 0+ ), where E — V(x,) = Oand
n=1273 ...
lpJS The gravitational potential rises linearly with x. Use the result in Prob. 10.34 to find the
eigenvalues in a gravitational potential well.
1036 Consider the eigenvalue problem y” + E(cos x)y = 0 [y{+ x) = 0]. Find an approximation to E
which is valid for large values of E.
1037 Find a physical-optics approximation to the ecigenvalues E of d*y/dx* = [E — V(x)]y(x)
[¥{# e0) = 0], where ¥(+ co) = oo. Chetk your result by using it to find the eigenvalues of d*y/dx* =
(E = x*)y(x) [¥{ £ a0) = 0], which can be solved using a Fourier transform.

Clue: It will help if you solve Prob. 6.83 first.

n— a0,

Section 10.6

1038 Verify (10.6.7).
1039 Prove that a classical particle incident on a delta-function potential ¥(x) = &(x) bounces back if
E < (4¢*)"" and continues on if E > (4e%)" ",
10.40 Show that the corrections to the asymptotic relation [ dt/E — V(1) ~ xJE+1(x— +x),
where I = [¢ dt[,/E = V{t) - /E] - B,/E, vanish as x = + a0 if ¥(x) — 0 faster that 1/x.
10.41 Find precise asymptotic estimates of the boundaries of regions I, 1, and III for (10.6.25).
1042 If e~ **'* in (10.6.25) were replaced by 1/(1 + x?), how would the leading-order WKB predictions
for R and T change?
10.4_13 Suppose e~ *"* in (10.6.25) were replaced by e~ *"*/2 or by 1/(2 + 2x?). In classical mechanics all
incident particles penetrate the potential bump at x = 0. However, in quantum mechanics, there is an
exponentially small reflection coefficient R. Find a physical-optics approximation to R.

Clue: 1t is necessary to find the connection formula for a turning point in the complex plane. See
the discussion of this problem in Ref. 18.

10.44 In this problem we investigate the quantum-mechanical phenomenon of resonance.

(a) Let V(x)in (10.6.3) be two delta functions at x = 0 and x = 1: ¥(x) = d(x) + d(x — 1). Solve
(10.6.3) for this ¥(x) exactly and show that there is an infinite number of discrete energies for which
¥(x) becomes transparent (T = 1, R = 0). Compute these energies.

(D)

(D)

m
m

(D)
n

m
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(b) Let ¥(x)in (10.6.3) be x* — x*. Use WKB theory to find a physical-optics approximation for
the resonant energies E,.

10.45 Suppose we wish to calculate the eigenvalues of a double potential well separated by a potential
hill (like the letter W). Then there are two cases to consider:

(a) Il each of the wells has a different shape, then to a good approximation the eigenvalue
spectrum (for those eigenvalues below the peak of the hill) is the union of the spectra of each of the two
wells separately. Corrections are exponentially small (subdominant). Explain why.

(b) Suppose the two wells are identical. For this problem take V(x)=x*-x* Now the
eigenvalue spectrum consists of almost degenerate pairs of eigenvalues. Use WKB theory to calculate
the splitting between pairs of eigenvalues.

Clue: For the above V(x) assume that eigenfunctions are either even or odd functions of x.
10.46 In this problem we investigate the quantum-mechanical phenomenon of radioactive decay.
Radioactive decay, the tunneling of a wavefunction out of a confined region, is clearly a time-
dependent phenomenon. Therefore we must return to the time-dependent Schrodinger equation
(10.6.1). We represent the time dependence as in (10.6.2). The decay constant is the imaginary part of E,
which must be positive. Establish the following results:

(a) Define a probability density p(x.t) and a probability current j{x, t) by plx, 1) = y*/e,
jlx, t) = ie[y*(Ow/dx) — Y(dy*/dx)]. Show that as a consequence of (10.6.1), j and p satisfy a local
conservation law: #j/dx + dp/ét = 0.

(b) Consider a potential ¥ which looks like an upside-down letter W. For example, take V(x) =
x* — x*. Show that in general
_ e, 1) = jlxy, 1)

2§ el dx

where x, and x, are points to the left and right of and outside the potential well What is the
connection between the sign of Im E and the direction of flow of probability current? Does Im E vary
with time?

(c) Impose outgoing wave boundary conditions and find a physical-optics approximation to
Im E. What happens to Im E if we impose incoming wave boundary conditions? Explain.

Im E

Section 10.7

1047 What is the size of the region in which y(x) in (10.7.8) and yulx) in (10.7.9) match
asymptotically?

1048 Verily (10.7.11).

10.49 Derive (10.7.12) by combining two second-order one-turning-point WEKB approximations.
10.50 Evaluate (10.7.12) for Q(x) = x*/4 — E.

Clue: Show that 4 = Eﬁ and B= —-2/E, a,=azg= JE'. b, = bg= 14 Then show that for
small g, the left side of (10.7.12) red uces to Ex — \fﬁ E~%*#/64. Thus, in the limit g — 0 +, we recover
the physical-optics result E ~ n + § (n — ).

1051 Evaluate (10.7.12) for @(x) = x* — E. Show that in the limit u — 0+, the left side of (10.7.12)

becomes
EVrN/r  EMIEN/

@) 4r()

e~ [ple v Qe Q] [ s

as i1 — 0. Can you understand why the numerical results in Table 10.5 improve so dramatically with
increasing n?

10.52 Formulate a proof that §3,,, (k =1,2.3,...) is a total derivative. Check your result by ex-
plicitly calculating S5, S5, and §; for arbitrary Q.

1853 Calculate explicitly the first three terms in the series (10.7.15) for @{x) = ix? — E and show that
the only nonvanishing term is the first. Explain why every term vanishes except the first.

Congclude that
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CHAPTER

ELEVEN
MULTIPLE-SCALE ANALYSIS

And here—ah, now, this really is something a little recherche.

—Sherlock Holmes, The Musgrave Ritual
Sir Arthur Conan Doyle

11.1 RESONANCE AND SECULAR BEHAVIOR

Multiple-scale analysis is a very general collection of perturbation techniques that
embodies the ideas of both boundary-layer theory and WKB theory. Multiple-
scale analysis is particularly useful for constructing uniformly valid approxima-
tions to solutions of perturbation problems.

In this section we show how nonuniformity can appear in a regular perturba-
tion expansion as a result of resonant interactions between consecutive orders of
perturbation theory. To illustrate, we examine a simple perturbation problem,
show how resonances occur and lead to a nonuniformly valid perturbation expan-
sion, and finally show how to interpret and eliminate these nonuniformities. The
formal development of multiple-scale analysis is postponed to Sec. 11.2.

Resonance

The phenomenon of resonance is nicely illustrated by the differential equation
eq
d? .
2i2 Y(0) + y(t) = cos (wr) (1LL1)

This equation represents a harmonic oscillator of natural frequency 1 which is
driven by a periodic external force of frequency w. The general solution to this
equation for |@| # 1 has the form

cos (wt)
1 —w?’

yit)=Acost+ Bsint + || #1.  (11.12)
Observe that for all |@| # 1 the solution remains bounded for all £. If || is close
to 1, the amplitude of oscillation becomes large because the system absorbs large
amounts of energy from the external force. Nevertheless, the amplitude of the
system is still bounded when |w| # 1 because the system is oscillating out of
phase with the driving force.

544
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The solution in (11.1.2) is incorrect when |@| = 1. The correct solution has
an amplitude which grows with t:

yit)=Acost+Bsint+dtsint, |o|=1 (11.1.3)

The amplitude of oscillation of this solution is unbounded as t — 00 because the
oscillator continually absorbs gnergy from the periodic external force. This system
is in resonance with the external force.

The term 4t sin t, whose amplitude grows with ¢, is said to be a secular term.
The secular term 4¢ sin t has appeared because the inhomogeneity cos ¢ in (11.1.1)
with |@| = 1 is itself a solution of the homogeneous equation associated with
(11.1.1): d*y/de* + y = 0. In general, secular terms always appear whenever the
inhomogeneous term is itself a solution of the associated homogeneous constant-
coefficient differential equation. A secular term always grows more rapidly than
the corresponding solution of the homogeneous equation by at least a factor of ¢.

Example 1 Appearance of secular terms.

{a) The solution to the differential equation d*y/di* — y = e”' has a secular term because e~
satisfies the associated homogeneous equation. The general solution is y(r) = Ae”™’
+ Be' — d1e™". The particular solution —3te ™" is secular relative to the homogeneous solution
Ae™"; we must regard the term —}se ™" as secular even though it is negligible compared with
the homogeneous solution Be' as 1 — a0,

(b) The solution to the differential equation d*y/dr* — 2dy/dt + y = ¢ has a secular term because
¢ satisfies the associated homogeneous equation. The general solution is y(¢) = A¢
+ Bre' + }t*¢' In this case, the particular solution }r?¢ is secular with respect to all solutions
of the associated homogeneous equation.

Nonuniformity of Regular Perturbation Expansions

The appearance of secular terms signals the nonuniform validity of perturbation
expansions for large t. The nonlinear oscillator equation (Duffing’s equation)
dl
d—£{+y+z:y"=0. y(0) = 1, y(0) =0, (11.14)
provides a good illustration of what we mean by nonuniformity. A perturbative
solution of this equation is obtained by expanding y(t) as a power series in &:

yle)= io Eyn(t), (11.1.5)

where y(0) = 1, 5(0) = 0, y,(0) = y,(0) = 0 (1 > 1). Substituting (11.1.5) into the
differential equation (11.1.4) and equating coefficients of like powers of ¢ gives a
sequence of linear differential equations of which all but the first are
inhomogeneous:

Vo 4 yo =0, (11.1.6a)
Yitn= -2, (11.1.65)
and so on.
The solution to (11.1.6a) which satisfies yo(0) = 1, y5(0) =0 is
Yolt) =cos t.
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To solve (11.1.6b) we invoke the trigonometric identity cos® ¢t = 1 cos 3t + 2 cos ¢
to rewrite the inhomogeneous term. The formulas in (11.1.2)-(11.1.3) then provide
the general solution to (11.1.65):

yi(t)= A cos t + Bsin t + 55 cos 3t — 3t sin ¢;
the particular solution satisfying y,(0) = y,(0)=0is
yit)=+v5cos 3t —f5cost — 3t sint.

We observe that y,(t) contains a secular term. This secularity necessarily occurs
because cos® t contains a component, 3 cos t, whose frequency equals the natural
frequency of the unperturbed oscillator.

In summary, the first-order perturbative solution to (11.1.4) is

y(t)=cost +e[s7cos 3t —d5cos t — frsin ] + O(e?), e—0+. (ILL7)

We emphasize that the term O(e?) in the above expression means that for fixed ¢
the error between y(t) and y,(t) + ey,(t) is at most of order &¢* as ¢ - 0+. The
nonuniformity of this result surfaces if we consider large values of t—specifically,
values of t of order 1/¢ or larger as ¢ —+ 0+. For such large values of t, the secular
term in y,(t) suggests that the amplitude of oscillation grows with t. However, as
we will now show, the exact solution y(t) remains bounded for all ¢.

Boundedness of the Solution to (11.1.4)

To show that the solution to (11.1.4) is bounded for all ¢, we construct an integral
of the differential equation. Multiplying (11.1.4) by the integrating factor dy/dt
converts each term in the differential equation to an exact derivative:

d[lfdy\* 1, 1 ,
d li(a:) Ty Y ‘:"'
Lidy\> 1, 1
Thus, 5 dt) + 2y +4sy =C, (11.1.8)
where C is a constant. Since y(0) = 1 and y'(0) =0, C = % + {e. When ¢ > 0, the
integral in (11.1.8) shows that 4y? < C for all t. Therefore, | y(t)| is bounded for all
tby /1 +¢g/2.

The argument just given is frequently used in applied mathematics to prove
boundedness of solutions to both ordinary and partial differential equations. The
integral in (11.1.8) is called an energy integral. Equation (11.1.8) may be in-
terpreted graphically as a closed bounded orbit in the phase plane whose axes are
labeled by y and dy/dr (see Fig. 11.1).

Perturbative Construction of a Bounded Solution to (11.1.4)

We have arrived at an apparent paradox; we have shown that the exact solution
y(t) to (11.1.4) is bounded for all ¢ but that the first-order perturbative solution in
(11.1.7) is secular (grows with ¢ for large t). The resolution of this paradox lies in
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-1.6 +

_20 p
Figure 1L.1 A phase-plane plot (y versus dy/dt) of solutions to Duffing's equation d2y/di* +y
+ey* =0[y(0) =1, y'(0)=0] for e = 0, 1, and 2. The orbits shown are constant-energy curves [see
(11.1.8)] which satisfy (dy/de)* + y* + ey*/2 =1+ ¢/2

the summation of the perturbation series (11.1.5) We know that the problem
(11.1.4) is a regular perturbation problem as ¢ —»0+ for fixed ¢ (see Sec. 7.2).
Therefore, the series (11.1.5) converges to the solution y(t) for each 1. We conclude
that although order by order each term in the perturbation expansion may be
secular, the secularity must disappear when the series is summed.

To illustrate how summing a perturbation series can eliminate secularity,
consider the perturbation series

1—eat+ 462 = L + - +e[(— 1] + -, =0+,
Each term in this series is secular when t is of order 1/¢ or larger. Nevertheless, the
sum of the series ¢ "™ is bounded for all positive ¢!

We will now examine the more complicated perturbation series (11.1.5) and
show that the sum of the most secular terms in each order in perturbation theory
is actually not secular. We will show, using an inductive argument, that the most
secular term in y,(r) has the form

A e + AXre™™, (11.1.9)
where * denotes complex conjugation. There are less secular terms in y,(z) which

grow like t* (k < n), but we ignore such terms for now.
The final result of our calculations will be

%5(3_8‘) (11.1.10)
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Using this formula for A, we see that the sum of the most secular terms in the
perturbation series (11.1.5) is a cosine function:

Saer ) a3 e r 3] o

Observe that this expression is not secular; it remains bounded for all t.

The expression (11.1.11) is a much better approximation to the exact solution
y(t) than yo(r) = cos t because it is a good approximation to y(t) for 0 <t =
O(l/e). The difference between y(t) and cos t is small so long as 0 <t « /e
(= 0+), while cos [t(1 + 3¢)] is an accurate approximation to y(t) over a much
larger range of t. These assertions are explained as follows. In order that y,(t) be a
good approximation to y(t), it is necessary that £"y,(t) « y,(t) (¢ = 0+) for all
n = 1; this is true if 0 < t « I/e. On the other hand, the terms that we ignored in
deriving (11.1.11) all have the form

e[Aet(et)e™ + A*et(er)'e ™),

where k, I, m are nonnegative integers. Therefore, when t = O(1/¢), each of these
ignored terms is in fact negligible compared to at least one of the secular terms
included in (11.1.11). We accept without proof the nontrivial result that the sum of
all these small terms is still small. The higher-order terms are analyzed in Probs.
1L5to 11.7.

We interpret the formula in (11.1.11) to mean that the cubic anharmonic term
in (11.1.4) causes a shift in the frequency of the harmonic oscillator y" + y =0
from 1 to 1 + 3e. This small frequency shift causes a phase shift which becomes
noticeable when t is of order 1/ (see Figs. 11.2 to 1.4 in Sec. 11.2).

Inductive Derivation of (11.1.10)

Comparing the first-order perturbation theory result in (11.1.7) with (11.1.9)
verifies that the coefficient of the most secular terms in zeroth and first order are
given correctly by (11.1.10). To establish (11.1.10) for all n, we proceed inductively.
The (n + 2)th equation in the sequence of equations (11.1.6) determines y,,(t):

a1t Vas1= —loyys (11.1.12)

where the inhomogeneity /,,, is the coefficient of ¢ in the expansion of
(X5=o &y, (0). Thus,
Li= Y v (11.1.13)
Jjtktil=n
The most secular term in y, , (t) is generated by the most secular terms in y;(t) for
0 < j < n (see Prob. 11.2). If we assume that (11.1.10) is valid for Ao, A4, A3, ...,
A,, then the coefficient of r"¢” in I, , is given by

8 jrktn -~ 8\8 JUkt I

1(3 ) Pty ii+'-*+i*“‘i_1(§)' (=D + (=1 +(=1)
8 jrk+i=n jtk+l=n .

(E)
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The sum in the above expression is just three times the coefficient of x" in the
Taylor expansion of e*e*e™* (see Prob. 11.3); therefore, it has the value 3/n!. Thus,
the terms in I,,, which generate the most secular terms in y, . ,(t) are

3ELy[ime" + (—iye"nl.

Substituting these terms into the right side of (11.1.12) and solving for y,,,(t)
gives

Vusr(£)= @Y e + (=it e ")/(n + 1)! + less secular terms.

By induction, we conclude that since (11.1.10) is true for n = 0, it remains true for
all n.

11.2 MULTIPLE-SCALE ANALYSIS

In Sec. 11.1 we showed how to eliminate the most secular contributions to pertur-
bation theory by simply summing them to all orders in powers of &. The method
we used works well but requires a lengthy calculation which can be avoided by
using the methods of multiple-scale analysis that are introduced in this section.

Once again, we consider the nonlinear oscillator problem in (11.1.4):

2
%-r—f +y+ey=0,
The principal result of the last section is that when ¢ is of order 1/¢, perturbation
theory in powers of ¢ is invalid. Secular terms appear in all orders (except zeroth
order) and violate the boundedness of the solution y(t).

A shortcut for eliminating the most secular terms to all orders begins by
introducing a new variable t = et. 7 defines a long time scale because 7 is not
negligible when t is of order 1/¢ or larger. Even though the exact solution y(t) is a
function of ¢ alone, multiple-scale analysis seeks solutions which are functions of
both variables ¢ and t treated as independent variables. We emphasize that expres-
sing y as a function of two variables is an artifice to remove secular effects; the
actual solution has t and 1 related by t = & so that t and 7 are ultimately not
independent.

The formal procedure consists of assuming a perturbation expansion of the
form

¥(0)=1,y(0)=0. (11.2.1)

y(t)= Yo(t, ©) + Xy (e, ) + . (11.2.2)
We use the chain rule for partial differentiation to compute derivatives of y(1):

dy_(dYD ay.,c_fi) s(@ ang))r

ot ar dt ar ot dt

However, since t = &t, dt/dt = & Thus,
dy aY, aY, aY,

=0 -0 ,>1 2 1123
dt ot te lil4 * 61)+0(€} ( )

dt
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Also, differentiating with respect to ¢ again gives
dy Y, a3y, 'Y,
_ = B 2
2= T\ %t )+ O(&*). (11.24)
Substituting (11.2.4) into (11.2.1) and collecting powers of & gives

Y,

St %=0, (11.2.5)
%y, , L8,
G th=-N-2— (11.2.6)
The most general real solution to (11.2.5) is
Yo(t, 1) = A(t)e" + A*(x)e ™™, (11.2.7)

where A[r}‘is an arbitrary complex function of t.
A(7) will be determined by the condition that secular terms do not appear in
the solution to (11.2.6). From (11.2.7), the right side of (11.2.6) is

ir*
dt

| dA
it __3424% — 2i —— i -3
e l 3A°A* = 2i it — YA — e 3i(4%),

- e""—3A{A‘)" +2i

Note that e and e™" are solutions of the homogeneous equation 9%Y,/dr?
+ Y, = 0.Therefore, if the coefficients of e" and ¢~ " on the right side of (11.2.6) are
nonzero, then the solution Y (¢, t) will be secular in t. To preclude the appearance
of secularity, we require that the as yet arbitrary function A(t) satisfy

dA
—3A4%4* - 2i—=
2i5-=0, (11.2.8)
dA*
—3A(A*)? — =
(4% +2i——=0. (11.29)

These two complex equations do not overdetermine A(t) because they are redun-
dant; one is the complex conjugate of the other. If (11.2.8) and (11.2.9) are
satisfied, no secularity appears in (11.2.2), at least through terms of order &.

To solve (11.2.8) for A(t), we represent A(r) in polar coordinate form:

A(7) = R(z)e"®, (11.2.10)

where R and 8 are real. Substituting into (11.2.8) and equating real and imaginary
parts gives

dR

=0 (11.2.11a)
dé 3

=3k (112.11b)

Therefore,
A(T} = R[U)eiﬂtolflililollfl {11112]

M
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yin) cos [(I + é::}r]

Exact

cos [

Figure 11.2 The exact solution v{r) to Duffing’s equation d*y/dr* + y +&y* =0 [3(0) = 1. ¥'(0) = 0]
fore = 0.1 (middle graph) compared with perturbative approximations to y(t) (upper and lower graphs).
The lower graph is a plot of cos 1, the first term in the regular perturbation series for y(1), and the
upper graph is a plot of cos [(I + 3¢/8)], the leading-order approximation to y(r) obtained from
multiple-scale methods. Both approximations, cos t and cos [(1 + 3&/8)], are correct up to additive
terms of order & but cos f is not valid for large values of t; when t = 160, cos t is a full cycle out
of phase with y(t). The multiple-scale approximation closely approximates y(t), even for large values
of .

and the zeroth-order solution (11.2.7) is
Yolt, 7) = 2R(0) cos [(0) + 3R*(0)r + t]. (11.2.13)

The initial conditions y(0) = 1, y'(0) = 0 determine R(0) and 6(0). The condi-
tion (0) = 1 becomes Yo(0, 0) = 1, ¥,(0, 0) = 0, ... From (11.2.3), y'(0) = 0 be-
comes (3Y, /21)(0, 0) = 0, (8Y, /2t)(0, 0) = —(8¥,/d7)(0, 0), ... In order to satisfy
these conditions, we must choose R(0) = 4 and 8(0) = 0. Therefore, the zeroth-
order solution is Y,(t, 7) = cos [t + §t]. Finally, since t = &,

y(t) = cos [¢(1 + 3¢)] + Ofe).  e—0+, e =0(1) (11.214)

and we have reproduced (11.1.11). In Figs. 11.2 to 11.4 we compare the exact
solution to (11.2.1) with the approximation in (11.2.14).

A higher-order treatment of (11.2.1) is not completely straightforward. When
more than two time scales are employed, there is so much freedom in the pertur-
bation series representation that ambiguities can result (see Probs. 11.5 to 1L.7).

11.3 EXAMPLES OF MULTIPLE-SCALE ANALYSIS

In this section we illustrate the formal multiple-scale technique that was
developed in Sec. 11.2 by showing how to solve four elementary examples. The
third and fourth of these examples are especially interesting because they show
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= AMAMAMAAAAAAAAAAAAAAAARAR .
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Figure 11.3 Same as in Fig. 11.2 but with £ = 0.2. Note that cos t is two cycles out of phase with y(t)
when t = 160.

= IAMAAMARARAAAARARARAANARARA
= VTV VTV TV
3= GMAAMAANMANAAAAANAARRAARAAARNL
e R

: VYV VVVV VYTV VY VUV UV

Figure 11.4 Same as in Fig. 11.2 but with ¢ = 0.3. Note that cos t is three cycles out of phase with
y(r) when t = 160.

how multiple-scale analysis can reproduce the results of boundary-layer and
WKB analysis.

Example | Multiple-scale analysis of a damped oscillator. Let us consider an harmonic oscillator
with a cubic ddmping term:

YHy+e() =0 y0)=1y{(0)=0 (11.3.1)

If £ > 0, the solution y(t) must decay to 0 as t — co. To prove this assertion, we multiply (11.3.1)
by ¥ and construct an energy integral similar to that in (11.1.8):

d|1 1
@ EU’}’ + Ey’l = —gly)* <0. (1132)
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This result shows that the energy 4(y')* + 4y is adecreasing function of t unless y'(t) = Ofor all .
In Prob. 11.8 it is shown that the energy must decay to 0 as t — oo and therefore that y(1) - 0 as
t — oo, [By contrast, when & < 0, the energy argument just given shows that (11.3.1) represents a
negatively damped system (like a self-propelled lawnmower that uses grass for fuel or a rocket
with vacuum-cleaner drive thag uses space dust for fuel) whose solutions grow explosively with ¢

Multiple-scale analysis may be used to study the behavior of y(t) for large t. We begin by
assuming a perturbation expansion for y(t) in (11.3.1) of the form

WO~ Yolt 1) + ¥yl 1) + o0 e 04,

where © = #t. Using (11.2.3) and (11.2.4) and equating coefficients of :” and &' gives two equations
which correspond with (11.2.5) and (11.2.6):

7Y,
-5?;+Yn=0. (11.3.3)
ay, 'y, (aYo)3
—_— = — | — 11.34
a T adr \ae ( )
The most general real solution to (11.3.3) is
Yolt. 1) = A(r)e" + A*(t)e " (11.3.5)
Substituting this solution into the right side of (11.3.4) gives
%y, ulq.d4 2 . dA* e
3;1—+ Y,=-¢ [2;-‘5 +3iARAT | e —2IF = 3i(A*)*A
+ied A — e Ay (11.3.6)

Since the solutions to the homogeneous equation (11.3.3) are e*" the solution to (11.3.6) 1s
secular unless the expressions in the square brackets vanish; in order that ¥, not be secular, we
require that A(r) satisfy the equations

dA
zfd— +3i4%4* =0, (11.3.7a)
T

- 2:'dli — 3i(4*PA=0. (11.3.7b)
dt

To solve (11.3.7) we set A(r) = R(t)e™", where R(t) and 8(r) are real. Substituting this
expression into (11.3.7) gives equations for R(r) and 6(z):

dR ) jd'_B B
dt iR, dt =0
= _._R.L 1L.3.8q
Therefore, R(t) = m_!m (11.3.84)
B(t) = 8(0). (11.3.8b)

R(0) and 8(0) are determined by the initial conditions y(0) = 1, '(0) = 0. These conditions
imply that Yo(0, 0) = 1, (8¥,/dt)(0, 0) = 0, whence R(0) = 1 8(0) = 0. Thus, to leading orderin g,

cos

_ e—0+, et = O(1) (1139)

YO~ i

This result implies that when & > 0 the solution decays like t~!'* for large ¢, and that whene <0
the solution becomes infinite at a finite value of ¢ approximately equal to —4/3e. Moreover, this
solution does not exhibit any phase shift (or frequency shift) to leading order in &. These qualita-
tive conclusions are verified numerically in Figs. 11.5 to 11.7.
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Figure 115 A plot of the exact solution to y" + y + e(y') =0 [y(0) = 1, y'(0) = 0] for £ = 0.3 [see
(11.3.1)] together with a plot of the envelope (1 + 3et/4)™ " of the leading-order multiple-scale
approximation to y(r) in (11.3.9). We have not plotted the full multiple-scale approximation to y(t)
because it is indistinguishable from the exact solution to within the thickness of the curve.
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_.3.0 -
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Figure 11.6 Same as in Fig. 11.5 except that ¢ = —0.02. Observe that the exact solution y(f) and the
multiple-scale approximation to it differ noticeably only when 1 is near the explosive singularity at

t= —4/3 = 663

Example 2 Approach to a limit cycle. The equation

Y +y=ey - 3¥)PL  ¥0)=0,y(0)=2q {11.3.10)

known as the Rayleigh oscillator, is interesting because the solution approaches a limit cycle in
the phase plane (see Sec. 4.4 and Example 3 of Sec. 9.7). Multiple-scale analysis determines the
shape of this limit cycle and the rate of approach of y(t) to the limit cycle.

As in Example 1, we assume a perturbation expansion for y(t) in (11.3.10) of the form
y(t) ~ Yolt, 1) + e¥,(t, 1) + == (e — 0+), where t = &t. Next we substitute (11.23) and (11.24)
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Figure 1.7 A comparison of the multiple-scale approximation and the exact solution to y" +y
+ e(y'y = 0[y(0) = 1, ¥'(0) = 0] for & = —0.1. The approximation to y(t) is extremely accurate except
near the singularity at t = —4/3 = 13}.

into (11.3.10) and equate coefficients of ¢” and ¢':

#,

oy ¥y, (113.11)
2y, 3y, v, 1(&1'.,)’

Ny o 8H 0k 10T 113.12
e Tt Tl (113.12)

The solution to (11.3.11) is again
Yolt, 1) = Alr)e" + A*(r)e ™"

We substitute this expression into (11.3.12) and observe that secular terms in ¥y(t, t) will arise
unless the coefficients of e*” on the right side of (11.3.12) vanish. Thus, the conditions for the
absence of secular behavior are

A
—Zid— +id —iA*A* =0, (11.3.13a)
dt
-
2id: — A 4 i(A*) A =0, (11.3.136)
T
To solve (11.3.13) we again set A(t) = R(r)e"™", where R and 8 are real. The equations for R
and & are
2R _r_ R (11.3.14a)
dt
P o (11.3.14b)
dr
The solutions are
R(r) = R(O)fe~* + R*O)1 — ™))" ¥2, (11.3.15a)

(1) = 0(0). (11.3.15b)
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The initial conditions y(0) = 0, y(0) = 2a require that R{0) = a, 6(0) = - {n. Thus, to leading
order in &, the solution to (11.3.10) is

© 2asin t
Observe that for all values of a, this approximate solution smoothly approaches the limit cycle
¥(t) = 2 sin t as t — co. This limit cycle is represented as a circle of radius 2 in the phase plane of y
and y'. If @ < 1, the solution £pirals outward to the limit cycle, and if a > 1, the solution spirals

inward. A comparison of these asymptotic results and the numerical solution to (11.3.10) is given
in Figs. 11.8 to 11.10.

e—0+, 1=et=0(1) (11.3.16)

Example 3 Recovery of the WK B physical-optics approximation. Let us consider the oscillator
¥ (1) + w?(er)y(r) = 0. (11.3.17)
Note that the frequency w(et) is a slowly varying function of time ¢.
It is easy to solve (11.3.17) using the WK B approximation. We simply introduce the new
variable t = &t to convert (11.3.17) to standard WKB form:

d}
£ ﬁ + wi(t)y =0, (11.3.18)

The physical-optics approximation to (11.3.18) [see (10.1.13)] is then

(1) = [w(x)] " exp ti’c"Jl m(s}dsl. (11.3.19)

Now, let us rederive (11.3.19) using multiple-scale theory. The procedure requires a bit of
subtlety. Suppose we naively assume that there is a linear relation 1 = &r between the appropriate
long and short time scales. Then, letting y(t) = Yy(t, t) + eY,(t, t) + -, we obtain

2y,
St =0 (11.3.20)
a*y, Y,
e tei= -252 (113.21)
3.0 _ :
v Multiple-scale analysis )
20k prediction of envelope Exact solution y(x)
) of y(x)
1.0
0 f
_I_U b
_2.0 -
=3.0 | ]
: S 10w 157

Figure 11.8 Approach to the limit cycle of the Rayleigh oscillator y" + y = [y’ — $(¥')’] [»(0) =0,
'(0) = 2a] [see (11.3.10)], where we have taken £ = 0.2 and a = 0.05. The oscillatory curve is the
numerical solution to the differential equation; the envelope is the prediction of multiple-scale
analysis [see (11.3.16)]. The two curves agree to better than their thicknesses.
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Figure 119 Approach to the limit cycle of the Rayleigh oscillator (11.3.10) (see F%g 11.8) l-!ere,
¢ = 0.2 and a = 2.0. Except for a small discrepancy at t = n/2 the exact and approximate solutions
have nearly perfect agreement.

Inward spiral

2.5

dy _\
dr
7o Outward spiral
0.5
. (¢
3

1 1 :‘\\1 1 1
-1.5 -1.0 ty/n.s 1.o] 1.5

Limit cycle

Figure 11.10 A phase-plane plot (y versus dy/dr) of three solutions to the Rayleigh oscillalm_- (11.3.10)
with & = 0.2. Shown are the limit cycle solution which is approximately a circle of radius 2, _the
solution on Fig. 11.8 (spiraling outward toward the limit cycle), and the solution on Fig. 11.9 (spiraling
inward toward the limit cycle).



558 GLOBAL ANALYSIS

The solution to (11.3.20)is y, = A1) + A*(t)e”"““*. Substituting this expression in the right
side of (11.3.21) gives

ay, : e | 4 ) dw
F* + wit)¥, = =2i¢ E{Aw] + ;mwz

d d
+ 2ig~wton L?r (A*w) - r'td'w£ . (113.22)

The presence of the variable t in the square brackets implies that we cannot eliminate secularity
without setting A(t) = 0 (see Prob. 11.9).

This failure illustrates a crucial feature of multiple-scale perturbation methods. If the long-
scale variable t is linearly proportional to the short scale ¢ (t = et), then multiple-scale methods
will fail unless the frequency of the unperturbed oscillator is a constant; it must not vary even on
the 1 scale. Therelore, before we can apply multiple-scale methods to the oscillator (11.3.17), we
must find a transformation which converts (11.3.17) to a fixed-frequency oscillator with a small
perturbation term:

¥ + y + e(some function of y) = 0. (11.3.23)
With this in mind, we introduce a new time variable T:
T =/{1) (11.3.24)
We will try to choose f(t) to convert (11.3.17) to the form in (11.3.23). From (11.3.24) we have
djde = £(t) d/dT, d*/de* = *(t) d/dT + [ f(t)]* d*/d T Thus, (11.3.17) becomes
i ") d whet
T o

iy =0
ey
We achieve the form in {11.3.23) if we choose f*(t) = w(et). Thus,

T=f(t)= J’ wfex) dx =~ J wls) ds. (11.3.25)
In terms of T the differential equation now reads
d*y wit) d
= —y=0 113,
dTZ+y+£w‘[f)dT'v 0 (11.3.26)

This equation may be solved using multiple-scale methods. We expand
y=Yo(T, o) 4 eY(T. 1) 4+ . (113.27)

Using the relation dt/dT = ¢ dt/dT = &/['(t) = &/w(r), we substitute (11.3.27) into (11.3.26) and
obtain, as usual, a sequence of partial differential equations:

‘%::g £ Y, =0, (11.3.28)
2 p 2
A ‘=_::,_‘(‘r’)f)_";_(3u;_1§_t. (11329)
Substituting the solution
Yy = A(r)eT + A*(c)e™"" (113.30)
of {11.3.28) into the right side of (11.3.29) gives
aty, 2d4 wle)

Y, = —i¢T |- —
! ! ’t.u dt +w3(t]

+ ie=iT [i da* '(r) A*

il .
aT? w dr +w’[t}
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To eliminate secularity we must require that the expressions in the square brackets vanish
for all 7:

d_-A - _w'{t)

dt w(t)
dA® wl(t)
I _a)[r) an

The solution for A(t), apart from a multiplicative constant, is 1//w(r). Inserting this solution
into (11.3.30) gives :
1

Y, = ——— et
)
and using the expression for T in (11.3.25) gives
1 it
Y, = ——=exp | +- w(s]'d-‘l‘
? Jolt) 8J

We have reproduced the WKB result in (11.3.19).

Example 4 Solution of a boundary-layer problem by multiple-scale perturbation theory. Consider
the elementary boundary-layer problem

ey" +ay +by=0, y0)=4A,y(1)=B,a>0, (11.3.31)

where a and b are constants. We know (see Fig. 9.4) that the solution to this problem has a
boundary layer of thickness & at x =0 and is slowly varying in the range e« x <1 (e=0+)
Thus, there are two natural scales for this problem, a short scale ¢ which describes the inner
solution in the boundary layer and a long scale x = & which describes the outer solution. Note
that (11.3.31) is written in terms of the long scale. If we wish to use multiple-scale theory we must
rewrite (11.3.31) in terms of the short scale 1 in order to eliminate secularity on the long scale:

d*y  dy
— =2 v eby=0. 11.3.32
ety ( )

Assuming that y(r) in (11.3.32) has a perturbation expansion of the form y(t) = Yylr, x) +
eY,(t, x) + -+, we obtain the following sequence of equations:

Y, Y,
g -—-—arz +GE=0' (11.3.33)
Y, ay, %Y, Yy
1. ! bl DU, Tl M Y Y 11.3.34)
E rax “oax ® (

The solution to (11.3.33) has the form

Yolt, x) = A (x) + Az(x)e™™". (11.3.35)
Substituting (11.3.35) into (11.3.34) gives
#y, o, , e .
e —[ady(x) + bA,(x)] + [ad;(x) — bA;(x)]e™™

The right side of this equation is a solution to the homogencous equation in (11.3.33) and
therelore gives rise to secular terms. To eliminate the secular term that grows like ¢ (we know
from our study of boundary-layer theory that no such term is present in leading order), we set

ad)(x) + bA,(x) = 0.
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Thus, Ayfx)=C e
where C, is a constant.

Note that if ad%(x) — b4 ;(x) # 0, then there will be a secular term of the form te™* which
does not occur in leading-order boundary-layer theory. It is not necessary to eliminate this
secular term because it decays exponentially with increasing t.

To leading order in & we now have

W)= Cre™™ 4+ Ay(x)e™™ + Ofe), 0+, (11.3.36)

Recall that ¢ = x/e. Therefore, for all x > 0, it is valid to replace A,(x)e™*"* by A,(0) ~* + O(g)
(e = 0+). Setting A,(0) = C,, (11.3.36) becomes y(t) = C, e + C, e~ + Of) (& — 0 +).
Finally, we impose the boundary conditions at x = 0 and x = 1 and obtain

y(t) = Be"e™""* 1 (A — Be)e™*"* + Ofe).  &—0+,

which agrees with the uniform leading-order boundary-layer solution in (9.1.13).
If @ and b in (11.3.31) vary with x, it is necessary to perform a transformation of variable like
that in Example 3 before one can use multiple-scale perturbation theory (see Prob. 11.12).

() 11.4 THE MATHIEU EQUATION AND STABILITY

The Mathieu equation

d?y
F+{a+2£ cos t)y =0, (11.4.1)

in which a and ¢ are parameters, is an example of a differential equation whose
coefficients are periodic. The general theory of linear periodic differential equa-
tions, which is known as Floquet theory, predicts that there may be solutions to
(11.4.1) for some values of a and ¢ which are unstable (grow exponentially with
increasing t). As a particularly nice application of multiple-scale perturbation
theory (which is valid when ¢ is small) we find the boundaries between the regions
in the (a, &) plane for which all solutions to the Mathieu equation are stable
(remain bounded for all t) and the regions in which there are unstable solutions.

Elementary Floquet Theory

We consider here just the case of second-order linear ordinary differential equa-
tions having 2n-periodic coefficient functions. We will make use of two facts. First,
since the coefficients are 2n-periodic, we know that if y(t) is any solution of such
an equation, so is y(t + 2m). Second, since the equation is linear and second order,
any solution y(t) may be represented as a linear combination of two linearly
independent solutions y,(t) and y,(t):

y(t) = Ay,(t) + By,(t). (11.4.2)

Since the coefficients of the differential equation are 2z-periodic, y“i'{r + 2m)
and y,(r + 2) are also solutions, so they may be represented as linear combina-
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tions of y,(t) and y,(t):
yilt +2m) = ay,(£) + Byalt).  yalt +27) = yy, (1) + Oy, (t).
Thus, for y(t) in (11.4.2) we have
y(t + 2m) = (Aa + By)y,(t) + (AP + Bd)y.(1)
= A'y,(t) + By, t) (11.43)

The relation between the coefficients 4 and B and A’ and B’ in (11.4.3) involves

matrix multiplication:
! A

Now let us choose (4, B)to be an eigenvector of the 2 x 2 matrix in (11.4.4). If
the corresponding eigenvalue is 4, then A" = 14 and B’ = 1B and

y(t + 2m) = Ay(t). (114.5)

Thus, if we introduce u = (In 1)/2n so that 1 = *™, then we see that for all t, y(r)
takes the form

y(e) = e“olt), (11.4.6)

where ¢(t) is a 2n-periodic function: ¢(t + 2r) = ¢(t). We say that y(t} in (11.4.6)
is an unstable solution if Re u > 0 because y(t) grows exponentially with t. We say
that y(t) is a stable solution if Re u < 0.

Stability Boundaries of the Mathieu Equation

The Mathieu equation (11.4.1) is special because it is even under the reflection
t = —t. Thus, if y(t) is a solution of the Mathieu equation, so is y(—t). Therefore,
for both solutions e*@(t) and e~ *¢(—t) of the Mathieu equation to be stable, we
must have Re y = 0.

There are well-defined regions of the (g, €) plane for which all solutions of the
Mathieu equation are stable. In Fig. 11.11 we indicate those regions (white ) where
all solutions are stable and those regions (cross hatched) for which there is an
unstable solution. The boundaries between regions of stability and instability are
called stability boundaries. Our main objective in this section is to find approxi-
mate expressions for the stability boundaries which are valid as ¢ - 0.

Casg 1 Perturbative investigation of stable solutions. Here we assume ‘that ais
positive and that a # n*/4 (n=0, 1,2,3,...) We will show that }:{r) is stable
for sufficiently small &. We assume a regular perturbation expansion for yl(t):

¥(£) = yolt) + ey, (1) + &2ya(t) + - (114.7)
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Fignre ll:ll A plot of the stability boundaries of solutions to the Mathieu equation (11.4.1). In the
white regions ol'llh: (a, :]Iplanc all solutions of the Mathieu equation are stable, while in the
cross-hatched regions there is an unstable solution. When ¢ = 0, the cross-hatched regions meet the
aaxisata=n*4(n=0,1,2,...)

Substituting y(t) in (11.4.7) into the Mathieu equation (11.4.1) and comparing
powers of ¢ gives a sequence of equations:

d?y

€ F;’ +ay, =0, (11.4.8)
dzy "

gl _dr_; +ay, = —2y, cos I, (11.4.9)
d*y

e —5 +ay, = —2y, CoS I, (11.4.10)
dr

and so on.

‘ The solution to (11.4.8) is secular (grows linearly with time) only ifa = 0.
Since we have assumed that a > 0, we have

Yolt) = 4 exp (i/at) + cc,
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where c.c. stands for the complex conjugate of the exhibited terms. Substitut-
ing this result into (11.4.9), we have

% + ay,(t) = —Aq exp li(/a + 1)] — A exp li(y/a - )] + c.c.

Now, secular terms appear only if \/E tl=% \/E. But this can only happen
ifa=4%

In subsequent orders of perturbation theory the solution will be secular
only if a = 1,9/4,4, ... (see Prob. 11.18). But by assumption a # n*/4. There-
fore, there is no secularity. After solving to all orders in perturbation theory,
we will have

y(t) = exp (iv/at)b(t) + exp (—i/at)g*(t).

where ¢(t) = ¥, &'A, ¢™, which is a periodic series in t. We conclude that since
(11.4.7) is a regular perturbation series, the series for ¢(t) converges for
sufficiently small ¢ to a periodic function. Thus, all solutions y(t) are stable for
a >0, a # n/4 and sufficiently small ¢. Figure 1111 shows that this predic-
tion is correct.

Case I Perturbative investigation of unstable solutions for a near 1 To in-
vestigate the behavior of solutions near a = § and ¢ near 0, we treat g as a
power series in &:

a=i+ae+ae?+-.
Thus, the Mathieu equation becomes

d*y

pri }2+(a1+2006£}5+-" y=0. (114.11)

We will look for nongrowing solutions and we specifically hope to find the
stability boundary (the edge of the shaded region on Fig. 1L.11).

We already know that a naive perturbation expansion will yield secular
terms. Thus, we will use a multiple-scale expansion:

y(t) = Yolt, 7) + eXy(t, T) + -, (11.4.12)

where 7 = ¢t. Substituting (11.4.12) into (11.4.11), recalling (11.2.4), and com-
paring like powers of ¢ gives

Y, Y,

0. 24 2= 11413

¢ =3 +3 0, ( )
Y, v, 3y,

?116—1;'4-?1: —(ﬂl+2C05 I)}E—Za“a—{; [114.14)
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The solution to (11.4.13) is ¥, = A(t)e"'* + A*(r)e™"2. Substituting this
result into (11.4.14) gives

PY, 0 + Y, 4= —[a, A(r) + iA'(1) + A*(1)]e"? — A(r)e*"? + cc.
To eliminate the terms which cause Y, to exhibit secular behavior, we take
iA'(t)= —a, A(t) — A*(x), —IiA¥(t) = —a, A*(r) — A(1).

This system becomes simpler if we decompose A(z)into its real and imaginary

parts:
A(t) = B(r) + iC(z).
The equations for B(z) and C (z) are
B(t)=(—a, + 1)C(z),  C(z)=(a, + 1)B(z).
Thus, the equation for B(t) is
B'(t)= (1 — a})B(z),
and B(t) has solutions of the form
B(tr) = K exp (+/1 —aj 1), (11.4.15)
where K is a constant.
Instability (solutions growing exponentially with 7) occurs if /1 — af is
real. Thus, |a,| < 1 gives unstable solutions and |a, | > 1 gives stable solu-
tions. We conclude that near & = 0, the stability boundary is the pair of

straight lines
a=i+e+ 0 -0, (11.4.16)

which intersect the a axis at 45° angles. This conclusion is verified in Fig.
11.1L

Higher-Order Corrections to the Stability Boundary near a = }

We now set a, = 1 and pursue our analysis to higher order to determine the
location of the stability boundary more precisely than in (11.4.16). This analysis is
particularly interesting because when a, = 1 there is apparently a new time scale
for the problem. To see why, suppose we set a; = 1 + a, ¢ in (11.4.15). Then B(1)
becomes approximately K exp (+./—2a,e1)= K exp (/ —2a, &*t), which
suggests that we must introduce a new time scale ¢ = £¥/2t.
We therefore substitute

a=1+e+a¢ (11.4.17)

into the Mathieu equation (11.4.11), set ¢ = £, and expand
y = Yo(t, 6) + £Y2Y,(t, 0) + eY5(t, 0) + 2 Y5(t, 0) + 2 Yot 0) + .

(11.4.18)
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We have expanded y in powers of ¢'/? rather than ¢ as in (1 1.4.12) because ¢ will
inject powers of /¢ into the perturbation series. Note that it is necessary to go to
fourth order in powers of /¢ to determine a,!
Next, we substitute
‘_i.z.z_-az_yo + Ula_zﬁ +862Y1
dr* — ét? ar? at?

2Y, &, 2y, .3y, )
2 |¥ t3 0 2
te (aﬁ”a:aa)” (a:*”a:aa M

into the Mathieu equation (11.4.11) and equate powers of ¢'/*:

Y, | - .
.- _Y, =0, soYo=Aylo)e"? +cc;
a4
a3y, 1
12.2 7L L2y =0, soY, =dA/c)? +cc;
at T4t 1= Ao} (11.4.19)
a2y, 1
s‘:—a?—zﬁ-ZYz = —(1+2cost)Y,
= —Agel" — Age*h? — A% + cc.
To remove the secularity on this level we take Ao = — Ag, so that Ag(o) = iB(o)
with B real. Now we can solve for Y;:
Yy(t, 0) = Ay(0)e™? + §A4(0)e*"* + cc. (11.4.20)
Equating coefficients of £*/% gives
7Y, 1 %Y,
32,V 13,y — o _ Y,
et +4Y, 26:86 (1 +2cos t)Y,

= I-E:_oe.-u: — Al ein'! _ A:emz _ Alelix.fz + c.c
g

Eliminating secularity on this level gives i(d4, /do)= — A, — A% = —dB/do, s0

dB

Finally, using (11.4.19) and (11.4.20), we equate coefficients of el

62Y4 1 -dAl itf2 it/ 2 12 SE&JZ_I 3itf2
Ezj—a—!z—+3Y4= _lTe” —AZB“ —A:é —Aze iAoe

_%Ao eSiﬂl — %Aoe‘”z - a, AU ewz +cc.
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Setting all terms which can give rise to secularity equal to zero gives

dA dA?
—i—L=A, + A% + YiB + a,iB, :-&?‘ =A% + A, — iB - a,iB.

do
From these equations we have
_!-é[Al + AY)

s = iB + 2a,iB.
Letting A, + AY = C, C real, gives
dB dc
E_C‘ T = (1 + 2a,)B.
Finally, eliminating C gives
d*B
&-c'r—z = [281 + I)B,

whose solution is

B(o) = (constant) exp ( + 0./2a; + 1)

We conclude that we have stability when a, < —4 and instability when a, > —4.
The higher-order stability boundary is thus given by

ale)=1+e-42+0(), &—0.

For further analysis of the Mathieu equation see Prob. 11.19.

(11.421)

PROBLEMS FOR CHAPTER 11

Section 11.1

1L1 The pendulum of a grandfather clock swings to a maximum angle of 5° from the vertical. How
many seconds does the clock gain or lose each day if the clock is adjusted to keep perfect time when the
angular swing is 2° from the vertical?

11.2 Show that the most secular term in y, ., in (11.1.5) arises from the most secular term in y,.
113 Show that the coefficient of x* in the Taylor expansion of e*e*e ™ is ¥,y 4ya (— 1)'/(i! k! 11).

Section 11.2

11.4 There is an alternative to the method discussed in Sec. 11.2 to eliminate secular terms. In the
hod aging we consider the integral I = [3* Y,(3'Y, /dr* + Y,) dt, taken over the short time-

scale period of oscillation of (11.2.1) ¥, and ¥, are defined in (11.2.2). Throughout this integration the
long time scale t remains fixed, and thus Y, and ¥, should be periodic in ¢.

(a) Show that if ¥, and ¥, are periodic in ¢ and (11.2.2) is uniformly valid, then I = 0.

(b) Use (11.2.6) and the requirement that / = 0 to derive (11.2.8) and (11.2.9)
115 We know that the solution to Duffing’s equation. (11.2.1) dy/di* + y +ey* =0 [¥(0) =1,
¥'(0) = 0] has the form y = cos (wt) + Ofe) (e — 0+ ), where w? — | = a& + be* + - represents the
frequency shift caused by the gy* term. Let us rewrite Duffings equation as
d*yjdt* + w'y + ey — aey — be*y - = 0. .

(@) Adjust a so that no secularity appears to first order in the perturbation expansion of y. (Treat
w® as a parameter in this calculation.)

(E)

(D)

(E)
(E)

m
(U]

(D)

(D)

m
m
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(b) Adjust b so that no secularity appears to second order in the perturbation expansion of y.

(c) From your determination of a and b, compute w,; and w, in the expansion of w: w =1+
W, €+ wye? + -, Show that , = § and w, = — &%
11.6 Rederive the result in Prob. 11.5 by integrating the separable differential equation in (11.1.8) over
one period T: | dy/\/T — y* + &(1 — y*)/2 = [ dt = T. The relation between the frequency w and the
period T is wT = 2. Show that w = n/2, where I = {57 d6/,/1 + &(1 + sin” )2, and expand  asa
power series in .
11.7 Perform a multiple-scale analysis of the Duffing equation (11.2.1) to second order in & That is,
take three terms in the expansion (11.2.2): p(t) = Yo(t, 1, @) + e¥y(t, 1, @) + 2 Y;(1, 7, ¢) + -~ , where
t=gt, 0= et

(a) Derive the partial differential equations satisfied by ¥,, ¥,, ¥;.

(b) Show that first-order multiple-scale analysis gives Y, = A(z, o)¢" + c.c., where A(r, o) =
R{akﬂjl!u!tﬂ ool Also show that Y,. = %R](ﬂ‘ﬁ’i[” IR 2 + 8] B(t, ﬂkil +ce

(c) Show that second-order multiple-scale analysis does nor determine R(s) and 6(c) umiquely.
However, if it is assumed that B is a constant, then it is possible to reproduce the second-order results
cited in Prob. 11.5 and rederived in Prob. 11.6. Can this assumption be weakened?

(d) Show that third-order multiple-scale analysis does not remove the ambiguities encountered
in second order.
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11.8 Use the energy integral (11.3.2) to show that all solutions to (11.3.1) decay to 0 as t = + 0.
11.9 Show that demanding that secular terms on the right side of (11.3.22) vanish leads to the conclu-
sion that A(r) = 0.

1110 Consider the nonlinear oscillator d?y/dt® + w?(et)y +ey* =0 [y(0)=1, y'(0)=0]} Use
multiple-scale perturbation theory to find an approximation to y(r) which is valid on the &t timne scale.
11.11 The Van der Pol equation is given by d*y/dt* + y — &(1 — y*) dy/dt = 0. For arbitrary initial
conditions the solution to this equation approaches a limit cycle. Find the approach to this limit cycle
using multiple-scale perturbation theory.

11.12 Consider the boundary-layer problem ey"(x) + a(x)y'(x) + b(x)y =0 [y(0)= A4, y(1)=B,
a(x) > 0]. Show that naive multiple-scale perturbation theory, in which the short time scale is t = x/e
and the long time scale is x, breaks down. Find a suitable transformation for which the method of
multiple scales does work and reproduce the result in (9.1.13)

11.13 Before solving this problem read Example 4 of Sec. 7.2. Now consider an oscillator governed by
the equation ¥ + y — ety = (. Assume that y(0) = 1 and that }{0) has been chosen so that y — 0 as
t— 0.

(a) Find the leading asymptotic behavior of y(t) for large positive values of t.

(b) Using regular perturbation theory, obtain an approximation to y valid to first order in
powers of &. How large may ¢ be before secular behavior appears.

(¢) Use multiple-scale theory to eliminate this lowest-order secular behavior in y.

Clue: To do this you must consider three time scales: 1, T, = \/z t,and T, = &r. Then consider the
diferential equation y+y—./e T,y=0 and try a perturbation serics of the form
)= Yole, T, T) + V(e Ty, ) + .

Show that for times t = O(e™*2) the effect of the perturbation term is to make the frequency of
the oscillator time dependent. Find the frequency of the oscillator to first order in powers of &

(d) Find the exact solution to the differential equation and use it to verify the result of part (c).
11.14 Use multiple-scale perturbation theory to find a leading-order approximation to ¥ +y +
eyy? =0 [p(0) = 1, }(0) = 0, £ > 0]

11.15 Consider the following perturbation problem: d*u/dt* + u = gu? (¢ — 0) with initial conditions
u(0) = 2, w'(0) = 0.

(a) In what order of ¢ does a secularity first appear in the regular perturbation solution for u(t)?
Find wu(t) to that order in ¢ in this expansion.

(b) Introduce a suitable long time scale to eliminate the secularity found in part (a).
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(¢) Find the zeroth-order solution valid on the long time scale. Find the amplitude change and
frequency shift.
11.16 Cheng and Wu considered the following simple differential equation that illustrates the limita-
tions of WKB and multiple-scale perturbation theories: y" + e **y = 0 [y(0) = 0, ¥{0) = 1].

(@) Show that the exact solution is

=2 o ) - ) )

(b} Show that leading-order WKB and multiple-scale (MS) analysis give the approximation
2
Ywia(x) = yus(x) = &*'* sin E(l - "_"ﬂ)l-

(¢) Show that the error in ywxs and yys is small only if g2 <« | (e =0+ )

(d) Show that the reason for the breakdown of the approximations as x — + oo is that there is a
turning point of the differential equation at co. Argue that when x = O[(1/e) In (L/e)] the character of
the solution changes. How does it change?
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11.17 Prove the following result in Floguet theory. If the eigenvalues of the 2 x 2 matrix in (11.4.4) are
degenerate, then there are solutions y,(t) and y,(t) with the properties that y,(t) = ¢*'¢(t), v;(t) =
[t(e) + w(r)]e", where () and y(r) are 2n-periodic.
11.18 Show that the perturbation expansion (11.4.7) has secular terms if and only ifa = n*/4 (n = 0, 1,
2,...) When a = n’/4, secularity appears in nth-order perturbation theory.
11.19 Find the next term in the expansion (11.4.21). Note that when a, = —1, the appropriate long
time scale is £%t.
11.20 It might seem that A, = = A} in (11.4.19) gives only one solution to the Mathieu equation
(11.4.1). Can you find a second linearly independent solution in the context of multiple-scale analysis?
11.21 (a) Consider a pendulum of length L whose pivot point is oscillating up and down a distance |
with frequency w according to [ cos (wt). Show that if the pendulum undergoes a small angular
displacement 8, then 8(wt) satisfies the Mathieu equation (11.4.1) in which 5 = wt, 2¢ = /L, and
a= +g/(w?L) if the pendulum is hanging downward (upward).

(b) Explain the physical meaning of the instabilities for a near n/4 when the pendulum is
hanging downward. (See Fig. 11.11.) This is a parametric amplifier.

(c) Show from Fig. 11.11 that for certain ranges of w the pendu]urn undergos stable oscillation
when it is hanging upward. Build a gadget to d ate this

APPENDIX

USEFUL FORMULAS

The world is full of obvious things which nobody by any chance ever observes.

—Sherlock Holmes, The Hound of the Baskervilles
Sir Arthur Conan Doyle

AIRY FUNCTIONS
1. Differential equation:
y' = xy.

Solutions are linear combinations of Ai (x) and Bi (x).
2. Taylor series:

Ai (x}= 3"]{3 x!n N 3_‘” a0 xﬂki‘l
09! Tn +3) Won!' Tin+3)°
@ 3n In+i

Bi (x) =3V x +3" 552 x

Z I T(n+3) On! T(n + 3)’
Ai (0) = Bi (0)/\/3 = 3"3/T(3) = 0355 028,

Ai' (0)= —Bi' (0)\/3 = =37"/I'(}) = —0.258 819.
3. Functional relations:
Al (2) + @ Ai (w2) + 0 Al (0z) =
Bi (z) = iw Ai (wz) — iw?* Al (0?2),
where w = ™ %2,
4. Relation to Bessel functions:
Ai (z) = n /23 K ;5(22%7%/3),
Bi (z) = \/2/3 [1_,3(223%/3) + 1,,5(22%3/3)].
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5. Asymptotic expansions:

@
Ad {2) ~ %TI- lflz-lf’de—ZJJHIJ Z (__lrcuz-llfl‘ z— 00; Iarg ZI <m,
n=0

@O
Bi (z) ~ 1277 118253 y ez~ 2, 2 c0; |arg z| < i,

. . |2
Ai (2) = wy(z) sin {3("2)’“ +j—;] ~ wale) cos [3 (~22 +§],

2
i wy(z) cos [3[—2}3“ +;],

Bi (2) = wafz)sin [3 (~ )"

wi(2)~ (=) Y ez zﬂoo;;<argz<5;,
n=0
wilz) ~ V3 (=2)" " Y ey z- 0 s <argz< 5—“,
n=0 3 3
_@n41)2n+3) - (6n—1)
u 144"n!
_ 13" T+ Hrn+ 1)
21! B — =1

6. Integral representations:

Ai (x) = ﬁ L cos (% 2+ xt) dt,

. 1=
Bi (x) = - L [e"”““ + sin (% £+ xc)]dr.

MODIFIED BESSEL FUNCTIONS

1. Differential equation:
X2y 4 xy — (x4 vy =0

Solutions are linear combinations of I,(x) and K,(x).
2. Frobenius series:

1 L (l.xlr
) = (5") LT ey 7 1)
rta'_,,{.ac)— 1,(x)

- , if v is nonintegral,
2 sin v

K,(x)=
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e )4 E

x\" Z 1 1
+(—1)’(5) Z “’ Pyt 2{k+1)
1 1 (¢
+2{k+2)+"'+2(n+k}‘kz(u+k)!‘

where the sum Y24 is absent when n = 0.
3. Functional relations:

I,(z) = ii K, (ze

Five

K,(z) = 2 cos (nv)K, (ze-“'} K (ze**").

4. Asymptotic expansions:

n 1/2 . -] o 3
K,(z}'v(g) e Zoc,,z .,  z— 0] |argz|<in,

I1(z) ~ (2nz)~ V2 Z (=1ye,z™" +i2mz) ™2™ "™ 3 ¢, 27",
n=0 n=0
s o0; —im<argz <im
z—>00; —5T<arg 5™
(4v? — 12)(4v? — 3%)@v? = 57) - (v — (2n - 1))
= g 3 =1L

5. Integral representations:

1" sin (vA) [° _, comiow 1
I,(z)=;L e‘“'cos{vr}dr—-—:—)L gmEcmh dt,|argz|-<§x,

- 1
K,(z)= L e == cosh (vr) dt, |arg z| < ;™

6. Difference equations [y,(x) is either I,(x) or K,(x)]:
2v
Vo-1(x) = prar(x) = 1lx)

2y,(x) = yo-1(x) + Yoaa(x),
Io(x) = I;(x),
Ko(x) = —K;(x).

7. Generating function: -
eei=Iofz) +2 Y Li(z) cos (Kt}
k=1
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BESSEL FUNCTIONS

1. Differential equation:
x;yﬂ + xy' + (xz — v?)y =0

Solutions are linear combinations of J (x) and Y,(x).
2. Frobenius series:

@ __]_xZ
1) = ey T r([n‘; L 5
Y (x)= {{\l_w:“i__l?‘:};____;.h(r} if v is nonintegral,
K =2 in () + W) - (9 3 O gy
1 ! 3 l+i4 L. ! 1
—;{xrkgo +37+3+ +E+m
1 1| (=h)

M) TP Iy T

where the sum Y724 is absent if n = 0.
3. Functional relations:

- » n
J (2) = &2 (ze™ 172, -y <agzsm,

Y(z) = ie" "] (ze71"?) — f—[e""""”K,.{:e""“}. —g <argz<m

4. Asymptotic expansions:
2 1/2 12
J(z)= wl(z)(;) cos (z — dvm — Ln) — wy(2) (—) sin (z — dvm — §m),
+4 nZ

o) = wale)[ 2 cos  — dvm = 4m) + wi@) 2 sin e~ dor — e,

a0
wy(z) ~ ZU{_I)"‘-‘Z-Z_Z"| z—o0; |argz| <m,
=

o
walz)~ ¥ (= 1)epe 2727, z—co; |argz| <m,

n=0
(4?2 — 12)(@v? — 3%) - (492 — (2n — 1)
= ! g»)-nl(v { )]‘ ¢ =1
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5. Integral representations:

J(z) = ! [ cos (zsin ¢ — ve) dt _sin (v) | eTEsinhi=v gp argz| <im,
oy n ‘0 E
L, " 1 ™ .
Y.(z) =1 | sin(zsint—ve)de—=| [e"+e " cos (va)le """ dt,
L LN
|arg z] <im
6. Difference equations [y,(x) is either J,(x) or Y,(x)]:
2v
Y- l.(x} + Vet I.{x] = ;y-(x}'
z.vl(x] =V~ l{x) - vk‘+l{x}'
olx) = —Jilx),
Yo(x)= — Yi(x).
7. Generating function:
etlt “uyniz _ Z !le{Z).
k=-m
8. Other differential equations:
(@) Y +alx* "ty =0,
y = /x[ad 1 (2ax2 k) + BY, u(2ax42/k)).
dln .
(b) = (e,

y = x"?[a],(2awx"?) + BY,(2awx"?)],

where w" = 1.

PARABOLIC CYLINDER FUNCTIONS

1. Differential equation:
V+v+i-xy=0

Solutions are D,(+x) and D_, _ (% ix). Only two of these functions are linearly

independent.

2. Taylor series:
1

2n+
2n nl!221v+1l.f2 @ 62"+1X"

1,',':I.a‘22r.f2 @ QgpX
r-%) % @n+1)!°

D,(x)= -1 ,5 (@2n)! -

where ag=a, = 1 and a,, ; = — (v + 3)a, + in(n — 1)a,_,.
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D,(0) = n'*2"2/T(} — 1v).
D;(0) = — /220 V2/P(—4v).

3. Functional relation:

(2n)"2

D,{z}: e"“‘D‘,[—z] + m?‘h+”u20_‘,_l(-—i2).
4. Asymptotic expansions:
D(z)~ze ™ ¥ (—1Yfcz7 2, z—00; |arg z| < 3n,
n=0
o o 21!}”2 . L
D\J:Z}""' 2'e 24 -1 c“z—ln — _{_____en(vz-'\'—lezlf-l d z-le
nzﬂ{ y I(=v) ..Zo " ’
Z— 00, 1 < ar < 5
i gz zﬂ,
viv=1)--(v=2n+1
Cp = ZHE’I' )a Cp = L

(v+ 1) v+2)- (v+2n)
d” = Ll
2"n!
5. Integral representation:
2 1, = 2/
D,(x)= \/:e" /e J e "2t cos (xt —vm/2)dr, Rev> -1
T 0
6. Difference equations:
xD,(x) = Dysy(x) + (v + HD, 4 (x),

Di(x)= —xD,(x) + (v + 3)D, -, (x).
7. Relation to Hermite polynomials:

D,(x) = He,(x)e "%,

dozl.

GAMMA AND DIGAMMA (PSI) FUNCTIONS

1. Integral representation:

r(z}:j t-le~'dt, Rez>0.
1]
2. Difference equation:

I(x + 1) = xI'(x).
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3. Special values:
ro)=1r¢)=x T+ 1)=n.
4. Stirling’s asymptotic formula:
' 1 1 139
Fle) ~ (/e 2m/z |1+ 15, * 98822 ~ 518402~ [
z—oo0; |argz| <m
5. Other formulas:
[(z)0(1 — z) = a/sin (rz),
[(2z) = n~ 24T (2)0(z + 1)
!
[ et (1 =yt de=TECEYT + ¥). Re x >0,Re y> 0.
"0
6. Psi function:
Y(z)=T'(2)/T(2)

7. Difference equation:
1
Y+ 1)=v(z)+ z'
8. Special values:
w()= -y, Y+ 1)=-y +le 1/k,

where 7 = 0.5772 is Euler’s constant.
9. Taylor series:

Y(l+2)=—y— i Ln)(—2r

where {(n) = Y, k™" is the Riemann zeta function.
10. Asymptotic expansion:

1 1 1

1 - - 00 2
WO~z — o s s T P RIS

EXPONENTIAL INTEGRALS

1. Integral representation:

=

Ejz)= J'l S-di,  Rez>0.



